1,484
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A review on plant endophytes in response to abiotic stress

, , , , , , , & show all
Article: 2323123 | Received 08 Nov 2023, Accepted 20 Feb 2024, Published online: 06 Mar 2024

References

  • Oulhen N, Schulz BJ, Carrier TJ. English translation of Heinrich Anton de Bary’s 1878 speech, ‘Die Erscheinung der Symbiose’ (‘De la symbiose’). Symbiosis. 2016;69(3):131–183. doi: 10.1007/s13199-016-0409-8
  • Aamir M, Rai KK, Zehra A, et al. Fungal endophytes: Classification, diversity, ecological role, and their relevance in sustainable agriculture. 2020. doi: 10.1016/B978-0-12-818734-0.00012-7
  • Kandasamy GD, Kathirvel P. A review: insights into bacterial endophytic diversity and isolation with a focus on their potential applications. Microbiol Res. 2023;266:127256. doi: 10.1016/j.micres.2022.127256
  • Afzal I, Shinwari ZK, Sikandar S, et al. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res. 2019;221:36–49. doi: 10.1016/j.micres.2019.02.001
  • Ali M, Ali Q, Sohail MA, et al. Diversity and taxonomic distribution of endophytic bacterial community in the rice plant and its prospective. Int J Mol Sci. 2021;22(18):10165. doi: 10.3390/ijms221810165
  • Chaudhary P, Agri U, Chaudhary A, et al. Endophytes and their potential in biotic stress management and crop production. Front Microbiol. 2022;13:933017. doi: 10.3389/fmicb.2022.933017
  • Collinge DB, Jensen B, Jørgensen HJ. Fungal endophytes in plants and their relationship to plant disease. Curr Opin Microbiol. 2022;69:102177. doi: 10.1016/j.mib.2022.102177
  • VanWallendael A, Soltani A, Emery, NC, et al. A molecular view of plant local adaptation: incorporating stress-response networks. Annu Rev Plant Biol. 2019;70(1):559–583. doi:10.1146/annurev-arplant-050718-100114
  • Gong Z, Xiong L, Shi H. Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci. 2020;63(5):635–674. doi: 10.1007/s11427-020-1683-x
  • Shekhawat K, Fröhlich K, García-Ramírez GX, et al. Ethylene: a master regulator of plant-microbe interactions under abiotic stresses. Cells. 2022;12(1):31.
  • Flores-Torres G, Solis-Hernández AP, Vela-Correa G, et al. Pioneer plant species and fungal root endophytes in metal-polluted tailings deposited near human populations and agricultural areas in Northern Mexico. Environ Sci Pollut Res Int. 2021;28(39):55072–55088. doi: 10.1007/s11356-021-14716-6
  • Parmar S, Sharma VK, Li T, et al. Fungal seed endophyte FZT214 improves dysphania ambrosioides Cd tolerance throughout different developmental stages. Front Microbiol. 2022;12:783475. doi: 10.3389/fmicb.2021.783475
  • Murphy BR, Doohan FM, Hodkinson TR. From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. J Fungi. 2018;4(1):24. doi: 10.3390/jof4010024
  • Verma A, Shameem N, Jatav HS, et al. Fungal endophytes to combat biotic and abiotic stresses for climate-smart and sustainable agriculture. Front Plant Sci. 2022;13:953836. doi: 10.3389/fpls.2022.953836
  • Ling L, Tu Y, Ma W, et al. A potentially important resource: endophytic yeasts. World J Microbiol Biotechnol. 2020;36(8):110. doi: 10.1007/s11274-020-02889-0
  • Goodwin PH. The endosphere microbiome of ginseng. Plants. 2022;11(3):415. doi: 10.3390/plants11030415
  • Alam A, Adhikary SK, Ahmed M. Morphological characterization of Colletotrichum gloeosporioiedes identified from anthracnose of Mangifera indica L. Asian J Plant Pathol. 2017;11(3):102–117. doi: 10.3923/ajppaj.2017.102.117
  • Cräutlein M, Helander M, Korpelainen H, et al. Genetic diversity of the symbiotic fungus epichloë festucae in naturally occurring host grass populations. Front Microbiol. 2021;12:756991. doi: 10.3389/fmicb.2021.756991
  • Harrison JG, Griffin EA. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? Environ Microbiol. 2020;22(6):2107–2123. doi: 10.1111/1462-2920.14968
  • Materatski P, Varanda C, Carvalho T, et al. Spatial and temporal variation of fungal endophytic richness and diversity associated to the phyllosphere of olive cultivars. Fungal Biol. 2019;123(1):66–76. doi: 10.1016/j.funbio.2018.11.004
  • Pastorino GN, Alcántara VM, Malbrán L, et al. Ensifer (sinorhizobium) fredii interacted more efficiently than bradyrhizobium japonicum with soybean. J Agric Ecol Res Int. 2015;2(1):10–19. doi:10.9734/JAERI/2015/13163
  • Nalini MS, Prakash HS. Diversity and bioprospecting of actinomycete endophytes from the medicinal plants. Lett Appl Microbiol. 2017;64(4):261–270. doi: 10.1111/lam.12718
  • Liu YH, Wei YY, Mohamad OAA, et al. Diversity, community distribution and growth promotion activities of endophytes associated with halophyte Lycium ruthenicum Murr. 3 Biotech. 2019;9(4):144. doi:10.1007/s13205-019-1678-8
  • Yang ZH, Xing Y, Ma JG, et al. Epichloë fungal endophytes have more host-dependent effects on the soil microenvironment than on the initial litter quality. J Fungi (Basel). 2022;8(3):237. doi: 10.3390/jof8030237
  • Mutungi PM, Wekesa VW, Onguso J, et al. Culturable bacterial endophytes associated with shrubs growing along the Draw-Down Zone of Lake Bogoria, Kenya: assessment of Antifungal Potential Against Fusarium solani and Induction of Bean Root Rot Protection. Front Plant Sci. 2022;12:796847. doi: 10.3389/fpls.2021.796847
  • Mathew SA, Helander M, Saikkonen K, et al. Endophytes shape the foliar endophytic fungal microbiome and alter the auxin and salicylic acid phytohormone levels in two meadow fescue cultivars. J Fungi. 2023;9(1):90 doi:10.3390/jof9010090
  • Hyde KD, Soytong K. The fungal endophyte dilemma. Fungal Divers. 2008;33:163–173.
