281
Views
12
CrossRef citations to date
0
Altmetric
Articles

Facile and green synthesis of zinc oxide particles by Stevia Rebaudiana and its in vitro photocatalytic activity

, , , , , , , & show all
Pages 1-6 | Received 14 Feb 2018, Accepted 31 Dec 2018, Published online: 11 Apr 2019

References

  • Bhuyan, T.; Mishra, K.; Khanuja, M.; Prasad, R.; Varma, A. Biosynthesis of Zinc Oxide Nanoparticles from Azadirachta Indica for Antibacterial and Photocatalytic Applications. Mater. Sci. Semicond. Process. 2015, 32, 55–61. doi:10.1016/j.mssp.2014.12.053.
  • Dahoumane, S. A.; Mechouet, M.; Wijesekera, K.; Filipe, C. D. M.; Sicard, C.; Bazylinski, D. A.; Jeffryes, C. Algae-Mediated Biosynthesis of Inorganic Nanomaterials as a Promising Route in Nanobiotechnology - A Review. Green Chem. 2017, 19, 552–587. doi:10.1039/C6GC02346K.
  • Foresti, M. L.; Vázquez, A.; Boury, B. Applications of Bacterial Cellulose as Precursor of Carbon and Composites with Metal Oxide, Metal Sulfide and Metal Nanoparticles: A Review of Recent Advances. Carbohydr. Polym. 2017, 157, 447–467. doi:10.1016/j.carbpol.2016.09.008.
  • Ahmed, S.; Annu, Chaudhry, S. A.; Ikram, S. A Review on Biogenic Synthesis of ZnO Nanoparticles Using Plant Extracts and Microbes: A Prospect towards Green Chemistry. J. Photochem. Photobiol. B: Biol. 2017, 166, 272–284.
  • Singh, P.; Kim, Y. J.; Zhang, D.; Yang, D. C. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol. 2016, 34, 588–599.
  • Markus, J.; Mathiyalagan, R.; Kim, Y.-J.; Abbai, R.; Singh, P.; Ahn, S.; Perez, Z. E. J.; Hurh, J.; Yang, D. C. Intracellular Synthesis of Gold Nanoparticles with Antioxidant Activity by Probiotic Lactobacillus kimchicus DCY51(T) Isolated from Korean Kimchi. Enzyme Microb. Technol. 2016, 95, 85–93. doi:10.1016/j.enzmictec.2016.08.018.
  • Geetha, A. S. R.; Mallika, J.; Kannusamy, R.; Rajendran, R. Green Synthesis of Antibacterial Zinc Oxide Nanoparticles Using Biopolymer Azadirachta Indica Gum. Orient. J. Chem. 2016, 32, 955–963.
  • Bala, N.; Saha, S.; Chakraborty, M.; Maiti, M.; Das, S.; Basu, R.; Nandy, P. Green Synthesis of Zinc Oxide Nanoparticles Using Hibiscus Subdariffa Leaf Extract: Effect of Temperature on Synthesis, Anti-Bacterial Activity and Anti-Diabetic Activity. RSC Adv. 2015, 5, 4993–5003. doi:10.1039/C4RA12784F.
  • Al-Shabib, N. A.; Husain, F. M.; Ahmed, F.; Khan, R. A.; Ahmad, I.; Alsharaeh, E.; et al. Biogenic Synthesis of Zinc Oxide Nanostructures from Nigella Sativa Seed: Prospective Role as Food Packaging Material Inhibiting Broad-Spectrum Quorum Sensing and Biofilm. Sci. Rep. 2016, 6, 36761.
  • Sutradhar, P.; Debbarma, M.; Saha, M. Microwave Synthesis of Zinc Oxide Nanoparticles Using Coffee Powder Extract and Its Application for Solar Cell. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2016, 46, 1622–1627. doi:10.1080/15533174.2015.1137035.
  • Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y. Hydroxyl Radicals Based Advanced Oxidation Processes (AOPs) for Remediation of Soils Contaminated with Organic Compounds: A Review. Chem. Eng. J. 2016, 284, 582–598. doi:10.1016/j.cej.2015.09.001.
  • Goyal, S. K.; Samsher; Goyal, R. K. Stevia (Stevia Rebaudiana) a Bio-sweetener: A Review. Int. J. Food Sci. Nutr. 2010, 61, 1–10.
  • Tadhani, M. B.; Patel, V. H.; Subhash, R. In Vitro Antioxidant Activities of Stevia rebaudiana Leaves and Callus. J. Food Comp. Anal. 2007, 20, 323–329. doi:10.1016/j.jfca.2006.08.004.
  • Shukla, S.; Mehta, A.; Bajpai, V. K.; Shukla, S. In Vitro Antioxidant Activity and Total Phenolic Content of Ethanolic Leaf Extract of Stevia rebaudiana Bert. Food Chem. Toxicol. 2009, 47, 2338–2343. doi:10.1016/j.fct.2009.06.024.
