94
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Controlled synthesis and tuned fluorescence properties of NaGdF4:Yb, Er up-conversion nanocrystals through one-step hydrothermal approach

, , , , , , , , , & show all
Received 16 Jan 2021, Accepted 29 Aug 2021, Published online: 20 Feb 2024

References

  • Chen, D. Q.; Liu, L.; Huang, P.; Ding, M. Y.; Zhong, J. S.; Ji, Z. G. Nd3+-Sensitized Ho3+ Single-Band Red Upconversion Luminescence in Core Shell Nanoarchitecture. J. Phys. Chem. Lett. 2015, 6, 2833–2840. DOI: 10.1021/acs.jpclett.5b01180.
  • Xu, J.; Gai, S.; Ma, P. a.; Dai, Y.; Yang, G.; He, F.; Yang, P. Gadolinium Fluoride Mesoporous Microspheres: Controllable Synthesis, Materials and Biological Properties. J. Mater. Chem. B 2014, 2, 1791–1801. DOI: 10.1039/c3tb21465f.
  • Rahman, P.; Green, M. The Synthesis of Rare Earth Fluoride Based Nanoparticles. Nanoscale 2009, 1, 214–224. DOI: 10.1039/b9nr00089e.
  • Cheung, E. N. M.; Alvares, R. D. A.; Oakden, W.; Chaudhary, R.; Hill, M. L.; Pichaandi, J.; Mo, G. C. H.; Yip, C.; Macdonald, P. M.; Stanisz, G. J.; et al. Polymer-Stabilized Lanthanide Fluoride Nanoparticle Aggregates as Contrast Agents for Magnetic Resonance Imaging and Computed Tomography. Chem. Mater. 2010, 22, 4728–4739. DOI: 10.1021/cm101036a.
  • Xin, F. X.; Zhao, S. L.; Huang, L. H.; Deng, D. G.; Jia, G. H.; Wang, H. P.; Xu, S. Q. Up-Conversion Luminescence of Er3+-Doped Glass Ceramics Containing beta-NaGdF4 Nanocrystals for Silicon Solar Cells. Mater. Lett. 2012, 78, 75–77. DOI: 10.1016/j.matlet.2012.03.037.
  • Ramasamy, P.; Kim, J. Combined Plasmonic and Upconversion Rear Reflectors for Efficient Dye-Sensitized Solar Cells. Chem Commun (Camb) 2014, 50, 879–881. DOI: 10.1039/c3cc47290f.
  • Hu, M.; Ma, D. D.; Liu, C. C.; Wang, J.; Zhang, Z. X.; Meng, L. J. Intense White Emission from a Single-Upconversion Nanoparticle and Tunable Emission Colour with Laser Power. J. Mater. Chem. C 2016, 4, 6975–6981. DOI: 10.1039/C6TC01437B.
  • Martinez, E. D.; Brites, C. D. S.; Carlos, L. D.; Garcia-Flores, A. F.; Urbano, R. R.; Rettori, C. Electrochromic Switch Devices Mixing Small- and Large-Sized Upconverting Nanocrystals. Adv. Funct. Mater 2019, 29, 1807758. doi:ARTN 1807758. DOI: 10.1002/adfm.201807758.
  • Huang, H.; Chen, J. K.; Liu, Y. T.; Lin, J. D.; Wang, S. X.; Huang, F.; Chen, D. Q. Lanthanide-Doped Core@Multishell Nanoarchitectures: Multimodal Excitable Upconverting/Downshifting Luminescence and High-Level anti-Counterfeiting. Small 2020, 16, e2000708. DOI: 10.1002/smll.202000708.
  • Huang, H.; Huang, F.; Lin, L.; Feng, Z. H.; Cheng, Y.; Wang, Y. S.; Chen, D. Q. Perceiving Linear-Velocity by Multiphoton Upconversion. ACS Appl. Mater. Interfaces. 2019, 11, 46379–46385. DOI: 10.1021/acsami.9b17507.
  • Wu, W.; Wang, L.; Wang, Y.; Guo, L.; Dong, S.; Hao, J. Colloidal Clusters of Icosahedrons and Face-Centred Cubes. J. Colloid Interface Sci. 2020, 563, 308–317. DOI: 10.1016/j.jcis.2019.12.084.
