165
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Plasmonic photothermal effect on cytotoxicity of biogenic nanostructure synthesized through Litchi chinensis Sonn.

Received 19 Dec 2020, Accepted 11 Jul 2021, Published online: 29 Jul 2021

References

  • Tran, S.; DeGiovanni, P.; Piel, B.; Rai, P. Cancer Nanomedicine: A Review of Recent Success in Drug Delivery. Clin. Transl. Med. 2017, 6, 44. DOI: 10.1186/s40169-017-0175-0.
  • Chen, K.-J.; Liang, H.-F.; Chen, H.-L.; Wang, Y.; Cheng, P.-Y.; Liu, H.-L.; Xia, Y.; Sung, H.-W. A Thermoresponsive Bubble-Generating Liposomal System for Triggering Localized Extracellular Drug Delivery. ACS Nano. 2013, 7, 438–446. DOI: 10.1021/nn304474j.
  • Bregoli, L.; Movia, D.; Gavigan-Imedio, J. D.; Lysaght, J.; Reynolds, J.; Prina-Mello, A. Nanomedicine Applied to Translational Oncology: A Future Perspective on Cancer Treatment. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 81–103. DOI: 10.1016/j.nano.2015.08.006.
  • Li, H.; Zhu, H.; Xu, C. J.; Yuan, J. Cleavage of BID by Caspase 8 Mediates the Mitochondrial Damage in the Fas Pathway of Apoptosis. Cell 1998, 94, 491–501. DOI: 10.1016/s0092-8674(00)81590-1.
  • Zhang, R. X.; Wong, H. L.; Xue, H. Y.; Eoh, J. Y.; Wu, X. Y. Nanomedicine of Synergistic Drug Combinations for Cancer Therapy - Strategies and perspectives. J. Control Release 2016, 240, 489–503. DOI: 10.1016/j.jconrel.2016.06.012.
  • Huang, X.; El-Sayed, M. A. Plasmonic Photo-Thermal Therapy (PPTT). Alexandria J. Med. 2011, 47, 1–9. DOI: 10.1016/S1473-3099(21)00397-2.
  • Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Rodrígueza, E.; García Sole, J. Nanoparticles for Photothermal Therapies. Nanoscale 2014, 6, 9494–9530. DOI: 10.1039/c4nr00708e.
  • Dickerson, E. B.; Dreaden, E. C.; Huang, X.; El-Sayed, I.; Chu, H.; Pushpanketh, S.; McDonald, J. F.; El-Sayed, M. A. Gold Nanorod Assisted near-Infrared Plasmonic Photothermal Therapy (PPTT) of Squamous Cell Carcinoma in Mice. Cancer Lett. 2008, 269, 57–66. DOI: 10.1016/j.canlet.2008.04.026.
  • Zheng, X. H.; Xing, D.; Zhou, F.; Wu, B.; Chen, W. Indocyanine Green-Containing Nanostructure as near Infrared Dual-Functional Targeting Probes for Optical Imaging and Photothermal Therapy. Mol. Pharm. 2011, 8, 447–456. DOI: 10.1021/mp100301t.
  • Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-Mediated near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance. Proc. Natl. Acad. Sci. USA. 2003, 100, 13549–13554. DOI: 10.1073/pnas.2232479100.
  • Khandel, P.; Yadaw, R. K.; Soni, D. K.; Kanwar, L.; Sushil Kumar Shahi, S. Biogenesis of Metal Nanoparticles and Their Pharmacological Applications: Present Status and Application Prospects. J. Nanostruct. Chem. 2018, 8, 217–254. . DOI: 10.1007/s40097-018-0267-4.
  • Jinu, U.; Gomathi, Ma.; Saiqa, Ib.; Geetha, N.; Benelli, G.; Venkatachalam, P. Green Engineered Biomolecule-Capped Silver and Copper Nanohybrids Using Prosopis Cineraria Leaf Extract: Enhanced Antibacterial Activity against Microbial Pathogens of Public Health Relevance and Cytotoxicity on Human Breast Cancer Cells (MCF-7). Microb. Pathog. 2017, 105, 86–95. DOI: 10.1016/j.micpath.2017.02.019.
  • Prasad, K. S.; Patel, H.; Patel, T.; Patel, K.; Selvaraj, K. Biosynthesis of Se Nanoparticles and Its Effect on UV-Induced DNA Damage. Colloids Surf B Biointerfaces 2013, 103, 261–266. DOI: 10.1016/j.colsurfb.2012.10.029.
