426
Views
15
CrossRef citations to date
0
Altmetric
Articles

Turmeric-silver-nanoparticles for effective treatment of breast cancer and to break CTX-M-15 mediated antibiotic resistance in Escherichia coli

ORCID Icon, , , , , , , , & show all
Pages 867-874 | Received 14 May 2020, Accepted 26 Jul 2020, Published online: 31 Aug 2020

References

  • Mohanpuria, P.; Rana, N. K.; Yadav, S. K. Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. J. Nanopart. Res. 2008, 10, 507–517. DOI: 10.1007/s11051-007-9275-x.
  • Prakash, P.; Gnanaprakasam, P.; Emmanuel, R.; Arokiyaraj, S.; Saravanan, M. Green Synthesis of Silver Nanoparticles from Leaf Extract of Mimusops Elengi, Linn. for Enhanced Antibacterial Activity against Multi Drug Resistant Clinical Isolates. Colloids Surf. B Biointerfaces 2013, 108, 255–259. DOI: 10.1016/j.colsurfb.2013.03.017.
  • Krishnaraj, C.; Jagan, E. G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P. T.; Mohan, N. Synthesis of Silver Nanoparticles Using Acalypha indica Leaf Extracts and Its Antibacterial Activity against Water Borne Pathogens. Colloids Surf. B Biointerfaces 2010, 76, 50–56. DOI: 10.1016/j.colsurfb.2009.10.008.
  • Mohamed, M. B.; Volkov, V.; Link, S.; Sayed, M. A. E. The ‘Lightning’ Gold Nanorods: Fluorescence Enhancement of over a Million Compared to the Gold Metal. Chem. Phys. 2000, 317, 517–523. DOI: 10.1016/S0009-2614(99)01414-1.
  • Shameli, K.; Ahmad, M. B.; Zamanian, A.; Sangpour, P.; Shabanzadeh, P.; Abdollahi, Y.; Zargar, M. Green Biosynthesis of Silver Nanoparticles Using Curcuma Longa Tuber Powder. Int. J. Nanomed. 2012, 7, 5603–5610. DOI: 10.2147/IJN.S36786.
  • Akther, T.; Khan, M. S.; Srinivasan, H. Novel Silver Nanoparticles Synthesized from Anthers of Couroupita Guianensis Abul. Control Growth and Biofilm Formation in Human Pathogenic Bacteria. Nano Biomed. Eng. 2018, 10, 250–257. DOI: 10.5101/nbe.v10i3.p250-257.
  • Salam, M. A.; Obaid, A. Y.; Reda, M.; El-Shishtawy, R. M.; Mohamed, S. A. Synthesis of Nanocomposites of Polypyrrole/Carbon Nanotubes/Silver Nano Particles and Their Application in Water Disinfection. RSC Adv. 2017, 7, 16878–16884. DOI: 10.1039/C7RA01033H.
  • Rai, M.; Yadav, A.; Gade, A. Silver Nanoparticles as a New Generation of Antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. DOI: 10.1016/j.biotechadv.2008.09.002.
  • Das, B.; Dash, S. K.; Mandal, D.; Ghosh, T.; Chattopadhyay, S.; Tripathy, S.; Das, S.; Dey, S. K.; Das, D.; Roy, S. Green Synthesized Silver Nanoparticles Destroy Multi Drug Resistant Bacteria via Reactive Oxygen Species Mediated Membrane Damage. Arabian J. Chem. 2017, 10, 862–876. DOI: 10.1016/j.arabjc.2015.08.008.
  • Kelkawi, A.; Abbasi Kajani, A.; Bordbar, A. K. Green Synthesis of Silver Nanoparticles Using Mentha Pulegium and Investigation of Their Antibacterial, Antifungal and Anticancer Activity. IET Nanobiotechnol. 2017, 11, 370–376. DOI: 10.1049/iet-nbt.2016.0103.
  • Kajani, A.; Bordbar, A. K.; Zarkesh-Esfahani, S. H.; Khosropour, A.; Razmjou, A. Green Synthesis of Anisotropic Silver Nanoparticles with Potent Anticancer Activity Using Taxus Baccata Extract. RSC Adv. 2014, 4, 61394–61403. DOI: 10.1039/C4RA08758E.
  • Swanner, J.; Mims, J.; Carroll, D. L.; Akman, S. A.; Furdui, C. M.; Torti, S. V.; Singh, R. N. Differential Cytotoxic and Radiosensitizing Effects of Silver Nanoparticles on Triple-Negative Breast Cancer and Non-Triple-Negative Breast Cells. Int. J. Nanomed. 2015, 10, 3937–3953. DOI: 10.2147/IJN.S80349.