  • Deng, Y.; Wang, H.; Gu, W.; Li, S.; Xiao, N.; Shao, C.; Xu, Q.; Ye, L. Ho3+ Doped NaGdF4 Nanoparticles as MRI/Optical Probes for Brain Glioma Imaging. J. Mater. Chem. B 2014, 2, 1521–1529. DOI: 10.1039/c3tb21613f.
  • Yin, M.; Ju, E.; Chen, Z.; Li, Z.; Ren, J.; Qu, X. Upconverting Nanoparticles with a Mesoporous TiO2 Shell for near-Infrared-Triggered Drug Delivery and Synergistic Targeted Cancer Therapy. Chemistry 2014, 20, 14012–14017. DOI: 10.1002/chem.201403733.
  • Zhou, L.; Chen, Z.; Dong, K.; Yin, M.; Ren, J.; Qu, X. DNA-Mediated Biomineralization of Rare-Earth Nanoparticles for Simultaneous Imaging and Stimuli-Responsive Drug Delivery. Biomaterials 2014, 35, 8694–8702. DOI: 10.1016/j.biomaterials.2014.06.034.
  • Liu, C.; Qi, Y.; Qiao, R.; Hou, Y.; Chan, K.; Li, Z.; Huang, J.; Jing, L.; Du, J.; Gao, M. Detection of Early Primary Colorectal Cancer with Upconversion Luminescent NP-Based Molecular Probes. Nanoscale 2016, 8, 12579–12587. DOI: 10.1039/c5nr07858j.
  • Teng, B.; Han, Y.; Zhang, X.; Xiao, H.; Yu, C.; Li, H.; Cheng, Z.; Jin, D.; Wong, K.-L.; Ma, P. a.; Lin, J. Phenanthriplatin(IV) Conjugated Multifunctional up-Converting Nanoparticles for Drug Delivery and Biomedical Imaging. J. Mater. Chem. B 2018, 6, 5059–5068. DOI: 10.1039/c8tb01034j.
  • Li, Z. H.; Ding, X.; Cong, H. L.; Wang, S.; Yu, B.; Shen, Y. Q. Recent Advances on Inorganic Lanthanide-Doped NIR-II Fluorescence Nanoprobes for Bioapplication. J. Lumin 2020, 228, 117627. DOI: 10.1016/j.jlumin.2020.117627.
  • Zhu, X. H.; Zhang, J.; Liu, J. L.; Zhang, Y. Recent Progress of Rare-Earth Doped Upconversion Nanoparticles: Synthesis, Optimization, and Applications. Adv Sci (Weinh) 2019, 6, 1901358. DOI: 10.1002/advs.201901358.
  • Guo, L. N.; Wang, Y. H.; Wang, Y. Z.; Zhang, J.; Dong, P. Y.; Zeng, W. Structure, Enhancement and White Luminescence of Multifunctional Lu6O5F8:20%Yb3+,1%Er3+(Tm3+) Nanoparticles via Further Doping with Li + under Different Excitation Sources. Nanoscale 2013, 5, 2491–2504. DOI: 10.1039/c2nr33577h.
  • Hong, E. L.; Wang, Y.; Liu, L. M.; Shan, D.; Bai, L. M.; Xia, C. H.; Wang, B. Q. Controlled Synthesis of Gadolinium Fluoride Upconversion Nanoparticles Capped with Oleic Acid or Polyethylene Glycol Molecules via One-Step Hydrothermal Method and Their Toxicity to Cancer Cells. J. Nanopart. Res. 2020, 22, 343. DOI: 10.1007/s11051-020-05068-2.
  • Cao, T. Y.; Yang, Y.; Gao, Y. A.; Zhou, J.; Li, Z. Q.; Li, F. Y. High-Quality Water-Soluble and Surface-Functionalized Upconversion Nanocrystals as Luminescent Probes for Bioimaging. Biomaterials 2011, 32, 2959–2968. DOI: 10.1016/j.biomaterials.2010.12.050.
  • Yang, J. P.; Shen, D. K.; Li, X. M.; Li, W.; Fang, Y.; Wei, Y.; Yao, C.; Tu, B.; Zhang, F.; Zhao, D. Y. One-Step Hydrothermal Synthesis of Carboxyl-Functionalized Upconversion Phosphors for Bioapplications. Chemistry 2012, 18, 13642–13650. DOI: 10.1002/chem.201202336.