  • Guan, B.; Yan, R.; Li, R.; Zhang, X. Selenium as a Pleiotropic Agent for Medical Discovery and Drug Delivery. Int. J. Nanomed. 2018, 13, 7473–7490. DOI: 10.2147/IJN.S181343.
  • Lee, S. H.; Jun, B. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci 2019, 20, 865. DOI: 10.3390/ijms20040865.
  • Chen, D.; Qiao, X.; Qiu, X.; Chen, J. Synthesis and Electrical Properties of Uniform Silver Nanoparticles for Electronic Applications. J. Mater. Sci. 2009, 44, 1076–1081. DOI: 10.1007/s10853-008-3204-.
  • Valenzuela, M. M. A.; Neidigh, J. W.; Wall, N. R. Antimetabolite Treatment for Pancreatic Cancer. Chemotherapy (Los Angel) 2014, 3. DOI: 10.4172/2167-7700.1000137.
  • Noordhuis, P.; Holwerda, U.; Van der Wilt, C. L.; Van Groeningen, C. J.; Smid, K.; Meijer, S.; Pinedo, H. M.; Peters, G. J. 5-Fluorouracil Incorporation into RNA and DNA in Relation to Thymidylate Synthase Inhibition of Human Colorectal Cancers. Ann. Oncol. 2004, 15, 1025–1032. DOI: 10.1093/annonc/mdh264.
  • Tan, B. L.; Norhaizan, M. Curcumin Combination Chemotherapy: The Implication and Efficacy in Cancer. Molecules 2019, 24, 2527. DOI: 10.3390/molecules24142527.
  • Veeru, P.; Kishor, M. P.; Meenakshi, M. Screening of Medicinal Plant Extracts for Antioxidant Activity. J. Med. Plant Res. 2009, 3, 608–612.
  • Mujeeb, F.; Bajpai, P.; Neelam Pathak, N. Phytochemical Evaluation, Antimicrobial Activity, and Determination of Bioactive Components from Leaves of Aegle Marmelos. Biomed. Res. Int. 2014, 2014, 497606. DOI: 10.1155/2014/497606.
  • Chukwuma, S.; Ezeonu, M.; Chigozie, E. Qualitative and Quantitative Determination of Phytochemical Contents of Indigenous Nigerian Softwoods. New J. Sci. 2016, 2016, 1–9. DOI: 10.1155/2016/5601327.
  • Konappal, N.; Arakere, C. A.; Udayashankar, A.; Krishnamurthy, S.; Pradeep, C. K.; Chowdappa, S.; Jogaiah, S. GC-MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci. Rep. 2020, 10, 16438. 10.1038/s41598-020-73442-0.
  • Jang, H.; Kang, K.; El-Sayeda, M. Facile Size Controlled Synthesis of Fucoidan Coated Gold Nanoparticles and Cooperative Anticancer Effect with Doxorubicin. J. Mater. Chem. Mater. Biol. Med. 2013, 14, 5(30), 6147–6153. DOI: 10.1039/c7tb01123g
  • Wang, J.; Muhammad, N.; Li, T.; Wang, H.; Liu, Y.; Liu, B.; Zhan, H. Hyaluronic Acid-Coated Camptothecin Nanocrystals for Targeted Drug Delivery to Enhance Anticancer Efficacy. Mol. Pharmaceut. 2020, 17(7), 2411–2425. DOI: 10.1021/acs.molpharQ2maceut.0c00161
  • Manivasagan, P.; Bharathiraja, S.; Bui, N. Q.; Jang, B.; Oh, Y.; Lim, I.; G.; Oh, J. Doxorubicin-loaded fucoidan capped gold nanoparticles for drug delivery and photoacoustic imaging . Int. J. Biol. Macromol. 2016, 91, 578–588. DOI: 10.1016/j.ijbiomac.2016.06.007.
  • Chen, W.; Cheng, C.; Zink, J. Spatial, Temporal, and Dose Control of Drug Delivery Using Noninvasive Magnetic Stimulation. ACS Nano. 2019, 13, 1292–1308. DOI: 10.1021/acsnano.8b06655.
  • Le, M.; Poddar, S.; Joseph, R.; Abt, E.; Kim, W.; Wei, L.; Nhu, T.; Chloe, M.; Braas, D.; Nikanjam, M.; et al. ATR Inhibition Facilitates Targeting of Leukemia Dependence on Convergent Nucleotide Biosynthetic Pathways. Nat. Commun. 2017, 8, 241. DOI: 10.1038/s41467-017-00221-3.
  • Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H.; Yeh, J. I.; Zink, J. I.; Nel, A. E. Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress properties. ACS Nano. 2008, 2, 2121–2134. DOI: 10.1021/nn800511k.
  • Castellain, R. C. L.; Gesser, M.; Tonini, F.; Schulte, R. V.; Demessiano, K. Z.; Wolff, F. R.; Delle-Monache, F.; Netz, D. J. A.; Cechinel-Filho, V.; de Freitas, R. A.; et al. Chemical Composition, Antioxidant and Antinociceptive Properties of Litchi chinensis Leaves. J. Pharm. Pharmacol. 2014, 66, 1796–1807. DOI: 10.1111/jphp.12309.
  • Othman, L.; Sleiman, A.; Abdel-Massih, R. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front. Microbiol. 2019, 10, 911. DOI: 10.3389/fmicb.2019.00911.
  • Carr, A.; Maggani, S. Vitamin C and Immune Function. Nutrients 2017, 9, 121. DOI: 10.3390/nu9111211.
  • Mohammed, G. J.; Hameed, M. J. Anti-Bacterial, Antifungal Activity and Chemical Analysis of Punica Grantanum (Pomegranate Peel) Using GC-MS and FTIR Spectroscopy. Int. J. Pharmacog. Phytochem. Res. 2016, 8, 480–489.
  • Niu, Y.; Hardy, Y.; Agarwal, M.; Hua, L.; Ren, Y. Characterization of Volatiles Tribolium castaneum (H.) in Flour Using Solid Phase Microextraction–Gas Chromatography Mass Spectrometry(SPME–GCMS). Food Sci. Hum. Wellness 2016, 5–24–29.
  • Castellain, R. C. L.; Gesser, M.; Tonini, F.; Schulte, R. V.; Demessiano, K. Z.; Wolff, F. R.; Delle-Monache, F.; Netz, D. J. A.; Cechinel-Filho, V.; de Freitas, R. A.; et al. Chemical Composition, Antioxidant and Antinociceptive Properties of Litchi chinensis Leaves. J. Pharm. Pharmacol. 2014, 66, 1796–1807. DOI: 10.1111/jphp.12309.
  • Basu, S.; Haldar, N.; Bhattacharya, S.; Biswas, S.; Biswas, M. Hepatoprotective Activity of Litchi chinensis Leaves against Paracetamol-Induced Liver Damage in Rats. Am-Euras J. Sci. Res. 2012, 7, 77–81.
  • Xu, X.; Xie, H.; Wang, Y.; Wei, X. A-Type Proanthocyanidins from Lychee Seeds and Their Antioxidant and Antiviral Activities. J. Agric. Food Chem. 2010, 58, 11667–11672. DOI: 10.1021/jf1033202.
  • Chen, Y.; Luo, H.; Gao, A.; Zhu, M. Ultrasound-Assisted Extraction of Polysaccharides from Litchi (Litchi chinensis Sonn.) Seed by Response Surface Methodology and Their Structural Characteristics. Innov Food Sci. Emerg. Technol. 2011, 12, 305–309. DOI: 10.1016/j.ifset.2011.03.003.
  • Koizumi, S.; Ishigami, M.; Tsubota, H.; Koyama, T. Chemical Constituents with Antioxidant Activities from Litchi (Litchi chinensis Sonn.) Seeds. Surg. Today 2021, 126, 1081–1087. DOI:10.1016/j.foodchem.2010.11.133.
  • Yang, D. J.; Chang, Y. Y.; Hsu, C. L.; Liu, C. W.; Wang, Y.; Chen, Y. C. Protective Effect of a Litchi (Litchi chinensis Sonn.)-Flower-Water-Extract on Cardiovascular Health in a High-Fat/Cholesterol-Dietary Hamsters. Food Chem. 2010, 119, 1457–1464. DOI: 10.1016/j.foodchem.2009.09.027.
  • Basu, S.; Haldar, N.; Bhattacharya, S.; Biswas, S.; Biswas, M. Hepatoprotective Activity of Litchi chinensis Leaves against Paracetamol-Induced Liver Damage in Rats. Am-Euras J. Sci. Res. 2012, 7, 77–81.
  • Xu, X.; Xie, H.; Wang, Y.; Wei, X. A-Type Proanthocyanidins from Lychee Seeds and Their Antioxidant and Antiviral Activities. J. Agric. Food Chem. 2010, 58, 11667–11672. DOI: 10.1021/jf1033202.