  • Galindo-Solís JM, Fernández FJ. Endophytic fungal terpenoids: Natural role andbioactivities. Microorganisms. 2022;10(2):339. doi: 10.3390/microorganisms10020339
  • Rodriguez RJ, White Jr JJF, Arnold AE, et al. Fungal endophytes: diversity and functional roles. New Phytol. 2009;182(2):314–330. doi: 10.1111/j.1469-8137.2009.02773.x
  • Mundt JO, Hinkle NF. Bacteria within ovules and seeds. Appl environ microbiol. 1976;32(5):694–698. doi: 10.1128/aem.32.5.694-698.1976
  • Singh M, Kumar A, Singh R, et al. Endophytic bacteria: a new source of bioactive compounds. 3 Biotech. 2017;7(5):315. doi: 10.1007/s13205-017-0942-z
  • Liu H, Carvalhais LC, Crawford M, et al. Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol. 2017;8:2552. doi: 10.3389/fmicb.2017.02552
  • Lechevalier HA, Solotorovsky M, Mcdurmont CI. A new genus of the actinomycetales: micropolyspora gen. nov. J Gen Microbiol. 1961;26(1):11–18. doi: 10.1099/00221287-26-1-11
  • Gangwar M, Dogra S, Gupta UP, et al. Diversity and biopotential of endophytic actinomycetes from three medicinal plants in India. African J Microbiol Res. 2014;8(2):184–191. doi:10.5897/AJMR2012.2452
  • Singh R, Dubey AK. Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Front Microbiol. 2018;9:1767. doi: 10.3389/fmicb.2018.01767
  • Khalil AMA, Hassan SE, Alsharif SM. Isolation and Characterization of Fungal Endophytes Isolated from Medicinal Plant Ephedra pachyclada as Plant Growth-Promoting. Biomolecules. 2021;11(2):140. doi: 10.3390/biom11020140
  • Hamaoka K, Aoki Y, Suzuki S, et al. Isolation and Characterization of Endophyte Bacillus velezensis KOF112 from Grapevine Shoot Xylem as Biological Control Agent for Fungal Diseases. Plants. 2021;10(9):1815. doi:10.3390/plants10091815
  • Khan MS, Gao J, Chen X, et al. Isolation and characterization of plant growth-promoting endophytic bacteria Paenibacillus polymyxa SK1 from lilium lancifolium. Bio Med Res Int. 2020;2020:1–17. doi: 10.1155/2020/8650957
  • Zhang D, Sun W, Xu W, et al. Antimicrobial and cytotoxic activity of endophytic fungi from Lagopsis supina. J Microbiol Biotechnol. 2023;33(4):543–551. doi:10.4014/jmb.2211.11055
  • Dubey A, Saiyam D, Kumar A, et al. BacterialRoot endophytes: characterization of their competence and plant growth promotion in soybean (glycine max (L.) merr.) under drought stress. Int J Environ Res Public Health. 2021;18(3):931. doi: 10.3390/ijerph18030931
  • Soni SK, Singh R, Ngpoore NK, et al. Isolation and characterization of endophytic fungi having plant growth promotion traits that biosynthesizes bacosides and withanolides under in vitro conditions. Braz J Microbiol. 2021;52(4):1791–1805. doi: 10.1007/s42770-021-00586-0
  • Duong B, Nguyen HX, Phan HV, et al. Identification and characterization of Vietnamese coffee bacterial endophytes displaying in vitro antifungal and nematicidal activities. Microbiol Res. 2021;242:126613. doi: 10.1016/j.micres.2020.126613
  • Zhang S, Xu Q, Ji C, et al. Study on secondary metabolites of endophytic fungus Diaporthe sp. AC1 induced by tryptophan analogs. Front Microbiol. 2023;14:1254609. doi: 10.3389/fmicb.2023.1254609
  • Zhang H, Yang Z, Jiang Z, et al. Diversity of Fungi Isolated from Potato Nematode Cysts in Guizhou Province, China. J Fungi. 2023;9(2):247. doi:10.3390/jof9020247
  • Li D, Li Y, Wang X, et al. Engineered pine endophytic Bacillus toyonensis with nematocidal and colonization abilities for pine wilt disease control. Front Microbiol. 2023;14:1240984. doi: 10.3389/fmicb.2023.1240984
  • Tanaka A, Christensen MJ, Takemoto D, et al. Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell. 2006;18(4):1052–1066. doi:10.1105/tpc.105.039263
