104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Do Carboxymethyl Cellulose and Pal-KTTKS Make Bacterial Cellulose a Superior Wound Dressing or Skin Scaffold?

, , , , &
Pages 974-988 | Received 07 Nov 2022, Accepted 28 Jan 2023, Published online: 09 Feb 2023

References

  • Mount, N. M.; Ward, S. J.; Kefalas, P.; Hyllner, J. Cell-based Therapy Technology Classifications and Translational Challenges. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2015, 370(1680), 20150017. DOI: 10.1098/rstb.2015.0017.
  • Irani, S.; Honarpardaz, A.; Choubini, N.; Pezeshki‐Modaress, M.; Zandi, M. Chondro-inductive Nanofibrous Scaffold Based gelatin/polyvinyl alcohol/chondroitin Sulfate for Cartilage Tissue Engineering. Polym. Adv. Technol. 2020, 31(6), 1395–1402. DOI: 10.1002/pat.4869.
  • Du, S.; Zeugolis, D. I.; O’Brien, T. Scaffold-based Delivery of Mesenchymal Stromal Cells to Diabetic Wounds. Stem. Cell. Res. Ther. 2022, 13, 426. DOI: 10.1186/s13287-022-03115-4.
  • Rasouli, M.; Vakilian, F.; Ranjbari, J. Therapeutic and Protective Potential of Mesenchymal Stem Cells, Pharmaceutical Agents and Current Vaccines against COVID-19. Curr. Stem Cell Res. Ther. 2022, 17, 166–185. DOI: 10.2174/1574888x16666201221151853.
  • Bhattarai, D. P.; Aguilar, L. E.; Park, C. H.; Kim, C. S. A Review on Properties of Natural and Synthetic Based Electrospun Fibrous Materials for Bone Tissue Engineering. Membranes (Basel). 2018, 8. DOI: 10.3390/membranes8030062.
  • Rasouli, M.; Rahimi, A.; Soleimani, M.; Keshel, S. H. The Interplay between Extracellular Matrix and progenitor/stem Cells during Wound Healing: Opportunities and Future Directions. Acta Histochem. 2021, 123, 151785. DOI: 10.1016/j.acthis.2021.151785.
  • Bahrami, H.; Keshel, S. H.; Chari, A. J.; Biazar, E. Human Unrestricted Somatic Stem Cells Loaded in Nanofibrous PCL Scaffold and Their Healing Effect on Skin Defects. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1556–1560. DOI: 10.3109/21691401.2015.1062390.
  • Ribeiro, J.; Pereira, T.; Amorim, I.; Caseiro, A. R.; Lopes, M. A.; Lima, J.; Gartner, A.; Santos, J. D.; Bártolo, P. J.; Rodrigues, J. M., et al. Cell Therapy with Human MSCs Isolated from the Umbilical Cord Wharton Jelly Associated to a PVA Membrane in the Treatment of Chronic Skin Wounds. Int. J. Med. Sci. 2014, 11, 979–987. DOI: 10.7150/ijms.9139.
  • Wang, G. X.; Wang, Y.; Liu, W. P.; Zhang, Z. H.; Huang, X. M.; Xie, A. [Repair of Skin Damage with Mesenchymal Stem cells-poly (lactic-co-glycolic Acid) Scaffolds: Experimental Study with Rabbits]. Zhonghua Yi Xue Za Zhi. 2006, 86, 403–406.
  • Edgar, L.; McNamara, K.; Wong, T.; Tamburrini, R.; Katari, R.; Orlando, G. Heterogeneity of Scaffold Biomaterials in Tissue Engineering. Materials (Basel). 2016, 9(5), 332. DOI: 10.3390/ma9050332.
  • Oliveira Barud, H. G.; Barud Hda, S.; Cavicchioli, M.; Amaral, O. B.; de Oliveira Junior, D. M.; Santos, A. L.; Celes, P. F.; Borges, V. M.; de Oliveira, C. I.; de Oliveira, P. F., et al. Preparation and Characterization of a Bacterial cellulose/silk Fibroin Sponge Scaffold for Tissue Regeneration. Carbohydr. Polym. 2015, 128, 41–51. DOI: 10.1016/j.carbpol.2015.04.007.