  • Halimi, I.; Rodrigues, E. M.; Maurizio, S. L.; Sun, H.-Q. T.; Grewal, M.; Boase, E. M.; Liu, N.; Marin, R.; Hemmer, E. Pick Your Precursor! Tailoring the Size and Crystal Phase of Microwave-Synthesized Sub-10 nm Upconverting Nanoparticles. J. Mater. Chem. C 2019, 7, 15364–15374. DOI: 10.1039/C9TC04817K.
  • Wu, K.; Wang, Y.-Y.; Xia, T.-L. Sodium Acetate Assisted Hydrothermal Growth of Dumbbell-like beta-NaGdF4 Nanobundles: Morphology Control and Products Transformation. Chem. Phys. Lett 2017, 682, 101–107. DOI: 10.1016/j.cplett.2017.06.009.
  • Zhang, X.; Fan, X.; Qiao, X.; Luo, Q. NaGdF4:Ce3+ and (Ce,Gd)F-3 Nanoparticles: Hydrothermal Synthesis and Luminescence Properties. Mater. Chem. Phys 2010, 121, 274–279. DOI: 10.1016/j.matchemphys.2010.01.033.
  • Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005, 105, 1025–1102. DOI: 10.1021/cr030063a.
  • Zhao, Q.; Xu, Z.; Sun, Y. Rare Earth Fluoride Nano-/Microstructures: Hydrothermal Synthesis, Luminescent Properties and Applications. J. Nanosci. Nanotechnol. 2014, 14, 1675–1692. DOI: 10.1166/jnn.2014.9132.
  • Yuan, X. M.; Yang, J. B.; He, J.; Tan, H. H.; Jagadish, C. Role of Surface Energy in Nanowire Growth. J. Phys. D: Appl. Phys. 2018, 51, 283002. DOI: 10.1088/1361-6463/aac9f4.
  • Ramasamy, P.; Chandra, P.; Rhee, S. W.; Kim, J. Enhanced Upconversion Luminescence in NaGdF4:Yb, Er Nanocrystals by Fe3+ Doping and Their Application in Bioimaging. Nanoscale 2013, 5, 8711–8717. DOI: 10.1039/c3nr01608k.
  • Zhai, J. Z.; Wang, H. C.; Su, W. B.; Wang, T.; Wang, X.; Chen, T. T.; Wang, C. L. The Synthesis and Microstructure of CuFeO2 Powders via Microwave Hydrothermal Reaction. J. Ceram. Soc. Japan 2019, 127, 22–27. DOI: 10.2109/jcersj2.18131.
  • Rehan, M.; Lai, X. J.; Kale, G. M. Hydrothermal Synthesis of Titanium Dioxide Nanoparticles Studied Employing in Situ Energy Dispersive X-Ray Diffraction. Crystengcomm 2011, 13, 3725–3732. DOI: 10.1039/c0ce00781a.
  • Tong, C.; Xie, S.; Zhou, H.; Li, N.; Gong, L.; Jian, J.; Zhang, C.; Xu, L.; Xu, J. Hydrothermal Synthesis of PAA-Coated NaYF4:Yb3+, Er3+ Nanophosphors with Predicted Morphology, Phase and Enhanced Upconversion Luminescence Properties. J. Nanosci. Nanotechnol. 2018, 18, 8258–8268. DOI: 10.1166/jnn.2018.16384.
  • Bai, X.; Song, H. W.; Pan, G. H.; Lei, Y. Q.; Wang, T.; Ren, X. G.; Lu, S. Z.; Dong, B.; Dai, Q. L.; Fan, L. Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects. J. Phys. Chem. C 2007, 111, 13611–13617. DOI: 10.1021/jp070122e.
  • Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C. G.; Capobianco, J. A. The Active-Core/Active-Shell Approach: A Strategy to Enhance the Upconversion Luminescence in Lanthanide-Doped Nanoparticles. Adv. Funct. Mater. 2009, 19, 2924–2929. DOI: 10.1002/adfm.200900234.
  • Peng, X. An Essay on Synthetic Chemistry of Colloidal Nanocrystals. Nano Res. 2009, 2, 425–447. DOI: 10.1007/s12274-009-9047-2.