  • Martínez-Arias C, Sobrino-Plata J, Medel D, et al. Stem endophytes increase root development, photosynthesis, and survival of elm plantlets (Ulmus minor mill.). J Plant Physiol. 2021;261:153420. doi: 10.1016/j.jplph.2021.153420
  • Zhao J, Shuai W, Zhu X, et al. Isolation and characterization of nodules endophytic bacteria pseudomonas protegens Sneb1997 and serratia plymuthica Sneb2001 for the biological control of root-knot nematode. Appl Soil Ecol. 2021;164:103924. doi: 10.1016/j.apsoil.2021.103924
  • Gao JL, Khan MS, Sun YC, et al. Characterization of an endophytic antagonistic bacterial strain bacillus halotolerans LBG-1-13 with multiple plant growth-promoting traits, stress tolerance, and its effects on Lily growth. Bio Med Res Int. 2022;2022:1–12. doi: 10.1155/2022/5960004
  • Gupta S, Pandey S, Sharma S. Decoding the plant growth promotion and antagonistic potential of bacterial endophytes from Ocimum sanctum Linn. Against root rot pathogen fusarium oxysporum in Pisum sativum. Front Plant Sci. 2022;13:813686. doi: 10.3389/fpls.2022.813686
  • Agrios GN. Plant pathology. San Diego: Academic Press; 1997. p. 447.
  • Costa Pinto LSR, Azevedo JL, Pereira JO, et al. Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytol. 2000;147(3):609–615. doi:10.1046/j.1469-8137.2000.00722.x
  • Arnold AE, Engelbrecht BMJ. Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species. J Trop Ecol. 2007;23(3):369–372. doi: 10.1017/S0266467407004038
  • Terna TP, Mohamed NMI, Zakaria L. Histopathology of corn plants infected by endophytic fungi. Biology. 2022;11(5):641. doi: 10.3390/biology11050641
  • Fang D, Chen J, Yi C, et al. First report of Fusarium fujikuroi causing bulb rot on Lilium lancifolium in China. Plant Dis. 2021;105(8):2254. doi: 10.1094/PDIS-06-20-1197-PDN
  • Lu H, Wei T, Lou H, et al. A critical review on communication mechanism within plant-endophytic fungi interactions to cope with Biotic and abiotic stresses. J Fungi. 2021;7(9):719. doi:10.3390/jof7090719
  • Samakovli D, Tichá T, Vavrdová T, et al. YODA-HSP90 module regulates phosphorylation-dependent inactivation of speechless to control stomatal development under acute heat stress in arabidopsis. Mol Plant. 2020;13(4):612–633. doi: 10.1016/j.molp.2020.01.001
  • Ying M, Yue W, Xiao-Jun S, et al. Mechanism and application of plant growth-promoting bacteria in heavy metal bioremediation. Environ Sci. 2022;43(9):4911–4922.
  • Citao L, Bigang M, Dingyang Y, et al. Salt tolerance in rice: physiological responses and molecular mechanisms. Crop J. 2022;10(1):13–25.
  • Alengebawy A, Abdelkhalek ST, Qureshi SR, et al. Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics. 2021;9(3):42. doi: 10.3390/toxics9030042
  • Genchi G, Sinicropi MS, Lauria G, et al. The effects of cadmium toxicity. Int J Environ Res Public Health. 2020;17(11):3782. doi: 10.3390/ijerph17113782
  • Ministry of Environmental Protection of the People’s Republic of China. The investigation communique on national soil pollution condition from ministry of environmental protection of the People’s Republic of China and Ministry of Land and Resources of the People’s Republic of China. Land and rural environment. 2014. [cited 2014 April 17].
  • Sperdouli I, Adamakis IS, Dobrikova A, et al. Excess zinc supply reduces cadmium uptake and mitigates cadmium toxicity effects on chloroplast structure, oxidative stress, and photosystem II photochemical efficiency in salvia sclarea plants. Toxics. 2022;10(1):36.
  • Domka A, Rozpądek P, Ważny R, et al. Mucor sp.–an endophyte of Brassicaceae capable of surviving in toxic metal-rich sites. J Basic Microbiol. 2019;59(1):24–37.