  • Markus, J.; Wang, D.; Kim, Y.-J.; Ahn, S.; Mathiyalagan, R.; Wang, C.; et al. Biosynthesis, Characterization, and Bioactivities Evaluation of Silver and Gold Nanoparticles Mediated by the Roots of Chinese Herbal Angelica Pubescens Maxim. Nanoscale Res. Lett. 2017, 12, 46.
  • Hu, Y.; Liu, W.; Wu, F. Novel Multi-Responsive Polymer Magnetic Microgels with Folate or Methyltetrahydrofolate Ligand as Anticancer Drug Carriers. RSC Adv. 2017, 7, 10333–10344. doi:10.1039/C6RA27114F.
  • Anjum, M.; Miandad, R.; Waqas, M.; Gehany, F.; Barakat, M. A. Remediation of Wastewater Using Various Nano-Materials. Arab. J. Chem. 2016. doi:10.1016/j.arabjc.2016.10.004.
  • Jang, Y. J.; Simer, C.; Ohm, T. Comparison of Zinc Oxide Nanoparticles and Its Nano-Crystalline Particles on the Photocatalytic Degradation of Methylene Blue. Mater. Res. Bull. 2006, 41, 67–77. doi:10.1016/j.materresbull.2005.07.038.
  • Soshnikova, V.; Kim, Y. J.; Singh, P.; Huo, Y.; Markus, J.; Ahn, S.; Castro-Aceituno, V.; Kang, J.; Chokkalingam, M.; Mathiyalagan, R.; et al. Cardamom Fruits as a Green Resource for Facile Synthesis of Gold and Silver Nanoparticles and Their Biological Applications. Artif. Cells Nanomed. Biotechnol. 2018, 46, 108–117. doi:10.1080/21691401.2017.1296849.
  • Liufu, S.; Xiao, H.; Li, Y. Investigation of PEG Adsorption on the Surface of Zinc Oxide Nanoparticles. Powder Technol. 2004, 145, 20–24. doi:10.1016/j.powtec.2004.05.007.
  • Ba, N. G.; Saadat, M. Surface Adsorption of Polyethylene Glycol and Polyvinyl Alcohol with Variable Molecular Weights on Zinc Oxide Nanoparticles. Iran. J. Chem. Eng. 2011, 8, 20–30.
  • Tang, E.; Cheng, G.; Ma, X. Preparation of Nano-ZnO/PMMA Composite Particles via Grafting of the Copolymer onto the Surface of Zinc Oxide Nanoparticles. Powder Technol. 2006, 161, 209–214. doi:10.1016/j.powtec.2005.10.007.
  • Mao, H.; Liao, Y.; Ma, J.; Zhao, S. L.; Huo, F. W. Water-Soluble Metal Nanoparticles Stabilized by Plant Polyphenols for Improving the Catalytic Properties in Oxidation of Alcohols. Nanoscale 2016, 8, 1049–1054. doi:10.1039/C5NR07897K.
  • Kim, I.-S.; Yang, M.; Lee, O.-H.; Kang, S.-N. The Antioxidant Activity and the Bioactive Compound Content of Stevia rebaudiana Water Extracts. Food Sci. Technol. 2011, 44, 1328–1332. doi:10.1016/j.lwt.2010.12.003.
  • Rodriguez-Leon, E.; Iniguez-Palomares, R.; Navarro, R. E.; Herrera-Urbina, R.; Tanori, J.; Iniguez-Palomares, C.; Maldonado, A. Synthesis of Silver Nanoparticles Using Reducing Agents Obtained from Natural Sources (Rumex hymenosepalus Extracts). Nanoscale Res. Lett. 2013, 8, 318. doi:10.1186/1556-276X-8-318.
  • Lanje, A. S.; Sharma, S. J.; Ningthoujam, R. S.; Ahn, J. S.; Pode, R. B. Low Temperature Dielectric Studies of Zinc Oxide (ZnO) Nanoparticles Prepared by Precipitation Method. Adv. Powder Technol. 2013, 24, 331–335. doi:10.1016/j.apt.2012.08.005.
  • Upadhyaya, L.; Singh, J.; Agarwal, V.; Pandey, A. C.; Verma, S. P.; Das, P.; Tewari, R. P. Efficient Water Soluble Nanostructured ZnO Grafted O-carboxymethyl Chitosan/Curcumin-Nanocomposite for Cancer Therapy. Process Biochem. 2015, 50, 678–688. doi:10.1016/j.procbio.2014.12.029.
  • Ali, L. I.; El-Molla, S. A.; Ibrahim, M. M.; Mahmoud, H. R.; Naghmash, M. A. Effect of Preparation Methods and Optical Band Gap of ZnO Nanomaterials on Photodegradation Studies. Optical Mat. 2016, 58, 484–490. doi:10.1016/j.optmat.2016.05.034.
  • Wahab, R.; Ansari, S. G.; Kim, Y. S.; Seo, H. K.; Kim, G. S.; Khang, G.; Shin, H.-S. Low Temperature Solution Synthesis and Characterization of ZnO Nano-Flowers. Mater. Res. Bull. 2007, 42, 1640–1648. doi:10.1016/j.materresbull.2006.11.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.