111
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and characterization of nano-biocomposite (PMMA-hydroxyapatite - CaZrO3) for bone tissue engineering

, , &
Pages 1464-1473 | Received 02 Feb 2024, Accepted 29 Mar 2024, Published online: 08 Apr 2024

References

  • Niu, Y.; Du, T.; Liu, Y. Biomechanical Characteristics and Analysis Approaches of Bone and Bone Substitute Materials. J. Funct. Biomater. 2023, 14(4), 212. DOI: 10.3390/jfb14040212.
  • Enbergs, S.; Spinnen, J.; Dehne, T.; Sittinger, M.; Kuo, C. K. 3D Printing of Bone Substitutes Based on Vat Photopolymerization Processes: A Systematic Review. J. Tissue. Eng. Regen. Med. 2023, 2023, 1–18. DOI: 10.1155/2023/3901448.
  • Fan, L.; Ren, Y.; Emmert, S.; Vučković, I.; Stojanovic, S.; Najman, S.; Schnettler, R.; Barbeck, M.; Schenke-Layland, K.; Xiong, X. The Use of Collagen-Based Materials in Bone Tissue Engineering. Int. J. Mol. Sci. 2023, 24(4), 3744. DOI: 10.3390/ijms24043744.
  • Abdelaziz, A. G., Nageh, H., Abdo, S. M., Abdalla, M. S., Amer, A. A., Abdal-Hay, A., Barhoum, A. A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges. Bioengineering. 2023, 10(2), 204‏.
  • Al‐Allaq, A. A.; Kashan, J. S. A Review: In vivo Studies of Bioceramics As Bone Substitute Materials. Nano. Select. 2023, 4(2), 123–144. DOI: 10.1002/nano.202200222.
  • Shi, H.; Zhou, Z.; Li, W.; Fan, Y.; Li, Z.; Wei, J. Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Introduction. Crystals. 2021, 11(2), 149. DOI: 10.3390/cryst11020149.
  • Oliveira, H. L.; Da Rosa, W. L.; Cuevas-Suárez, C. E.; Carreño, N. L.; da Silva, A. F.; Guim, T. N.; Piva, E.; Piva, E. Histological Evaluation of Bone Repair with Hydroxyapatite: A Systematic Review. Calcif. Tissue. Int. 2017, 101(4), 341–354. DOI: 10.1007/s00223-017-0294-z.
  • Al-Allaq, A. A.; Kashan, J. S.; El-Wakad, M. T.; Soliman, A. M. Evaluation of a Hybrid Biocomposite of HA/HDPE Reinforced with Multi-Walled Carbon Nanotubes (Mwcnts) as a Bone-Substitute Material. Mater. Technol. 2021, 55(5), 673–680. DOI: 10.17222/mit.2021.162.
  • Irfan, M.; Irfan, M. Overview of Hydroxyapatite; Composition, Structure, Synthesis Methods and Its Biomedical Uses. Biomed. Letters. 2020, 6(1), 17–22.
  • Vassal, M. F.; Nunes-Pereira, J.; Miguel, S. P.; Correia, I. J.; Silva, A. P. Microstructural, Mechanical and Biological Properties of Hydroxyapatite-CaZro3 Biocomposites. Ceram. Int. 2019, 45(7), 8195–8203. DOI: 10.1016/j.ceramint.2019.01.122.
  • Catauro, M.; Bollino, F.; Tranquillo, E.; Tuffi, R.; Dell’era, A.; Ciprioti, S. V. Morphological and Thermal Characterization of Zirconia/Hydroxyapatite Composites Prepared via Sol-Gel for Biomedical Applications. Ceram. Int. 2019, 45(2), 2835–2845. DOI: 10.1016/j.ceramint.2018.07.292.
  • André, R. S.; Zanetti, S. M.; Varela, J. A.; Longo, E. Synthesis by a Chemical Method and Characterization of Cazro3 Powders: Potential Application As Humidity Sensors. Ceram. Int. 2014, 40(10), 16627–16634‏. DOI: 10.1016/j.ceramint.2014.08.023.
  • Al-Allaq, A.; Kashan, A.; S, J.; Abdul-Kareem, F. M. In vivo Investigations of Polymers in Bone Tissue Engineering: A Review Study. Int. J. Polym. Mater. Polym. Biomater. 2024, 1–16‏. DOI: 10.1080/00914037.2024.2305227.
  • Abdal-Hay, A.; Bartnikowski, M.; Blaudez, F.; Vaquette, C.; Hutmacher, D. W.; Ivanovski, S. Unique Uniformity of Calcium Phosphate Nanoparticle Distribution in Polymer Substrates for Additive Manufacturing. Compos. Part A Appl. Sci. Manuf. 2023, 173, 107670. DOI: 10.1016/j.compositesa.2023.107670.
  • Al-Allaq, A. A.; Kashan, J. S.; El-Wakad, M. T.; Soliman, A. M. Multiwall Carbon Nanotube Reinforced HA/HDPE Biocomposite for Bone Reconstruction. Periodic. Eng. Nat. Sci. 2021, 9(2), 930–939‏. DOI: 10.21533/pen.v9i2.1946.
  • Liu, T.; Huang, K.; Li, L.; Gu, Z.; Liu, X.; Peng, X.; Kuang, T. High Performance High-Density Polyethylene/Hydroxyapatite Nanocomposites for Load-Bearing Bone Substitute: Fabrication, in vitro and in vivo Biocompatibility Evaluation. Compos. Sci. Technol. 2019, 175, 100–110‏. DOI: 10.1016/j.compscitech.2019.03.012.