  • Deng Z, Cao L, Huang H, et al. Characterization of Cd- and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil. J Hazard Mater. 2011;185(2–3):717–724. doi: 10.1016/j.jhazmat.2010.09.078
  • Xu R, Li T, Cui H, et al. Diversity and characterization of Cd-tolerant dark septate endophytes (DSEs) associated with the roots of Nepal alder (alnus nepalensis) in a metal mine tailing of southwest China. Appl Soil Ecol. 2015;93:11–18. doi: 10.1016/j.apsoil.2015.03.013
  • Khan AR, Ullah I, Waqas M, et al. Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicol Environ Saf. 2017;136:180–188. doi: 10.1016/j.ecoenv.2016.03.014
  • DalCorso G, Manara A, Furini A. An overview of heavy metal challenge in plants: from roots to shoots. Metallomics Integr Biometal Sci. 2013;5(9):1117–1132. doi: 10.1039/c3mt00038a
  • Yan X, Huang Y, Song H, et al. A MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis. PloS Genet. 2021;17(6):e1009636. doi: 10.1371/journal.pgen.1009636
  • Mwamba TM, Li L, Gill RA, et al. Differential subcellular distribution and chemical forms of cadmium and copper in Brassica napus. Ecotoxicol Environ Saf. 2016;134(1):239–249.
  • Xiao Y, Dai MX, Zhang GQ, et al. Effects of the dark septate endophyte (DSE) exophiala pisciphila on the growth of root cell wall polysaccharides and the cadmium content of Zea mays L. under cadmium stress. J Fungi. 2021;7(12):1035.
  • Gao MY, Chen XW, Huang WX, et al. Cell wall modification induced by an arbuscular mycorrhizal fungus enhanced cadmium fixation in rice root. J Hazard Mater. 2021;416:125894. doi: 10.1016/j.jhazmat.2021.125894
  • Sobrino-Plata J, Meyssen D, Cuypers A, et al. Glutathione is a key antioxidant metabolite to cope with mercury and cadmium stress. Plant Soil. 2014;377(1–2):369–381. doi: 10.1007/s11104-013-2006-4
  • Su Z, Zeng Y, Li X, et al. The endophytic fungus piriformospora indica-assisted alleviation of cadmium in tobacco. J Fungi (Basel). 2021, Aug 20;7(8):675. doi: 10.3390/jof7080675
  • DeGroote KV, McCartha GL, Pollard AJ. Interactions of the manganese hyperaccumulator Phytolacca americana L. with soil pH and phosphate. Ecol Res. 2017;33(4):749–755. doi: 10.1007/s11284-017-1547-z
  • Zhu S, Ho S-H, Jin C, et al. Nanostructured manganese oxides: Natural/artificial formation and their induced catalysis for wastewater remediation. Environ Sci Nano. 2020;7(2):368–396. doi: 10.1039/C9EN01250H
  • Li Y, Liu K, Zhu J, et al. Manganese accumulation and plant physiology behavior of camellia oleifera in response to different levels of nitrogen fertilization. Ecotoxicol Environ Saf. 2019 Nov 30;184:109603.
  • Alejandro S, Höller S, Meier B, et al. Manganese in Plants: From Acquisition to Subcellular Allocation. Front Plant Sci. 2020;11:300. doi: 10.3389/fpls.2020.00300
  • Wu Q, Lin X, Li S, et al. Endophytic Bacillus sp. AP10 harboured in Arabis paniculata mediates plant growth promotion and manganese detoxification. Ecotoxicology and environmental safety. 2023;262:115170. doi: 10.1016/j.ecoenv.2023.115170
  • Tang Y, Kang H, Qin Z, et al. Significance of manganese resistant bacillus cereus strain WSE01 as a bioinoculant for promotion of plant growth and manganese accumulation in Myriophyllum verticillatum. The Science of the total environment. 2020;707:135867. doi: 10.1016/j.scitotenv.2019.135867
  • Zhang WH, He LY, Wang Q. Inoculation with endophytic Bacillus megaterium 1Y31 increases Mn accumulation and induces the growth and energy metabolism-related differentially-expressed proteome in Mn hyperaccumulator hybrid pennisetum. Journal of hazardous materials. 2015;300:513–521. doi:10.1016/j.jhazmat.2015.07.049
  • Fatemi H, Zaghdoud C, Nortes PA, et al. Differential aquaporin response to distinct effects of two Zn concentrations after foliar application in Pak Choi (brassica rapa L.) plants. Agronomy. 2020;10(3):450. doi: 10.3390/agronomy10030450
  • Michael PI, Krishnaswamy M. The effect of zinc stress combined with high irradiance stress on membrane damage and antioxidative response in bean seedlings. Environ Exp Bot. 2021;74:171–177. doi: 10.1016/j.envexpbot.2011.05.016
  • Yan J, Pan Y, He J, et al. Toxic vascular effects of polystyrene microplastic exposure. Sci Total Environ. 2023;905:167215. doi: 10.1016/j.scitotenv.2023.167215
  • Cao GH, Li XG, Zhang CR, et al. Physiological response mechanism of heavy metal-resistant endophytic fungi isolated from the roots of polygonatum kingianum. Environ Microbiol Rep. 2023;15(6):568–581.
