78
Views
0
CrossRef citations to date
0
Altmetric
Brief Report

Effortful Listening Produces Both Enhancement and Suppression of Alpha in the EEG

&
Pages 289-299 | Received 20 Jan 2023, Accepted 18 May 2023, Published online: 20 Jul 2023

References

  • Akalin Acar, Z., & Makeig, S. (2013). Effects of forward model errors on EEG source localization. Brain Topography, 26(3), 378–396. https://doi.org/10.1007/s10548-012-0274-6
  • Alhanbali, S., Dawes, P., Millman, R. E., & Munro, K. J. (2019). Measures of listening effort are multidimensional. Ear and Hearing, 40(5), 1084–1097. https://doi.org/10.1097/AUD.0000000000000697
  • Bolia, R. S., Nelson, W. T., Ericson, M. A., & Simpson, B. D. (2000). A speech corpus for multitalker communications research. The Journal of the Acoustical Society of America, 107(2), 1065–1066. https://doi.org/10.1121/1.428288
  • Brungart, D. S. (2001). Informational and energetic masking effects in the perception of two simultaneous talkers. The Journal of the Acoustical Society of America, 109(3), 1101–1109. https://doi.org/10.1121/1.1345696
  • Brungart, D. S., Rabinowitz, W. M., & Durlach, N. I. (2000). Evaluation of response methods for the localization of nearby objects. Perception & Psychophysics, 62(1), 48–65. https://doi.org/10.3758/BF03212060
  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
  • Delorme, A., Palmer, J., Onton, J., Oostenveld, R., Makeig, S., & Ward, L. M. (2012). Independent EEG sources are dipolar. PLos One, 7(2), e30135. https://doi.org/10.1371/journal.pone.0030135
  • Dimitrijevic, A., Smith, M. L., Kadis, D. S., & Moore, D. R. (2017). Cortical alpha oscillations predict speech intelligibility. Frontiers in Human Neuroscience, 11, 88. https://doi.org/10.3389/fnhum.2017.00088
  • Friederici, A. D. (2011). The brain basis of language processing: From structure to function. Physiological Reviews, 91(4), 1357–1392. https://doi.org/10.1152/physrev.00006.2011
  • Hunter, C. R. (2020). Tracking cognitive spare capacity during speech perception with EEG/ERP: Effects of cognitive load and sentence predictability. Ear and Hearing, 41(5), 1144–1157. https://doi.org/10.1097/AUD.0000000000000856
  • Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4, 186. https://doi.org/10.3389/fnhum.2010.00186
  • Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition–timing hypothesis. Brain Research Reviews, 53(1), 63–88. https://doi.org/10.1016/j.brainresrev.2006.06.003
  • Koshino, Y., & Niedermeyer, E. (1975). Enhancement of Rolandic mu-rhythm by pattern vision. Electroencephalography and Clinical Neurophysiology, 38(5), 535–538. https://doi.org/10.1016/0013-4694(75)90197-2
  • Lehtelä, L., Salmelin, R., & Hari, R. (1997). Evidence for reactive magnetic 10-Hz rhythm in the human auditory cortex. Neuroscience Letters, 222(2), 111–114. https://doi.org/10.1016/S0304-3940(97)13361-4
  • Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Sciences, 8(5), 204–210. https://doi.org/10.1016/j.tics.2004.03.008
  • McGarrigle, R., Munro, K. J., Dawes, P., Stewart, A. J., Moore, D. R., Barry, J. G., & Amitay, S. (2014). Listening effort and fatigue: What exactly are we measuring? A British society of audiology cognition in hearing special interest group ‘white paper’. International Journal of Audiology, 53(7), 433–445. https://doi.org/10.3109/14992027.2014.890296
  • Meyer, L., Obleser, J., & Friederici, A. D. (2013). Left parietal alpha enhancement during working memory-intensive sentence processing. Cortex, 49(3), 711–721. https://doi.org/10.1016/j.cortex.2012.03.006
  • Obleser, J., Wise, R. J. S., Dresner, M. A., & Scott, S. K. (2007). Functional integration across brain regions improves speech perception under adverse listening conditions. Journal of Neuroscience, 27(9), 2283–2289. https://doi.org/10.1523/JNEUROSCI.4663-06.2007
  • Obleser, J., Wöstmann, M., Hellbernd, N., Wilsch, A., & Maess, B. (2012). Adverse listening conditions and memory load drive a common alpha oscillatory network. Journal of Neuroscience, 32(36), 12376–12383. https://doi.org/10.1523/JNEUROSCI.4908-11.2012
  • Onton, J., Delorme, A., & Makeig, S. (2005). Frontal midline EEG dynamics during working memory. Neuroimage, 27(2), 341–356. https://doi.org/10.1016/j.neuroimage.2005.04.014
  • Onton, J. A., & Makeig, S. (2009). High-frequency broadband modulation of electroencephalographic spectra. Frontiers in Human Neuroscience, 3(3), 1–18. https://doi.org/10.3389/neuro.09.061.2009
  • Onton, J., Westerfield, M., Townsend, J., & Makeig, S. (2006). Imaging human EEG dynamics using independent component analysis. Neuroscience & Biobehavioral Reviews, 30(6), 808–822. https://doi.org/10.1016/j.neubiorev.2006.06.007