  • Syuhada, D. N.; Azura, A. R. Waste Natural Polymers as Potential Fillers for Biodegradable Latex-Based Composites: A Review. Polymers (Basel). 2021, 13(20), 3600. DOI: 10.3390/polym13203600.
  • Wolfe, P. S.; Sell, S. A.; Bowlin, G. L. Natural and Synthetic Scaffolds, in Tissue Engineering; Springer: Berlin, Heidelberg. 2011; pp 41–67. DOI: 10.1007/978-3-642-02824-3_3.
  • Bouhlouli, M.; Pourhadi, M.; Karami, F.; Talebi, Z.; Ranjbari, J.; Khojasteh, A. Applications of Bacterial Cellulose as a Natural Polymer in Tissue Engineering. ASAIO j. 2021, 67(7), 709–720. DOI: 10.1097/mat.0000000000001356.
  • Ji, K.; Wang, W.; Zeng, B.; Chen, S.; Zhao, Q.; Chen, Y.; Li, G.; Ma, T. Bacterial Cellulose Synthesis Mechanism of Facultative Anaerobe Enterobacter Sp. FY-07. Sci. Rep. 2016, 6, 1–12. DOI: 10.1038/srep21863.
  • Portela, R.; Leal, C. R.; Almeida, P. L.; Sobral, R. G. Bacterial Cellulose: A Versatile Biopolymer for Wound Dressing Applications. Microb. Biotechnol. 2019, 12(4), 586–610. DOI: 10.1111/1751-7915.13392.
  • Bodin, A.; Bharadwaj, S.; Wu, S.; Gatenholm, P.; Atala, A.; Zhang, Y. Tissue-engineered Conduit Using urine-derived Stem Cells Seeded Bacterial Cellulose Polymer in Urinary Reconstruction and Diversion. Biomaterials. 2010, 31(34), 8889–8901. DOI: 10.1016/j.biomaterials.2010.07.108.
  • Li, N.; Yang, L.; Pan, C.; Saw, P. E.; Ren, M.; Lan, B.; Wu, J.; Wang, X.; Zeng, T.; Zhou, L., et al. Naturally-occurring Bacterial cellulose-hyperbranched Cationic Polysaccharide derivative/MMP-9 siRNA Composite Dressing for Wound Healing Enhancement in Diabetic Rats. Acta Biomaterialia. 2020, 102, 298–314. DOI: 10.1098/rstb.2015.0017.
  • Volova, T. G.; Shumilova, A. A.; Nikolaeva, E. D.; Kirichenko, A. K.; Shishatskaya, E. I. Biotechnological Wound Dressings Based on Bacterial Cellulose and Degradable Copolymer P(3HB/4HB). International Journal of Biological Macromolecules. 2019, 131, 230–240. DOI: 10.3390/ma9050332.
  • Aleshin, A. N.; Berestennikov, A. S.; Krylov, P. S.; Shcherbakov, I. P.; Petrov, V. N.; Trapeznikova, I. N.; Mamalimov, R. I.; Khripunov, A. K.; Tkachenko, A. A. Electrical and Optical Properties of Bacterial Cellulose Films Modified with Conductive Polymer PEDOT/PSS. Synth. Met. 2015, 199, 147–151. DOI: 10.1016/j.synthmet.2014.11.022.
  • Young, J. L.; Holle, A. W.; Spatz, J. P. Nanoscale and Mechanical Properties of the Physiological cell–ECM Microenvironment. Experimental Cell Research. 2016, 343(1), 3–6. DOI: 10.1016/j.yexcr.2015.10.037.
  • Chevallay, B.; Herbage, D. Collagen-based Biomaterials as 3D Scaffold for Cell Cultures: Applications for Tissue Engineering and Gene Therapy. Medical & Biological Engineering & Computing. 2000, 38(2), 8889–8898. DOI: 10.1016/j.biomaterials.2010.07.108.
  • Sahana, T. G.; Rekha, P. D. Biopolymers: Applications in Wound Healing and Skin Tissue Engineering. Mol. Biol. Rep. 2018, 45, 2857–2867. DOI: 10.1007/s11033-018-4296-3.