  • Lou X, Zhang X, Zhang Y. The synergy of Arbuscular Mycorrhizal Fungi and exogenous abscisic acid benefits Robinia pseudoacacia L. Growth through altering the distribution of Zn and endogenous abscisic acid. J Fungi. 2021;7(8):671. doi: 10.3390/jof7080671
  • Li J, Wu H, Pu Q, et al. Complete genome of Sphingomonas paucimobilis ZJSH1, an endophytic bacterium from dendrobium officinale with stress resistance and growth promotion potential. Arch Microbiol. 2023;205(4):132. doi: 10.1007/s00203-023-03459-2
  • Iqbal S, Ali U, Fadlalla T, et al. Genome wide characterization of phospholipase a & C families and pattern of lysolipids and diacylglycerol changes under abiotic stresses in brassica napus L. Plant Physiol Biochem. 2020;147:101–112. doi: 10.1016/j.plaphy.2019.12.017
  • Abdel-Mawgoud M, Bouqellah NA, Korany SM, et al. Arbuscular mycorrhizal fungi as an effective approach to enhance the growth and metabolism of soybean plants under thallium (TI) toxicity. Plant Physiol Biochem. 2023;203:108077. doi: 10.1016/j.plaphy.2023.108077
  • Wang W, Xing L, Xu K, et al. Salt stress-induced H2O2 and Ca2+ mediate K+/Na+ homeostasis in Pyropiahaitanensis. J Appl Phycol. 2020;32(6):4199–4210. doi: 10.1007/s10811-020-02284-0
  • Murphy MP, Bayir H, Belousov V, et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab. 2022;4(6):651–662. doi: 10.1038/s42255-022-00591-z
  • Sabeem M, Abdul Aziz M, Mullath SK, et al. Enhancing growth and salinity stress tolerance of date palm using piriformospora indica. Front Plant Sci. 2022 Nov 25;13:1037273.
  • Bokhari A, Essack M, Lafi FF. Bioprospecting desert plant bacillus endophytic strains for their potential to enhance plant stress tolerance. Sci Rep. 2019;9(1):18154. doi: 10.1038/s41598-019-54685-y
  • Liu Z, Xu N, Pang Q, et al. A salt-tolerant strain of trichoderma longibrachiatum HL167 is effective in alleviating salt stress, promoting plant growth, and managing fusarium wilt disease in cowpea. J Fungi. 2023;9(3):304.
  • An C, Ma S, Shi X, et al. Diversity and ginsenoside biotransformation potential of cultivable endophytic fungi associated with panax bipinnatifidus var. bipinnatifidus in Qinling mountains, China. Front Pharmacol. 2022;13:762862. doi: 10.3389/fphar.2022.762862
  • Xu F, Liang Y, Wang X, et al. Synergic mitigation of saline-alkaline stress in wheat plant by silicon and Enterobacter sp. FN0603. Front Microbiol. 2022;13:1100232. doi: 10.3389/fmicb.2022.1100232
  • Navarro-Torre S, Barcia-Piedras JM, Caviedes MA, et al. Bioaugmentation with bacteria selected from the microbiome enhances arthrocnemum macrostachyum metal accumulation and tolerance. Mar Pollut Bull. 2017;117(1–2):340–347. doi: 10.1016/j.marpolbul.2017.02.008
  • Gupta A, Singh AN, Tiwari RK, et al. Salinity alleviation and reduction in oxidative stress by Endophytic and rhizospheric microbes in two rice cultivars. Plants. 2023, Feb 21;12(5):976. doi: 10.3390/plants12050976
  • Brotman Y, Landau U, Cuadros-Inostroza Á, et al. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLOS Pathogens. 2013;9(3):e1003221.
  • Chen L, Liu Y, Wu G, et al. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant. 2016;158(1):34–44. doi: 10.1111/ppl.12441
  • Zhang H, Kim MS, Sun Y, et al. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact. 2008;21(6):737–744. doi: 10.1094/MPMI-21-6-0737
  • Zawoznik MS, Ameneiros M, Benavides MP, et al. Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings. Appl Microbiol Biotechnol. 2011;90(4):1389–1397. doi: 10.1007/s00253-011-3162-1
  • Liu S, Hao H, Zhao X, et al. Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana. Scientific reports. 2017;7(1):10795. doi:10.1038/s41598-017-11308-8
  • Vaishnav A, Kumari S, Jain S, et al. Putative bacterial volatile-mediated growth in soybean (glycine max L. Merrill) and expression of induced proteins under salt stress. Journal of Applied Mmicrobiology. 2015;119(2):539–551.
  • Asseng S, Spänkuch D, Hernandez-Ochoa IM, et al. The upper temperature thresholds of life. Lancet Planet Health. 2021;5(6):e378–e385. doi: 10.1016/S2542-5196(21)00079-6
  • Hu S, Ding Y, Zhu C. Sensitivity and responses of chloroplasts to heat stress in plants. Front Plant Sci. 2020;11:375. doi: 10.3389/fpls.2020.00375
  • Eid AM, Fouda A, Abdel-Rahman MA, et al. Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: an overview. Plants. 2021;10(5):935. doi: 10.3390/plants10050935
  • Waqas M, Khan AL, Shahzad R, et al. Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress. J Zhejiang Univ. 2015;16(12):1011–1018.