  • Al-Allaq, A. A.; Kashan, J. S.; El-Wakad, M. T.; Soliman, A. M. The Bio-Composites (Hydroxyapatite/high-Density Polyethylene) Materials Rein-Forced with Multi-Walled Carbon Nanotubes for Bone Tissue Repair. J. Ceram. Processing Res. 2021, 22(4), 446–454.
  • Liao, C. Z.; Li, K.; Wong, H. M.; Tong, W. Y.; Yeung, K. W. K.; Tjong, S. C. Novel Polypropylene Biocomposites Reinforced with Carbon Nanotubes and Hydroxyapatite Nanorods for Bone Replacements. Mater. Sci. Eng. C. 2013, 33(3), 1380–1388. DOI: 10.1016/j.msec.2012.12.039.
  • Tomoglu, S.; Caner, G.; Arabaci, A.; Mutlu, I. Production and Sulfonation of Bioactive Polyetheretherketone Foam for Bone Substitute Applications. Int. J. Polym. Mater. Polym. Biomater. 2019, 68(18), 1167–1176. DOI: 10.1080/00914037.2018.1539985.
  • Kashan, J. S.; Al-Allaq, A. A.; Fouad, H.; Yahia, M. E. Effect of Multi-Walled Carbon Nanotube on the Microstructure, Physical and Mechanical Properties of ZrO2–CaO/poly (Methyl Methacrylate) Biocomposite for Bone Reconstruction Application. Sci. Adv. Mater. 2023, 15(3), 405–411. DOI: 10.1166/sam.2023.4431.
  • Gad, M. M.; Fouda, S. M.; Al-Harbi, F. A.; Näpänkangas, R.; Raustia, A. PMMA Denture Base Material Enhancement: A Review of Fiber, Filler, and Nanofiller Addition. Int. J. Nanomed. 2017, Volume 12, 3801–3812. DOI: 10.2147/IJN.S130722.
  • Ali, U.; Karim, K. J. B. A.; Buang, N. A. A Review of the Properties and Applications of Poly (Methyl Methacrylate)(PMMA). Polym. Rev. 2015, 55(4), 678–705. DOI: 10.1080/15583724.2015.1031377.
  • Gain, A. K.; Zhang, L.; Liu, W. Microstructure and Material Properties of Porous Hydroxyapatite-Zirconia Nanocomposites Using Polymethyl Methacrylate Powders. Mater. Des. 2015, 67, 136–144‏. DOI: 10.1016/j.matdes.2014.11.028.
  • Kashan, J. S. Optimization Using Taguchi Method for Physical and Mechanical Properties of Bio Mimicking Polymeric Matrix Composite for Orthodontic Application. J. Eng. Technol. 2019, 37(5A), 181–187. DOI: 10.30684/etj.37.5A.5.
  • WANG, L.; Henrique, P.; D’alipino, P.; Lopes, L. G.; Perira, J. C. Mechanical Properties of Dental Restorative Materials: Relative Contribution of Laboratory Tests. J. Appl. Oral Sci. 2003, 11(3), 162. DOI: 10.1590/S1678-77572003000300002.
  • Procopio, A. T.; Zavaliangos, A.; Cunningham, J. C. Analysis of the Diametrical Compression Test and the Applicability to Plastically Deforming Materials. J. Mater. Sci. 2003, 38(17), 3629. DOI: 10.1023/A:1025681432260.
  • Fahad, M. K. Stresses and Failure in the Diametral Compression Test. J. Mater. Sci. 1996, 31(14), 3723–3729. DOI: 10.1007/BF00352786.
  • Al-Allaq, A. A. Preparation and Characterization of MWCNTs to Reinforce Nano Bio Composite As Bone Substitute. Doctoral dissertation, Department of Biomedical Engineering Faculty of Engineering, Helwan University, 2022.
  • Liang, C.; Luo, Y.; Yang, G.; Xia, D.; Liu, L.; Zhang, X.; Wang, H. Graphene Oxide Hybridized nHAC/PLGA Scaffolds Facilitate the Proliferation of MC3T3-E1 Cells. Nanoscale Res. Lett. 2018, 13(1), 1–10.
  • Zareidoost, A.; Yousefpour, M.; Ghaseme, B.; Amanzadeh, A. The Relationship of Surface Roughness and Cell Response of Chemical Surface Modification of Titanium. J. Mater. Sci. Mater. Med. 2012, 23(6), 1479–1488.
  • Brady, R. T.; O’Brien, F. J.; Hoey, D. A. Mechanically Stimulated Bone Cells Secrete Paracrine Factors That Regulate Osteoprogenitor Recruitment, Proliferation, and Differentiation. Biochem. Biophys. Res. Commun. 2015, 459(1), 118–123. DOI: 10.1016/j.bbrc.2015.02.080.
  • Wang, T.; Yang, X.; Qi, X.; Jiang, C. Osteoinduction and Proliferation of Bone-Marrow Stromal Cells in Three-Dimensional Poly (ε- Caprolactone)/Hydroxyapatite/Collagen Scaffolds. J. Transl. Med. 2015, 13(1), 1–11. DOI: 10.1186/s12967-015-0499-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.