  • Zhong, M.; Li, J.; Tang, A.; Zhang, Q.; Ji, D.; Peng, M.; Zhang, R.; Xiong, G.; Wan, Y.; Fan, H. A Facile Green Approach for Fabricating Bacterial Cellulose Scaffold with Macroporous Structure and Cell Affinity. J. Bioact. Compat. 2019, 34, 442–452.
  • Amornsudthiwat, P.; Mongkolnavin, R.; Kanokpanont, S.; Panpranot, J.; Wong, C. S.; Damrongsakkul, S. Improvement of Early Cell Adhesion on Thai Silk Fibroin Surface by Low Energy Plasma. Colloids Surf. B Biointerfaces. 2013, 111, 579–586. DOI: 10.1016/j.colsurfb.2013.07.009.
  • Hara, K.; Iida, M.; Yano, K.; Nishida, T. Metal Ion Absorption of Carboxymethyl cellulose Gel Formed by gamma-ray Irradiation. For the Environmental Purification. Colloids Surf. B Biointerfaces. 2004, 38, 227–230. DOI: 10.1016/j.colsurfb.2004.02.024.
  • Ma, T.; Zhao, Q. Q.; Ji, K. H.; Zeng, B.; Li, G. Q. Homogeneous and Porous Modified Bacterial Cellulose Achieved by in Situ Modification with Low Amounts of Carboxymethyl Cellulose. Cellulose. 2014, 21, 2637–2646.
  • Sanchis, M. J.; Carsí, M.; Gómez, C. M.; Culebras, M.; Gonzales, K. N.; Torres, F. G. Monitoring Molecular Dynamics of Bacterial Cellulose Composites Reinforced with Graphene Oxide by Carboxymethyl Cellulose Addition. Carbohydr. Polym. 2017, 157, 353–360. DOI: 10.1016/j.carbpol.2016.10.001.
  • Chen, -H.-H.; Chen, L.-C.; Huang, H.-C.; Lin, S.-B. In Situ Modification of Bacterial Cellulose Nanostructure by Adding CMC during the Growth of Gluconacetobacter Xylinus. Cellulose. 2011, 18, 1573–1583. DOI: 10.1007/s10570-011-9594-z.
  • de Lima Fontes, M.; Meneguin, A. B.; Tercjak, A.; Gutierrez, J.; Cury, B. S. F.; Dos Santos, A. M.; Ribeiro, S. J. L.; Barud, H. S. Effect of in Situ Modification of Bacterial Cellulose with Carboxymethylcellulose on Its nano/microstructure and Methotrexate Release Properties. Carbohydr. Polym. 2018, 179, 126–134. DOI: 10.1016/j.carbpol.2017.09.061.
  • Zhou, D.; Sun, Y.; Bao, Z.; Liu, W.; Xian, M.; Nian, R.; Xu, F. Improved Cell Viability and Biocompatibility of Bacterial Cellulose through in Situ Carboxymethylation. Macromol. Biosci. 2019, 19, e1800395. DOI: 10.1002/mabi.201800395.
  • Savitskaya, I. S.; Shokatayeva, D. H.; Kistaubayeva, A. S.; Ignatova, L. V.; Digel, I. E. Antimicrobial and Wound Healing Properties of a Bacterial Cellulose Based Material Containing B. Subtilis Cells. Heliyon. 2019, 5, e02592. DOI: 10.1016/j.heliyon.2019.e02592.
  • Cen, L.; Liu, W.; Cui, L.; Zhang, W.; Cao, Y. Collagen Tissue Engineering: Development of Novel Biomaterials and Applications. Pediatr. Res. 2008, 63, 492–496. DOI: 10.1203/PDR.0b013e31816c5bc3.
  • Guglielmi, D. A.; Martinelli, A. M.; Rissi, N. C.; Cilli, E. M.; Soares, C. P.; Chiavacci, L. A. Synthesis of the Peptide Ac-Wahx-KTTKS and Evaluation of the Ability to Induce in Vitro Collagen Synthesis. Protein Pept. Lett. 2016, 23, 544–547. DOI: 10.2174/0929866523666160331144315.