  • Pan Y, Cheng JH, Sun DW. Metabolomic analyses on microbial primary and secondary oxidative stress responses. Compr Rev Food Sci Food Saf. 2021;20(6):5675–5697. doi: 10.1111/1541-4337.12835
  • Javed J, Rauf M, Arif M, et al. Endophytic fungal consortia enhance basal drought-tolerance in moringa oleifera by upregulating the antioxidant enzyme (APX) through heat shock factors. Antioxidants. 2022;11(9):1669. doi: 10.3390/antiox11091669
  • Aswini K, Suman A, Sharma P, et al. Seed endophytic bacterial profiling from wheat varieties of contrasting heat sensitivity. Front Plant Sci. 2023;14:1101818. doi: 10.3389/fpls.2023.1101818
  • De Marco A, Sicard P, Feng Z, et al. Strategic roadmap to assess forest vulnerability under air pollution and climate change. Glob Chang Biol. 2022;28(17):5062–5085. doi: 10.1111/gcb.16278
  • Huang B, Fan Y, Cui L, et al. Cold stress response mechanisms in another development. Int J Mol Sci. 2022;24(1):30.
  • Cui X, He W, Christensen MJ, et al. Abscisic acid may play a critical role in the moderating effect of epichloë endophyte on achnatherum inebrians under drought stress. J Fungi. 2022;8(11):1140.
  • Lin W, Liu L, Liang J, et al. Changes of endophytic microbial community in rhododendron simsii roots under heat stress and its correlation with leaf physiological indicators. Front Microbiol. 2022;13:1006686. doi: 10.3389/fmicb.2022.1006686
  • Ismail KH, Hamayun M, Hussain A, et al. Endophytic fungus aspergillus japonicus mediates host plant growth under normal and heat stress conditions. Bio Med Res Int. 2018;2018:1–11. doi: 10.1155/2018/7696831
  • Bisht N, Mishra SK, Chauhan PS. Bacillus amyloliquefaciens inoculation alters physiology of rice (Oryza sativa L. var. IR-36) through modulating carbohydrate metabolism to mitigate stress induced by nutrient starvation. Int J Biol Macromol. 2020;143:937–951. doi: 10.1016/j.ijbiomac.2019.09.154
  • Waqas M, Kim YH, Khan AL, et al. Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and modulate nutritional parameters. J Zhejiang Univ. 2017;18(2):109–124.
  • Wang T, Li F, Lu Q, et al. Diversity, novelty, antimicrobial activity, and new antibiotics of cultivable endophytic actinobacteria isolated from psammophytes collected from Taklamakan Desert. J Pharm Anal. 2021;11(2):241–250. doi: 10.1016/j.jpha.2020.06.004
  • Khan A, Ali S, Khan M, et al. Parthenium hysterophorus’s endophytes: the second layer of defense against biotic and abiotic stresses. Microorganisms. 2022;10(11):2217. doi: 10.3390/microorganisms10112217
  • Yung L, Sirguey C, Azou-Barré A, et al. Natural fungal endophytes from noccaea caerulescens mediate neutral to positive effects on plant biomass, mineral nutrition and Zn phytoextraction. Front Microbiol. 2021;12:689367. doi: 10.3389/fmicb.2021.689367
  • Sharma VK, Parmar S, Tang W, et al. Effects of fungal seed endophyte FXZ2 on dysphania ambrosioides Zn/Cd tolerance and accumulation. Front Microbiol. 2022;13:995830. doi: 10.3389/fmicb.2022.995830
  • Ismail I, Hussain A, Mehmood A, et al. Thermal stress alleviating potential of endophytic fungus rhizopus oryzae inoculated to sunflower (Helianthus annuus L.) and soybean (Glycine max L.). Pak J Bot. 2020;52(5):52.
  • Zhao Z, Kou M, Zhong R, et al. Transcriptome analysis revealed plant hormone biosynthesis and response pathway modification by epichloëgansuensis in Achnatheruminebrians under different soil moisture availability. J Fungi. 2021;7(8):640.
  • Rashid U, Yasmin H, Hassan MN, et al. Drought-tolerant bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions. Plant Cell Rep. 2022;41(3):549–569. doi: 10.1007/s00299-020-02640-x
  • Saikia K, Bora LC. Exploring actinomycetes and endophytes of rice ecosystem for induction of disease resistance against bacterial blight of rice. Eur J Plant Pathol. 2020;159(1):67–79. doi: 10.1007/s10658-020-02141-3
  • Yan L, Zhu J, Zhao X, et al. Beneficial effects of endophytic fungi colonization on plants. Appl Microbiol Biotechnol. 2019;103(8):3327–3340. doi: 10.1007/s00253-019-09713-2
  • Anyasi RO, Atagana HI. Endophyte: understanding the microbes and its applications. Pak J Biol Sci. 2019;22(4):154–167. doi: 10.3923/pjbs.2019.154.167
  • Singh BK, Delgado-Baquerizo M, Egidi E. Climate change impacts on plant pathogens, food security and paths forward. Nat Rev Microbiol. 2023;21(10):640–656. doi: 10.1038/s41579-023-00900-7
  • Rai N, Kumari Keshri P, Verma A, et al. Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology. 2021;12(3):139–159. doi: 10.1080/21501203.2020.1870579
  • Xu W, Li M, Lin W, et al. Effects of epichloë sinensis endophyte and host ecotype on physiology of Festuca sinensis under different soil moisture conditions. Plants. 2021;10(8):1649. doi: 10.3390/plants10081649
  • Doty SL, Joubert PM, Firrincieli A, et al. Potential biocontrol activities of populus endophytes against several plant pathogens using different inhibitory mechanisms. Pathogens. 2022;12(1):13. doi: 10.3390/pathogens12010013
  • Elias LM, Fortkamp D, Sartori SB, et al. The potential of compounds isolated from Xylaria spp. As antifungal agents against anthracnose. Braz J Microbiol. 2018;49(4):840–847. doi: 10.1016/j.bjm.2018.03.003
  • Bengyella L, Iftikhar S, Nawaz K, et al. Biotechnological application of endophytic filamentous bipolaris and curvularia: a review on bioeconomy impact. World J Microbiol Biotechnol. 2019;35(5):69. doi: 10.1007/s11274-019-2644-7
  • Miotto-Vilanova L, Jacquard C, Courteaux B, et al. Burkholderia phytofirmans PsJN confers grapevine resistance against botrytis cinerea via a direct antimicrobial effect combined with a better resource mobilization. Front Plant Sci. 2016;7:1236. doi: 10.3389/fpls.2016.01236
  • Terhonen E, Sipari N, Asiegbu FO. Inhibition of phytopathogens by fungal root endophytes of Norway spruce. Biol Control. 2016;99:53–63. doi: 10.1016/j.biocontrol.2016.04.006
  • Zhao H, Ding X, Chu X, et al. Plant immune inducer ZNC promotes rutin accumulation and enhances resistance to botrytis cinerea in tomato. Stress Biol. 2023;3(1):36.