  • Chen, Y.; Luo, H.; Gao, A.; Zhu, M. Ultrasound-Assisted Extraction of Polysaccharides from Litchi (Litchi chinensis Sonn.) Seed by Response Surface Methodology and Their Structural Characteristics. Innov. Food Sci. Emerg. Technol. 2011, 12, 305–309. DOI: 10.1016/j.ifset.2011.03.003.
  • Koizumi, S.; Ishigami, M.; Tsubota, H.; Koyama, T. Chemical Constituents with Antioxidant Activities from Litchi (Litchi chinensis Sonn.) Seeds. Surg. Today 2021, 126, 1081–1087. DOI:10.1016/j.foodchem.2010.11.133.
  • Yang, D. J.; Chang, Y. Y.; Hsu, C. L.; Liu, C. W.; Wang, Y.; Chen, Y. C. Protective Effect of a Litchi (Litchi chinensis Sonn.)-Flower-Water-Extract on Cardiovascular Health in a High-Fat/Cholesterol-Dietary Hamsters. Food Chem. 2010, 119, 1457–1464. DOI: 10.1016/j.foodchem.2009.09.027.
  • Kim, M.; Lee, J.; Nam, J. Plasmonic Photothermal Nanoparticles for Biomedical Applications. Adv. Sci. (Weinh). 2019, 6, 1900471. DOI: 10.1002/advs.201900471.
  • Rajeshkumar, S. Anticancer Activity of Eco-Friendly Gold Nanoparticles against Lung and Liver Cancer Cells. J. Genet. Eng. Biotechnol. 2016, 14, 195–202. DOI: 10.1016/j.jgeb.2016.05.007.
  • Mulfinger, L.; Solomon, S. D.; Bahadory, M.; Jeyarajasingam, A. V.; Rutkowsky, S. A.; Boritz, C. Synthesis and Study of Silver Nanoparticles. J. Chem. Educ. 2007, 84, 322–325. DOI: 10.1021/ed084p322.
  • Nair, A. S.; Pradeep, T. Halocarbon Mineralization and Catalytic Destruction by Metal Nanoparticles. Curr. Sci. 2003, 84, 1560–1564.
  • Ramamurthy, C. H.; Padma, M.; Samadanam, I. D. M.; Mareeswaran, R.; Suyavaran, A.; Kumar, M. S.; Premkumar, K.; Thirunavukkarasu, C. The Extra Cellular Synthesis of Gold and Silver Nanoparticles and Their Free Radical Scavenging and Antibacterial Properties. Colloids Surf. B Biointerfaces 2013, 102, 808–815. DOI: 10.1016/j.colsurfb.2012.09.025.
  • Anu, K.; Singaravelu, G.; Murugan, K.; Benelli, G. Green-Synthesis of Selenium Nanoparticles Using Garlic Cloves (Allium Sativum): Biophysical Characterization and Cytotoxicity on Vero Cells. J. Clust. Sci. 2017, 28, 551–563. DOI: 10.1007/s10876-016-1123-7.
  • Forootanfar, H.; Adeli-Sardou, M.; Nikkhoo, M.; Mehrabani, M.; Amir-Heidari, B.; Shahverdi, A. R.; Shakibaie, M. Antioxidant and Cytotoxic Effect of Biologically Synthesized Selenium Nanoparticles in Comparison to Selenium Dioxide. J. Trace Elem. Med. Biol. 2014, 28, 75–79. DOI: 10.1016/j.jtemb.2013.07.005.
  • Mittal, A.; Kumar, S.; Banerjee, U. C. Quercetin and Gallic Acid Mediated Synthesis of Bimetallic (Silver and Selenium) Nanoparticles and Their Antitumor and Antimicrobial Potential. J. Colloid Interface Sci. 2014, 431, 194–199. DOI: 10.1016/j.jcis.2014.06.030.
  • Saeed, I. K. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. DOI: 10.1016/S1473-3099(21)00397-2.
  • Sheng, Z. H.; Hu, D.; Zheng, M.; Zhao, P.; Liu, H.; Gao, D.; Gong, P.; Gao, G.; Zhang, P.; Ma, Y.; Cai, L. Smart Human Serum Albumin-Indocyanine Green Nanoparticles Generated by Programmed Assembly for Dual-Modal Imaging-Guided Cancer Synergistic Phototherapy. ACS Nano. 2014, 8, 12310–12322. DOI: 10.1021/nn5062386.
  • Zagar, T. M.; Oleson, J. R.; Vujaskovic, Z.; Dewhirst, M. W.; Craciunescu, O. I.; Blackwell, K. L.; Prosnitz, L. R.; Jones, E. L. Hyperthermia Combined with Radiation Therapy for Superficial Breast Cancer and Chest Wall Recurrence: A Review of the Randomized Data. Int. J. Hyperther. 2010, 26, 612–617. DOI: 10.3109/02656736.2010.487194.