  • Lin, H.; Xu, D. K.; Li, A. M.; Teng, D. D.; Yang, S. H.; Zhang, Y. L. Tuning of Structure and Enhancement of Upconversion Luminescence in NaLuF4:Yb3+, Ho3+ Crystals. Phys. Chem. Chem. Phys. 2015, 17, 19515–19526. DOI: 10.1039/c5cp02627j.
  • Jannsen, N.; Diodati, S.; Dengo, N.; Tajoli, F.; Vicentini, N.; Lucchini, G.; Speghini, A.; Badocco, D.; Pastore, P.; Gross, S. Exploring the Phase-Selective, Green, Hydrothermal Synthesis of Upconverting Doped Sodium Yttrium Fluoride: Effects of Temperature, Time, and Precursors. Chemistry 2019, 25, 13624–13634. DOI: 10.1002/chem.201903261.
  • Sun, J.; Xian, J.; Du, H. Facile Synthesis of Well-Dispersed SrF2:Yb3+/Er3+ Upconversion Nanocrystals in Oleate Complex Systems. Appl. Surf. Sci 2011, 257, 3592–3595. DOI: 10.1016/j.apsusc.2010.11.082.
  • Li, Z.; Zhang, Y.; Jiang, S. Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles. Adv. Mater. 2008, 20, 4765–4769. DOI: 10.1002/adma.200801056.
  • Yao, J.; Zhao, F.; Pan, C.; Zhuang, J. Controlled Synthesis of BaYF5:Er(3+), Yb(3+) with Different Morphology for the Enhancement of Upconversion Luminescence. Nanoscale Res. Lett. 2017, 12, 633. DOI: 10.1186/s11671-017-2390-4.
  • Song, Y. L.; Tian, Q. W.; Zou, R. J.; Chen, Z. G.; Yang, J. M.; Hu, J. Q. Phase and Luminescent Intensity Control of Hydrophilic Rare-Earth up-Converting Nanophosphors Prepared by One-Pot Solvothermal Synthesis. J. Alloys Compd 2011, 509, 6539–6544. DOI: 10.1016/j.jallcom.2011.03.122.
  • Cheng, R.; Chen, Y. R.; Li, Z. Q.; Chen, X. H.; Yang, P. X.; Zhu, H. B.; Huang, Y. L.; Sun, Z.; Huang, S. M. Citric Acid-Assisted Growth of Lanthanide Ions co-Doped One-Dimensional Upconversion Microcrystals and Their Photovoltaic Applications. J. Mater. Sci: Mater. Electron. 2014, 25, 4066–4073. DOI: 10.1007/s10854-014-2130-9.
  • Huang, X. Y.; Jiang, L.; Xu, Q. J.; Li, X. X.; He, A. Q. Low-Temperature Molten-Salt Synthesis and Upconversion of Novel Hexagonal NaBiF4:Er3+/Yb3+ Micro-/Nanocrystals. RSC Adv. 2017, 7, 41190–41203. DOI: 10.1039/C7RA05479C.
  • Reyes Miranda, J.; de J. Carrillo Romo, F.; García Murillo, A.; Oliva, J.; García, C. R. Effect of NaOH Concentration on the 805 nm Emission of NaYF4:Yb3+, Tm(3+)Phosphors Synthesized by a Pressure-Assisted Hydrothermal Method. Mater. Res. Bull 2019, 119, 110531. DOI: 10.1016/j.materresbull.2019.110531.
  • Ayadi, H.; Fang, W. Z.; Mishra, S.; Jeanneau, E.; Ledoux, G.; Zhang, J. L.; Daniele, S. Influence of Na + Ion Doping on the Phase Change and Upconversion Emissions of the GdF3: Yb3+, Tm3+ Nanocrystals Obtained from the Designed Molecular Precursors. RSC Adv. 2015, 5, 100535–100545. DOI: 10.1039/C5RA20781A.
  • Li, S.; Ye, S.; Chen, X.; Liu, T.; Guo, Z.; Wang, D. OH- Ions-Controlled Synthesis and Upconversion Luminescence Properties of NaYF4:Yb3+, Er3+ Nanocrystals via Oleic Acid-Assisted Hydrothermal Process. J. Rare Earths 2017, 35, 753–760. DOI: 10.1016/s1002-0721(17)60972-4.