  • Lin, J.; Huang, Z.; Wu, H.; Zhou, W.; Jin, P.; Wei, P.; Zhang, Y.; Zheng, F.; Zhang, J.; Xu, J.; et al. Inhibition of Autophagy Enhances the Anticancer Activity of Silver Nanoparticles. Autophagy 2014, 10, 2006–2020. DOI: 10.4161/auto.36293.
  • Khan, Y.; Sardul Singh, S.; Ali, M.; Khali, A. T.; Ali, T.; Abbas, N.; Shinwari, Z. K. Bio-Synthesized Silver Nanoparticles Using Different Plant Extracts as anti-Cancer Agent. J. Nanomed. Biother. Discov 2017, 07, 154. DOI: 10.4172/2155-983X.1000154.
  • Soheil, Z. M.; Habsah, A. K.; Pouya, H.; Hassan, T.; Sazaly, A.; Keivan, Z. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin. Biomed. Res. Int. 2014, 186864, 12.
  • Pandit, R. S.; Gaikwad, S. C.; Agarkar, G. A.; Gade, A. K.; Rai, M. Curcumin Nanoparticles: Physico-Chemical Fabrication and Its in Vitro Efficacy against Human Pathogens. 3 Biotech. 2015, 5, 991–997. DOI: 10.1007/s13205-015-0302-9.
  • Rudrappa, T.; Bais, H. P. Curcumin, a Known Phenolic from Curcuma Longa, Attenuates the Virulence of Pseudomonas aeruginosa PAO1 in Whole Plant and Animal Pathogenicity Models. J. Agric. Food Chem. 2008, 56, 1955–1962. DOI: 10.1021/jf072591j.
  • Mohamed, S. A.; Saleh, R. M.; Kabli, S. A.; Al-Garni, S. M. Influence of Solid State Fermentation by Trichoderma Spp. on Solubility, Phenolic Content, Antioxidant, and Antimicrobial Activities of Commercial Turmeric, Bioscience. Biosci. Biotechnol. Biochem. 2016, 80, 920–928. DOI: 10.1080/09168451.2015.1136879.
  • Tajbakhsh, S.; Mohammadi, K.; Deilami, I. Antibacterial Activity of Indium Curcumin and Indium Diacetyl Curcumin. Afr. J. Biotechnol. 2008, 7, 3832–3835.
  • Wilken, R.; Veena, M. S.; Wang, M. B.; Srivatsan, E. S. Curcumin: A Review of Anti-Cancer Properties and Therapeutic Activity in Head and Neck Squamous Cell Carcinoma. Mol. Cancer. 2011, 10, 12. DOI: 10.1186/1476-4598-10-12.
  • Shanmugam, M. K.; Rane, G.; Kanchi, M. M.; Arfuso, F.; Chinnathambi, A.; Zayed, M. E.; Alharbi, S. A.; Tan, B. K. H.; Kumar, A. P.; Sethi, G. The Multifaceted Role of Curcumin in Cancer Prevention and Treatment. Molecules 2015, 20, 2728–2769. DOI: 10.3390/molecules20022728.
  • Anand, P.; Nair, H. B.; Sung, B.; Kunnumakkara, A. B.; Yadav, V. R.; Tekmal, R. R.; Aggarwal, B. B. Design of Curcumin-Loaded PLGA Nanoparticles Formulation with Enhanced Cellular Uptake, and Increased Bioactivity in Vitro and Superior Bioavailability in Vivo. Biochem. Pharmacol. 2010, 79, 330–338. DOI: 10.1016/j.bcp.2009.09.003.
  • Mohamed, S. A.; El-Shishtawy, R. M.; Al-Bar, O. A. M.; Al-Najada, A. R. Chemical Modification of Curcumin: Solubility and Antioxidant Capacity. Int. J. Food Prop. 2017, 20, 718–724. DOI: 10.1080/10942912.2016.1177545.
  • Mohanty, C.; Das, M.; Sahoo, S. K. Emerging Role of Nanocarriers to Increase the Solubility and Bioavailability of Curcumin. Expert Opin. Drug Deliv. 2012, 9, 1347–1364. DOI: 10.1517/17425247.2012.724676.
  • Tahira, A.; Hemalatha, S. Mycosilver Nanoparticles: Synthesis, Characterization and Screening the Efficacy against Plant Pathogenic Fungi. Bionanoscience 2019, 9, 296–301. DOI: 10.1007/s12668-019-0607-y.
  • Tahira, A.; Priya, S.; Sah, S.; Khan, M. S.; Hemalatha, S. Ta-AgNps Are Potential Antimicrobial Resistance Breakers. J. Nanostruct. 2019, 9, 376–383.