  • Zhang, R.; Fan, Q.; Yang, M.; Cheng, K.; Lu, X.; Zhang, L.; Huang, W.; Cheng, Z. Engineering Melanin Nanoparticles as an Efficient Drug-Delivery System for Imaging-Guided Chemotherapy. Adv. Mater. 2015, 27, 5063–5069. DOI: 10.1002/adma.201502201.
  • Cevik, O.; Li, D.; Baljinnyam, E.; Manvar, D.; Pimenta, E. M.; Waris, G.; Barnes, B. J.; Kaushik-Basu, N. Interferon Regulatory Factor 5 (IRF5) Suppresses Hepatitis C Virus (HCV) Replication and HCV-Associated Hepatocellular Carcinoma. J. Biol. Chem. 2017, 292, 21676–21689. . PMID: 29079574; PubMed Central PMCID: PMCPMC5766933. DOI: 10.1074/jbc.M117.792721.
  • Riley, R.; Emily, S. D. Gold Nanoparticle-Mediated Photothermal Therapy: Applications and Opportunities for Multimodal Cancer Treatment. Asian Pac. J. Cancer Prev. 2018, 19, 2319–2323.
  • del Rosal, B.; Pérez‐Delgado, A.; Carrasco, E.; Jovanović, D. J.; Dramićanin, M. D.; Dražić, G.; de la Fuente, Á. J.; Sanz‐Rodriguez, F.; Jaque, D. Neodymium-Based Stoichiometric Ultrasmall Nanoparticles for Multifunctional Deep-Tissue Photothermal Therapy. Adv. Opt. Mater. 2016, 4, 782–789. DOI: 10.1002/adom.v4.5.
  • Beik, J.; Fatemeh, Z.; Ghoreishi, S.; Hosseini-Nami, S.; Mehrzadi, S.; Shakeri-Zadeh, S.; Kamrava, K. Nanotechnology in Hyperthermia Cancer Therapy: From Fundamental Principles to Advanced Applications. J Control Release 2016, 235, 205–221. DOI: 10.1016/j.jconrel.2016.05.062.
  • Hehr, T.; Lamprecht, U.; Glocker, S.; Classen, J.; Paulsen, F.; Budach, W.; Bamberg, M. Thermoradiotherapy for Locally Recurrent Breast Cancer with Skin Involvement. Int J Hyperther. 2001, 17, 291–301. DOI: 10.1080/02656730110049538.
  • Ghasemi, A.; Khanzadeh, T.; Heydarabad, M. Z.; Khorrami, A.; Esfahlan, A.; Ghavipanjeh, S.; Belverdi, M.; DarvishaniFikouhi, S.; Darbin, A.; Najafpour, M., et al.. Evaluation of BAX and BCL-2 Gene Expression and Apoptosis Induction in Acute Lymphoblastic Leukemia Cell Line CCRF-CEM after High- Dose Prednisolone Treatment. Asian Pac. J. Cancer Prev. 2018, 19, 2319–2323.
  • Landes, T.; Martinou, J. C. Mitochondrial Outer Membrane Permeabilization during Apoptosis: The Role of Mitochondrial Fission. Biochim. Biophys. Acta. 2011, 1813, 540–545.
  • Leibowitz, B.; Yu, J. Mitochondrial Signaling in Cell Death via the Bcl-2 Family. Cancer Biol. Ther. 2010, 9, 417–422. DOI: 10.4161/cbt.9.6.11392.
  • Luna-Vargas, M. P.; Chipuk, J. E. The Deadly Landscape of Pro-Apoptotic BCL-2 Proteins in the Outer Mitochondrial Membrane. FEBS J. 2016, 283, 2676–2689. DOI: 10.1111/febs.13624.
  • Russo, M.; Mupo, A.; Spagnuolo, C.; Russo, G. L. Exploring Death Receptor Pathways as Selective Targets in Cancer Therapy. Biochem. Pharmacol. 2010, 80, 674–682. DOI: 10.1016/j.bcp.2010.03.011.
  • Nayak, D.; Ashe, S.; Rauta, P. R.; Kumari, M.; Nayak, B. Bark Extract Mediated Green Synthesis of Silver Nanoparticles: Evaluation of Antimicrobial Activity and Antiproliferative Response against Osteosarcoma. Mat. Sci. Eng. C. 2016, 58, 44–52. DOI: 10.1016/j.msec.2015.08.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.