  • Kumar V, Nautiyal CS. Endophytes modulate plant genes: present status and future perspectives. Curr Microbiol. 2023;80(11):353. doi: 10.1007/s00284-023-03466-y
  • Gupta S, Pandey S, Nandi SP, et al. Modulation of ethylene and ROS-scavenging enzymes by multifarious plant growth-promoting endophytes in tomato (Solanum lycopersicum) plants to combat Xanthomonas-induced stress. Plant Physiol Biochem. 2023;202:107982. doi: 10.1016/j.plaphy.2023.107982
  • Fardella PA, Clarke BB, Belanger FC. The Epichloë festucae Antifungal Protein Efe-AfpA Has Activity against Numerous Plant Pathogens. Microorganisms. 2023;11(4):828. doi: 10.3390/microorganisms11040828
  • Zhao Y, Mao W, Tang W, et al. Wild Rosa endophyte M7SB41-mediated Host plant’s powdery mildew resistance. J Fungi (Basel). 2023;9(6):620. doi: 10.3390/jof9060620
  • Han L, Zheng W, He Z, et al. Endophytic fungus Biscogniauxia petrensis produces antibacterial substances. PeerJ. 2023;11:e15461. doi: 10.7717/peerj.15461
  • Zhang J, Huang X, Yang S, et al. Endophytic Bacillus subtilis H17-16 effectively inhibits phytophthora infestans, the pathogen of potato late blight, and its potential application. Pest Manag Sci. 2023;79(12):5073–5086. doi: 10.1002/ps.7717
  • Huang J, He Z, Wang J, et al. A novel effector FlSp1 inhibits the colonization of endophytic Fusarium lateritium and increases the resistance to Ralstonia solanacearum in tobacco. J Fungi (Basel). 2023;9(5):519. doi: 10.3390/jof9050519
  • Pal KK, Dey R, Sherathia DN, et al. Alleviation of salinity stress in peanut by application of endophytic bacteria. Front Microbiol. 2021;12:650771. doi: 10.3389/fmicb.2021.650771
  • Kachalkin A, Glushakova A, Streletskii R. Diversity of endophytic yeasts from agricultural fruits positive for phytohormone IAA production. Biotech. 2022;11(3):38. doi: 10.3390/biotech11030038
  • Debnath S, Chakraborty S, Langthasa M, et al. Non-rhizobial nodule endophytes improve nodulation, change root exudation pattern and promote the growth of lentil, for prospective application in fallow soil. Front Plant Sci. 2023;14:1152875. doi: 10.3389/fpls.2023.1152875
  • Barrera M, Jakobs-Schoenwandt D, Persicke M, et al. Anhydrobiotic engineering for the endophyte bacterium kosakonia radicincitans by osmoadaptation and providing exogenously hydroxyectoine. World J Microbiol Biotechnol. 2020;36(1):6. doi: 10.1007/s11274-019-2780-0
  • Li Y, Bi M, Sun S, et al. Comparative metabolomic profiling reveals molecular mechanisms underlying growth promotion and disease resistance in wheat conferred by piriformospora indica in the field. Plant Signal Behav. 2023;18(1):2213934. doi: 10.1080/15592324.2023.2213934
  • Heeter KJ, Harley GL, Abatzoglou JT. Unprecedented 21st century heat across the Pacific Northwest of North America. Npj Clim Atmos Sci. 2023;6(1):5. doi: 10.1038/s41612-023-00340-3
  • He W, Megharaj M, Wu CY, et al. Endophyte-assisted phytoremediation: mechanisms and current application strategies for soil mixed pollutants. Crit Rev Biotechnol. 2020;40(1):31–45. doi: 10.1080/07388551.2019.1675582
  • Khan NA, Asaf S, Ahmad W, et al. Diversity, lifestyle, genomics, and their functional role of cochliobolus, bipolaris, and curvularia species in environmental remediation and plant growth promotion under biotic and abiotic stressors. J Fungi. 2023;9(2):254.