  • Tsai, W. C.; Hsu, C. C.; Chung, C. Y.; Lin, M. S.; Li, S. L.; Pang, J. H. The Pentapeptide KTTKS Promoting the Expressions of Type I Collagen and Transforming Growth factor-beta of Tendon Cells. J. Orthop. Res. 2007, 25, 1629–1634. DOI: 10.1002/jor.20455.
  • Mortazavi, S. M.; Moghimi, H. R. Skin Permeability, a Dismissed Necessity for anti-wrinkle Peptide Performance. Int. J. Cosmet. Sci. 2022. DOI: 10.1111/ics.12770.
  • Qiu, Y.; Qiu, L.; Cui, J.; Wei, Q. Bacterial Cellulose and Bacterial cellulose-vaccarin Membranes for Wound Healing. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 303–309. DOI: 10.1016/j.msec.2015.10.016.
  • Khoramgah, M. S.; Ghanbarian, H.; Ranjbari, J.; Ebrahimi, N.; Mirakabad, F. S. T.; Roozbahany, N. A.; Abbaszadeh, H. A.; Hosseinzadeh, S. Repairing Rat Calvarial Defects by Adipose Mesenchymal Stem Cells and Novel freeze-dried three-dimensional Nanofibrous Scaffolds. BioImpacts. 2021. DOI: 10.34172/bi.2021.23711.
  • Xiong, G.; Luo, H.; Zhang, C.; Zhu, Y.; Wan, Y. Enhanced Biological Behavior of Bacterial Cellulose Scaffold by Creation of Macropores and Surface Immobilization of Collagen. Macromol. Res. 2015, 23, 734–740. DOI: 10.1007/s13233-015-3099-9.
  • Grande, C. J.; Torres, F. G.; Gomez, C. M.; Bañó, M. C. Nanocomposites of Bacterial cellulose/hydroxyapatite for Biomedical Applications. Acta Biomater. 2009, 5, 1605–1615. DOI: 10.1016/j.actbio.2009.01.022.
  • Maréchal, Y.; Chanzy, H. The Hydrogen Bond Network in Iβ Cellulose as Observed by Infrared Spectrometry. J. Mol. Struct. 2000, 523, 183–196. DOI: 10.1016/S0022-2860(99)00389-0.
  • Choquecahua Mamani, D.; Otero Nole, K. S.; Chaparro Montoya, E. E.; Mayta Huiza, D. A.; Pastrana Alta, R. Y.; Aguilar Vitorino, H. Minimizing Organic Waste Generated by Pineapple Crown: A Simple Process to Obtain Cellulose for the Preparation of Recyclable Containers. Recycling. 2020, 5, 24. DOI: 10.3390/recycling5040024.
  • Das, D.; Hussain, S.; Ghosh, A. K.; Pal, A. K. Studies on Cellulose Nanocrystals Extracted from Musa Sapientum: Structural and Bonding Aspects. Cell. Chem. Technol. 2018, 52, 729–739.
  • Lazarini, S. C.; de Aquino, R.; Amaral, A. C.; Corbi, F. C.; Corbi, P. P.; Barud, H. S.; Lustri, W. R. Characterization of Bilayer Bacterial Cellulose Membranes with Different Fiber Densities: A Promising System for Controlled Release of the Antibiotic Ceftriaxone. Cellulose. 2016, 23, 737–748. DOI: 10.1007/s10570-015-0843-4.
  • Ali, I.; Peng, C.; Ye, T.; Naz, I. Sorption of Cationic Malachite Green Dye on Phytogenic Magnetic Nanoparticles Functionalized by 3-marcaptopropanic Acid. RSC Adv. 2018, 8, 8878–8897, PMID: 35539840.
  • Rafi, A. A.; Mahkam, M. Preparation of Magnetic pH-sensitive Microcapsules with an Alginate Base as Colon Specific Drug Delivery Systems through an Entirely Green Route. RSC Adv. 2015, 5, 4628–4638. DOI: 10.1039/C4RA15170D.
  • Sinha, V.; Chakma, S. Synthesis and Evaluation of CMC-g-AMPS/Fe/Al/AC Composite Hydrogel and Their Use in Fluoride Removal from Aqueous Solution. Environ. Technol. Innovations. 2020, 17, 100620. DOI: 10.1016/j.eti.2020.100620.