  • Fazeela Mahaboob Begum, S. M.; Chitra, K.; Joseph, B.; Sundararajan, R.; Hemalatha, S. Gelidiella acerosa Inhibits Lung Cancer Proliferation. BMC Compl. Altern. Med. 2018, 18, 104. DOI: 10.1186/s12906-018-2165-1.
  • Harborne, J. B. Phytochemical Methods; Chapman and Hall: London, 1973; p. 113.
  • Ubaid, R.; Priya, S.; Parveen, A.; Sah, S. K.; Hemalatha, S. Efficacy of Andrographis paniculata against Extended Spectrum β-Lactamase (ESBL) Producing E. coli. BMC Complement Altern. Med. 2018, 18, 244. DOI: 10.1186/s12906-018-2312-8.
  • Ranjani, S.; Shariq Ahmed, M.; Ruckmani, K.; Hemalatha, S. Green Nanocolloids Control Multi Drug Resistant Pathogenic Bacteria. J. Clust. Sci. 2019, 31, 861–866. DOI: 10.1007/s10876-019-01694-6.
  • Ranjani, S.; Tamanna, K.; Hemalatha, S. Triphala Green Nano Colloids: Synthesis, Characterization and Screening Biomarkers. Appl. Nanosci. 2019, 10, 1269–1279. DOI: 10.1007/s13204-019-01208-w.
  • Shariq, A. M.; Ranjani, S.; Tahira, A.; Waseem, M.; Khan, J.; Kashif, M.; Hemalatha, S. Biogenic AgNps Synthesized via Endophytic Bacteria and Its Biological Applications. Environ. Sci. Pollut. Res. Int. 2019, 26, 26939–26946. DOI: 10.1007/s11356-019-05869-6.
  • Lakshya, M.; Ignacio, G. C.; Gowri Sree, V.; Hemalatha, S.; Uma, K. A.; Raji, S. High-Throughput, Label-Free Quantitative Proteomic Studies of the Anticancer Effects of Electrical Pulses with Turmeric Silver Nanoparticles: An in Vitro Model Study. Sci. Rep. 2020, 10, 7258.
  • Ubaid, R.; Hemalatha, S. Effect of Biosynthesized Copper Nanoparticles (Cunps) on Growth and Biofilm Formation in Fluconazole Resistant Candida albicans. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 21–24.
  • Ubaid, R.; Hemalatha, S. Marine Endophytic Actinomycetes Assisted Synthesis of Copper Nanoparticles (CuNPs): Characterization and Antibacterial Efficacy against Human Pathogens. Mater. Lett. 2017, 194, 176–180.
  • Kovalchuk, A.; Aladedunye, F.; Rodriguez-Juarez, R.; Li, D.; Thomas, J.; Kovalchuk, O.; Przybylski, R. Novel Antioxidants Are Not Toxic to Normal Tissues, but Effectively Novel Antioxidants Are Not Toxic to Normal Tissues but Effectively Kill Cancer Cells. Cancer Biol. Ther. 2013, 14, 907–915. DOI: 10.4161/cbt.25935.
  • Staff, N. P.; Grisold, A.; Grisold, W.; Windebank, A. J. Chemotherapy-Induced Peripheral Neuropathy: A Current Review. Ann. Neurol. 2017, 81, 772–781. DOI: 10.1002/ana.24951.
  • Gera, M.; Sharma, N.; Ghosh, M.; Luong Huynh, D.; Lee, S.; Jin, Min, T.; Kwon, T.; J. D. Kee, Nanoformulations of Curcumin: An Emerging Paradigm for Improved Remedial Application. Oncotarget 2017, 8, 66680–66698.
  • Rohini, B.; Tahira, A.; Waseem, M.; Khan, J.; Kashif, M.; Hemalatha, S. AgNPs from Nigella Sativa Control Breast Cancer: An in Vitro Study. J. Environ. Pathol. Toxicol. Oncol. 2019, 38, 185–194. DOI: 10.1615/JEnvironPatholToxicolOncol.2019027318.
  • Oghenejobo, M.; Bethel, O. U. Antibacterial Evaluation, Phytochemical Screening and Ascorbic Acid Assay of Turmeric (Curcuma Longa). MOJ Bioequiv. Availab. 2017, 4, 232–239. DOI: 10.15406/mojbb.2017.04.00063.
  • Tacouri, D. D.; Ramful-Baboolall, D.; Puchooa, D. In Vitro Bioactivity and Phytochemical Screening of Selected Spices Used in Mauritian Foods. Asian Pacific J. Trop. Dis. 2013, 3, 253–261. DOI: 10.1016/S2222-1808(13)60066-3.
  • Tahira, A.; Priya, S.; Sarojkumar, S.; M.; Shahanbaj, K.; Hemalatha, S. Ta-AgNps Are Potential Antimicrobial Resistance Breakers. J. Nanostruct. 2019, 9, 376–383.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.