  • Jiao, J.; Yang, H.; Fang, C.; Tang, J.; Wang, Y.; Huang, L.; Liu, J.; Wang, W.; Gai, S.; Li, Y.; et al. Facile Synthesis, Formation Mechanism and Tunable Upconversion Luminescence of Nanocrystals co-Doped by Yb3+/Tm3+. Mater. Res. Bull 2017, 87, 48–53. DOI: 10.1016/j.materresbull.2016.11.023.
  • Wang, L. M.; Li, X. Y.; Li, Z. Q.; Chu, W. S.; Li, R. F.; Lin, K.; Qian, H. S.; Wang, Y.; Wu, C. F.; Li, J.; et al. A New Cubic Phase for a NaYF4 Host Matrix Offering High Upconversion Luminescence Efficiency. Adv. Mater. 2015, 27, 5528–5533. DOI: 10.1002/adma.201502748.
  • Ma, C. S.; Xu, X. X.; Wang, F.; Zhou, Z. G.; Liu, D. M.; Zhao, J. B.; Guan, M.; Lang, C. I.; Jin, D. Y. Optimal Sensitizer Concentration in Single Upconversion Nanocrystals. Nano Lett. 2017, 17, 2858–2864. DOI: 10.1021/acs.nanolett.6b05331.
  • Reddy, B. S.; Buddhudu, S.; Rao, K. S. R. K.; Babu, P. N.; Annapurna, K. Optical Analysis of Er3+:Boro-Fluoro-Phosphate Glasses. Spectrosc. Lett 2008, 41, 376–384. DOI: 10.1080/00387010802425035.
  • Adusumalli, V.; Koppisetti, H.; Ganguli, S.; Sarkar, S.; Mahalingam, V. Tuning the Energy Transfer Efficiency between Ce3+ and Ln(3+) Ions (Ln = Tm, Sm, Tb, Dy) by Controlling the Crystal Phase of NaYF4 Nanocrystals. Chemistry 2017, 23, 994–1000. DOI: 10.1002/chem.201604316.
  • Zhang, Y.; Yao, L.; Xu, D.; Lin, H.; Yang, S. Controlled Synthesis and Luminescence Properties of β-NaGdF 4: Yb 3+, Er 3+ Upconversion Nanoparticles. J. Cryst. Growth 2018, 491, 116–119. DOI: 10.1016/j.jcrysgro.2018.03.042.
  • Cheng, Y.; Sun, K. N. Sol-Gel Synthesis and Upconversion Luminescent Properties of Yb3+, Er3+,Eu3+ Triply-Doped in YVO4 Phosphors. J. Fluoresc. 2018, 28, 285–291. DOI: 10.1007/s10895-017-2191-2.
  • Gupta, M.; Adnan, M.; Nagarajan, R.; Prakash, G. V. Color-Tunable Upconversion in Er3+/Yb3+-Codoped KLaF4 Nanophosphors by Incorporation of Tm3+ Ions for Biological Applications. ACS Omega. 2019, 4, 2275–2282. DOI: 10.1021/acsomega.8b03075.
  • Ding, Y.; Yang, T.; Yin, N.; Li, P.; Zhao, Y.; Zhang, X. Yb3+/Er3+ Concentration Dependent Microstructure Evolution and Green/Red Emissions of NaYF4:Yb/Er Phosphors. Scienceasia 2020, 46, 46–51. DOI: 10.2306/scienceasia1513-1874.2020.002.
  • Wu, S. L.; Ning, Y. H.; Chang, J.; Niu, W. B.; Zhang, S. F. Modulation of the Emission Intensity and Color Output of NaYF4: Yb3+, Er3+ Nanocrystals by OH. Crystengcomm 2013, 15, 3919–3924. DOI: 10.1039/c3ce00025g.
  • Cai, C. Y.; Jin, Y. L.; Yang, Q. B.; Nie, X. S.; Liu, Y. X. Synergistic Effect of Crystal Structure and Concentration Quenching on Photoluminescence of Er3+ Doped Upconversion Nanocrystals. J. Rare Earths 2016, 34, 963–971. DOI: 10.1016/S1002-0721(16)60122-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.