  • Liu, Y.; Kim, H. J. Fourier Transform Infrared Spectroscopy (FT-IR) and Simple Algorithm Analysis for Rapid and Non-Destructive Assessment of Developmental Cotton Fibers. Sensors (Basel). 2017, 17. DOI: 10.3390/s17071469.
  • Selvaraj, K.; SHIN, D.; Yoo, B. Effect of Partially Hydrolyzed Ginsenoside on in Vitro Skin Permeation and Retention of Collagen Pentapeptide (Palmitoyl-KTTKS). Indian J. Pharm. Sci. 2021, 83, 76–82. DOI: 10.36468/pharmaceutical-sciences.752.
  • Riaz, T.; Zeeshan, R.; Zarif, F.; Ilyas, K.; Muhammad, N.; Safi, S. Z.; Rahim, A.; Rizvi, S. A.; Rehman, I. U. FTIR Analysis of Natural and Synthetic Collagen. Appl. Spectrosc. Rev. 2018, 53, 703–746. DOI: 10.1080/05704928.2018.1426595.
  • Sinanoglou, V. J.; Cavouras, D.; Xenogiannopoulos, D.; Proestos, C.; Zoumpoulakis, P. Quality Assessment of Pork and Turkey Hams Using FT-IR Spectroscopy, Colorimetric, and Image Analysis. Foods. 2018, 7. DOI: 10.3390/foods7090152.
  • Kamal, T.; Ahmad, I.; Khan, S. B.; Ul-Islam, M.; Asiri, A. M. Microwave Assisted Synthesis and Carboxymethyl Cellulose Stabilized Copper Nanoparticles on Bacterial Cellulose Nanofibers Support for Pollutants Degradation. J. Polym. Environ. 2019, 27, 2867–2877. DOI: 10.1007/s10924-019-01565-1.
  • Hussein, A. M.; Dannoun, E. M. A.; Aziz, S. B.; Brza, M. A.; Abdulwahid, R. T.; Hussen, S. A.; Rostam, S.; Mustafa, D. M. T.; Muhammad, D. S. Steps toward the Band Gap Identification in Polystyrene Based Solid Polymer Nanocomposites Integrated with Tin Titanate Nanoparticles. Polymers (Basel). 2020, 12. DOI: 10.3390/polym12102320.
  • Lee, C. M.; Gu, J.; Kafle, K.; Catchmark, J.; Kim, S. H. Cellulose Produced by Gluconacetobacter Xylinus Strains ATCC 53524 and ATCC 23768: Pellicle Formation, post-synthesis Aggregation and Fiber Density. Carbohydr. Polym. 2015, 133, 270–276. DOI: 10.1016/j.carbpol.2015.06.091.
  • Dayal, M. S.; Catchmark, J. M. Mechanical and Structural Property Analysis of Bacterial Cellulose Composites. Carbohydr. Polym. 2016, 144, 447–453. DOI: 10.1016/j.carbpol.2016.02.055.
  • Huang, H.-C.; Chen, L.-C.; Lin, S.-B.; Hsu, C.-P.; Chen, -H.-H. In Situ Modification of Bacterial Cellulose Network Structure by Adding Interfering Substances during Fermentation. Bioresour. Technol. 2010, 101, 6084–6091. DOI: 10.1016/j.biortech.2010.03.031.
  • Hosseinzadeh, S.; Zarei-Behjani, Z.; Bohlouli, M.; Khojasteh, A.; Ghasemi, N.; Salehi-Nik, N. Fabrication and Optimization of Bioactive Cylindrical Scaffold Prepared by Electrospinning for Vascular Tissue Engineering. Iran. Polym. J. 2021, 1–15. DOI: 10.1007/s13726-021-00983-0.
  • Chen, S.; Lu, X.; Hu, Y.; Lu, Q. Biomimetic honeycomb-patterned Surface as the Tunable Cell Adhesion Scaffold. Biomater. Sci. 2015, 3, 85–93. DOI: 10.1039/C4BM00233D.
  • Silva, C. M.; Bottene, M. K.; Barud, H. G. D. O.; Barud, H. D. S.; Ligabue, R. A.; Jahno, V. D. Wettability and Morphological Characterization of a Polymeric Bacterial cellulose/corn Starch Membrane. Mater. Res. 2015, 18, 109–113. DOI: 10.1590/1516-1439.351214.