  • Paul, B. T., Chen, J., Le, T., Lin, V., Dimitrijevic, A., & Buechner, A. (2021). Cortical alpha oscillations in cochlear implant users reflect subjective listening effort during speech-in-noise perception. PLos One, 16(7), e0254162. https://doi.org/10.1371/journal.pone.0254162
  • Peelle, J. E. (2018). Listening effort: How the cognitive consequences of acoustic challenge are reflected in brain and behavior. Ear and Hearing, 39(2), 204–214. https://doi.org/10.1097/AUD.0000000000000494
  • Pfurtscheller, G. (2003). Induced oscillations in the alpha band: Functional meaning. Epilepsia, 44(s12), 2–8. https://doi.org/10.1111/j.0013-9580.2003.12001.x
  • Pfurtscheller, G., & Neuper, C. (1994). Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neuroscience Letters, 174(1), 93–96. https://doi.org/10.1016/0304-3940(94)90127-9
  • Pfurtscheller, G., Neuper, C., & Krausz, G. (2000). Functional dissociation of lower and upper frequency mu rhythms in relation to voluntary limb movement. Clinical Neurophysiology, 111(10), 1873–1879. https://doi.org/10.1016/S1388-2457(00)00428-4
  • Pion-Tonachini, L., Kreutz Delgado, K., & Makeig, S. (2019). Iclabel: An automated electroencephalographic independent component classifier, dataset, and website. Neuroimage, 198, 181–197. https://doi.org/10.1016/j.neuroimage.2019.05.026
  • Ross, J. M., Comstock, D. C., Iverson, J. R., Makeig, S., & Balasubramaniam, R. (2022). Music-related mu modulation reflects overt motor inhibition during passive music listening. Journal of Neurophysiology, 127(1), 213–224. https://doi.org/10.1152/jn.00346.2021
  • Rӧnnberg, J., Holmer, E., & Rudner, M. (2021). Cognitive hearing science: Three memory systems, two approaches, and the Ease of Language Understanding Model. Journal of Speech, Language, & Hearing Research, 64(2), 359–370. https://doi.org/10.1044/2020_JSLHR-20-00007
  • Sauseng, P., & Klimesch, W. (2008). What does phase information of oscillatory brain activity tell us about cognitive processes? Neuroscience & Biobehavioral Reviews, 32(5), 1001–1013. https://doi.org/10.1016/j.neubiorev.2008.03.014
  • Seifi Ala, T., Graversen, C., Wendt, D., Alickovic, E., Whitmer, W. M., Lunner, T., & Yasin, I. (2020). An exploratory study of EEG alpha oscillation and pupil dilation in hearing-aid users during effortful listening to continuous speech. PLos One, 15(7), e0235782. https://doi.org/10.1371/journal.pone.0235782
  • Thompson, E. R., Iyer, N., Simpson, B. D., Wakefield, G. H., Kieras, D. E., & Brungart, D. S. (2015). Enhancing listener strategies using a payoff matrix in speech-on-speech masking experiments. The Journal of the Acoustical Society of America, 138(3), 1297–1304. https://doi.org/10.1121/1.4928395
  • Weisz, N., Hartmann, T., Müller, N., Lorenz, I., & Obleser, J. (2011). Alpha rhythms in audition: Cognitive and clinical perspectives. Frontiers in Psychology, 2, 73. https://doi.org/10.3389/fpsyg.2011.00073
  • Wisniewski, M. G. (2017). Indices of effortful listening can be mined from existing electroencephalographic data. Ear and Hearing, 38(1), e69–e73. https://doi.org/10.1097/AUD.0000000000000354
  • Wisniewski, M. G., Iyer, N., Thompson, E. R., & Simpson, B. D. (2018). Sustained frontal midline theta enhancements during effortful listening track working memory demands. Hearing Research, 358, 37–41. https://doi.org/10.1016/j.heares.2017.11.009
  • Wisniewski, M. G., Thompson, E. R., & Iyer, N. (2017). Theta- (4-8Hz) and alpha-power (8-13 Hz) enhancements in the electroencephalogram as an auditory delayed match-to-sample task becomes impossibly difficult. Psychophysiology, 54(12), 1916–1928. https://doi.org/10.1111/psyp.12968
  • Wisniewski, M. G., Thompson, E. R., Iyer, N., Estepp, J. R., Goder-Reiser, M., & Sullivan, S. (2015). Frontal midline θ power as an index of listening effort. NeuroReport, 26(2), 94–99. https://doi.org/10.1097/WNR.0000000000000306
  • Wisniewski, M. G., & Zakrzewski, A. C. (2020). Effects of auditory training on low-pass filtered speech perception and listening-related cognitive load. The Journal of the Acoustical Society of America, 148(4), EL394–EL400. https://doi.org/10.1121/10.0001742
  • Wisniewski, M. G., Zakrzewski, A. C., Bell, D. R., & Wheeler, K. (2021). EEG spectral dynamics associated with listening in adverse conditions. Psychophysiology, 58(9), e13877. https://doi.org/10.1111/psyp.13877
  • Zumer, J. M., Scheeringa, R., Schoffelen, J. M., Norris, D. G., Jensen, O., & Vogel, E. (2014). Occipital alpha activity during stimulus processing gates the information flow to object-selective cortex. PLoS Biology, 12(10), e1001965. https://doi.org/10.1371/journal.pbio.1001965

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.