  • Kracmarova-Farren M, Papik J, Uhlik O, et al. Compost, plants and endophytes versus metal contamination: choice of a restoration strategy steers the microbiome in polymetallic mine waste. Environ Microbiome. 2023;18(1):74. doi: 10.1186/s40793-023-00528-3
  • Wen Z, Liu Q, Yu C, et al. The difference between rhizosphere and Endophytic Bacteria on the safe cultivation of lettuce in Cr-Contaminated Farmland. Toxics. 2023;11(4):371. doi: 10.3390/toxics11040371
  • Li B, Wu B, Dong Y, et al. Endophyte inoculation enhanced microbial metabolic function in the rhizosphere benefiting cadmium phytoremediation by Phytolaccaacinosa. Chemosphere. 2023;338:139421. doi: 10.1016/j.chemosphere.2023.139421
  • Kashyap S, Chandra R, Kumar B, et al. Biosorption efficiency of nickel by various endophytic bacterial strains for removal of nickel from electroplating industry effluents: an operational study. Ecotoxicology. 2022;31(4):565–580.
  • Ancheeva E, Daletos G, Proksch P. Bioactive secondary metabolites from endophytic fungi. Curr Med Chem. 2020;27(11):1836–1854. doi: 10.2174/0929867326666190916144709
  • Toghueo RMK. Bioprospecting endophytic fungi from fusarium genus as sources of bioactive metabolites. Mycology. 2019;11(1):1–21. doi: 10.1080/21501203.2019.1645053
  • Luo HZ, Jiang H, Huang XS, et al. New sesquiterpenoids from plant-associated Irpex lacteus. Front Chem. 2022;10:905108. doi: 10.3389/fchem.2022.905108
  • Puri SC, Nazir A, Chawla R, et al. The endophytic fungus trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol. 2006;122(4):494–510. doi: 10.1016/j.jbiotec.2005.10.015
  • Devi P, Rodrigues C, Naik CG, et al. Isolation and characterization of antibacterial compound from a mangrove-endophytic fungus, penicillium chrysogenum MTCC 5108. Indian J Microbiol. 2012;52(4):617–623.
  • Zhao J, Wang J, Pang X, et al. An anti-influenza A virus microbial metabolite acts by degrading viral endonuclease PA. Nat Commun. 2022;13(1):2079. doi: 10.1038/s41467-022-29690-x
  • Verma A, Rai N, Gupta P, et al. Exploration of in vitro cytotoxic and in ovo antiangiogenic activity of ethyl acetate extract of penicillium oxalicum. Environ Toxicol. 2023;38(10):2509–2523. doi: 10.1002/tox.23889
  • Chen C, Ye G, Tang J, et al. New Polyketides from mangrove endophytic fungus Penicillium sp. BJR-P2 and their anti-inflammatory activity. Mar Drug. 2022;20(9):583.
  • Tang J, Wu L, Tang XF, et al. A new alkaloid from thespesia populnea endophytic fungus Penicillium sp. TM-Y1-1. J Asian Nat Prod Res. 2023;25(9):905–911. doi: 10.1080/10286020.2022.2162887
  • Farooq S, Qayum A, Nalli Y, et al. Discovery of a secalonic acid derivative from aspergillus aculeatus, an endophyte of Rosa damascena Mill., triggers apoptosis in MDA-MB-231 triple negative breast cancer cells, an endophyte of Rosa damascena Mill., triggers apoptosis in MDA-MB-231 triple negative breast cancer cells. ACS Omega. 2020;5(38):24296–24310. doi: 10.1021/acsomega.0c02505
  • Caruso G, Abdelhamid MT, Kalisz A, et al. Linking endophytic fungi to medicinal plants therapeutic activity. A case study on asteraceae. Agriculture. 2020;10(7):286. doi: 10.3390/agriculture10070286
  • Liu SS, Jiang JX, Huang R, et al. A new antiviral 14-nordrimane sesquiterpenoid from an endophytic fungus Phoma spp. Phytochem Lett. 2019;29:75–78. doi: 10.1016/j.phytol.2018.11.005
  • Mahmoud MM, Abdel-Razek AS, Soliman HSM, et al. Diverse polyketides from the marine endophytic Alternaria sp. LV52: structure determination and cytotoxic activities. Biotechnol Rep. 2021;33:e00628. doi: 10.1016/j.btre.2021.e00628
  • Guo B, Dai JR, Ng S, et al. Cytonic acids a and B: novel tridepside inhibitors of hCMV protease from the endophytic fungus cytonaema species. J Natural Prod. 2000;63(5):602–604. doi: 10.1021/np990467r
  • Zhao H, Xu C, Lu HL, et al. Host-to-pathogen gene transfer facilitated infection of insects by a pathogenic fungus. PLOS Pathogens. 2014;10(4):e1004009. doi: 10.1371/journal.ppat.1004009
  • Alam B, Lǐ J, Gě Q, et al. Endophytic fungi: from symbiosis to secondary metabolite communications or vice versa? Front Plant Sci. 2021;12:791033. doi: 10.3389/fpls.2021.791033