  • Kim, M. S.; Park, E. J.; Na, D. H. Synthesis and Characterization of Monodisperse Poly(ethylene Glycol)-conjugated Collagen Pentapeptides with Collagen biosynthesis-stimulating Activity. Bioorg. Med. Chem. Lett. 2015, 25, 38–42. DOI: 10.1016/j.bmcl.2014.11.021.
  • Lu, C.; Kim, B. M.; Lee, D.; Lee, M. H.; Kim, J. H.; Pyo, H. B.; Chai, K. Y. Synthesis of Lipoic acid-peptide Conjugates and Their Effect on Collagen and Melanogenesis. Eur. J. Med. Chem. 2013, 69, 449–454. DOI: 10.1016/j.ejmech.2013.09.011.
  • Tałałaj, U.; Uścinowicz, P.; Bruzgo, I.; Surażyński, A.; Zaręba, I.; Markowska, A. The Effects of a Novel Series of KTTKS Analogues on Cytotoxicity and Proteolytic Activity. Molecules. 2019, 24. DOI: 10.3390/molecules24203698.
  • Jenkins, T. L.; Little, D. Synthetic Scaffolds for Musculoskeletal Tissue Engineering: Cellular Responses to Fiber Parameters. NPJ. Regen. Med. 2019, 4, 15. DOI: 10.1038/s41536-019-0076-5.
  • Arjonen, A.; Kaukonen, R.; Ivaska, J. Filopodia and Adhesion in Cancer Cell Motility. Cell. Adh. Migr. 2011, 5, 421–430. DOI: 10.4161/cam.5.5.17723.
  • Mattila, P. K.; Lappalainen, P. Filopodia: Molecular Architecture and Cellular Functions. Nat. Rev. Mol. Cell Biol. 2008, 9, 446–454. DOI: 10.1038/nrm2406.
  • Ebrahimi, M.; Botelho, M.; Lu, W.; Monmaturapoj, N. Integrated Approach in Designing Biphasic Nanocomposite collagen/nBCP Scaffolds with Controlled Porosity and Permeability for Bone Tissue Engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 1738–1753. DOI: 10.1002/jbm.b.34518.
  • Dorozhkin, S. V. Nanosized and Nanocrystalline Calcium Orthophosphates. Acta Biomater. 2010, 6, 715–734. DOI: 10.1016/j.actbio.2009.10.031.
  • Singh, B. N.; Panda, N. N.; Mund, R.; Pramanik, K. Carboxymethyl Cellulose Enables Silk Fibroin Nanofibrous Scaffold with Enhanced Biomimetic Potential for Bone Tissue Engineering Application. Carbohydr. Polym. 2016, 151, 335–347. DOI: 10.1016/j.carbpol.2016.05.088.
  • Filmon, R.; Grizon, F.; Baslé, M. F.; Chappaard, D. Effects of Negatively Charged Groups (Carboxymethyl) on the Calcification of Poly(2-hydroxyethyl Methacrylate). Biomaterials. 2002, 23, 3053–3059. DOI: 10.1016/s0142-9612(02)00069-8.
  • Abbasi-Ravasjani, S.; Seddiqi, H.; Moghaddaszadeh, A.; Ghiasvand, M. E.; Jin, J.; Oliaei, E.; Bacabac, R. G.; Klein-Nulend, J. Sulfated Carboxymethyl Cellulose and Carboxymethyl κ-carrageenan Immobilization on 3D-printed poly-ε-caprolactone Scaffolds Differentially Promote pre-osteoblast Proliferation and Osteogenic Activity. Front. Bioeng. Biotechnol. 2022, 10, 957263. DOI: 10.3389/fbioe.2022.957263.
  • Sajjad, W.; He, F.; Ullah, M. W.; Ikram, M.; Shah, S. M.; Khan, R.; Khan, T.; Khalid, A.; Yang, G.; Wahid, F. Fabrication of Bacterial cellulose-curcumin Nanocomposite as a Novel Dressing for Partial Thickness Skin Burn. Front. Bioeng. Biotechnol. 2020, 8, 553037. DOI: 10.3389/fbioe.2020.553037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.