244
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

In situ imaging of precipitate formation in additively manufactured al-alloys by scanning X-ray fluorescence

, , , , , , , , , & show all
Article: 2328242 | Received 10 Oct 2023, Accepted 04 Mar 2024, Published online: 26 Mar 2024

References

  • Ansara, I., Dinsdale, A. T., & Rand, M. H. (1998). Thermochemical database for light metal alloys. European Communities.
  • ASM International. (1998). Introduction to aluminum and aluminum alloys: Metals handbook desk edition (pp. 417–423). ASM International. https://doi.org/10.31399/asm.hb.v02.9781627081627
  • DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., Beese, A. M., Wilson-Heid, A. D., De, A., & Zhang, W. (2018). Additive manufacturing of metallic components – Process, structure and properties. Progress in Materials Science, 92, 112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001
  • Easterling, K. E., & Porter, D. A. (1992). Phase transformations in metals and alloys (2nd ed.). Chapman & Hill.
  • Eswara, S., Mitterbauer, C., Wirtz, T., Kujawa, S., & Howe, J. M. (2016). An in situ correlative STEM-EDS and HRTEM based nanoscale chemical characterization of solid–liquid interfaces in an aluminium alloy. Journal of Microscopy, 264(1), 64–70. https://doi.org/10.1111/jmi.12417
  • Fam, Y., Sheppard, T. L., Becher, J., Scherhaufer, D., Lambach, H., Kulkarni, S., Keller, T.F., Wittstock, A., Wittwer, F., Seyrich, M., & Brueckner, D. (2019). A versatile nanoreactor for complementary in situ X-ray and electron microscopy studies in catalysis and materials science. Journal of Synchrotron Radiation, 26(Pt 5), 1769–1781. https://doi.org/10.1107/S160057751900660X
  • Gu, D. D., Meiners, W., Wissenbach, K., & Poprawe, R. (2012). Laser additive manufacturing of metallic components: Materials, processes and mechanisms. International Materials Reviews, 57(3), 133–164. https://doi.org/10.1179/1743280411Y.0000000014
  • Izumi, O., Oelschlägel, D., & Nagata, A. (1968). On the decomposition of a highly supersaturated solution of Al-6wt % Mn. Transactions of the Japan Institute of Metals, 9(3), 227–228. https://doi.org/10.2320/matertrans1960.9.227
  • Jones, H. (1978). Development in aluminium alloys by solidification at higher cooling rates. University of Sheffield.
  • König, H. H., Pettersson, N. H., Durga, A., Van Petegem, S., Grolimund, D., Chuang, A. C., Guo Q., Chen L., Oikonomou C., Zhang F., & Lindwall, G. (2023). Solidification modes during additive manufacturing of steel revealed by high-speed X-ray diffraction. Acta Materialia, 246, 118713. https://doi.org/10.1016/j.actamat.2023.118713
  • Kostka, A., Naujoks, D., Oellers, T., Salomon, S., Somsen, C. Öztürk, Savan, A., Ludwig, A., & Eggeler, G. (2022). Linear growth of reaction layer during in-situ TEM annealing of thin film Al/Ni diffusion couples. Journal of Alloys and Compounds., 922, 165926. https://doi.org/10.1016/j.jallcom.2022.165926
  • Leicht, A. (2020). Laser powder bed fusion of 316L stainless steel microstructure and mechanical properties as a function of process [Doctoral diss.]. Chalmers Tekniska Hogskola.
  • Leonard, H. R., Rommel, S., Li, M. X., Vijayan, S., Watson, T. J., Policandriotes, T., & Aindow, M. (2021). Precipitation phenomena in a powder-processed ­quasicrystal-reinforced Al-Cr-Mn-Co-Zr alloy. Materials Characterization., 178, 111239. https://doi.org/10.1016/j.matchar.2021.111239
  • Li, Y. J., Muggerud, A. M. F., Olsen, A., & Furu, T. (2012). Precipitation of partially coherent α-Al(Mn,Fe)Si dispersoids and their strengthening effect in AA 3003 alloy. Acta Materialia., 60(3), 1004–1014. https://doi.org/10.1016/j.actamat.2011.11.003
  • Liu, P., Dunlop, G. L., & Arnberg, L. (1988). Microstructural development in a rapidly solidified Al5Mn2.5Cr alloy. Materials Science and Engineering, 98, 437–441. https://doi.org/10.1016/0025-5416(88)90202-9
  • Mehta, B., Frisk, K., & Nyborg, L. (2022). Effect of precipitation kinetics on microstructure and properties of novel Al-Mn-Cr-Zr based alloys developed for powder bed fusion – laser beam process. Journal of Alloys and Compounds, 920, 165870. https://doi.org/10.1016/j.jallcom.2022.165870
  • Mehta, B., Frisk, K., & Nyborg, L. (2023). Advancing novel Al-Mn-Cr-Zr based family of alloys tailored for powder bed fusion-laser beam process. Journal of Alloys and Compounds, 967, 171685. https://doi.org/10.1016/j.jallcom.2023.171685
  • Mehta, B., Nyborg, L., Frisk, K., & Hryha, E. (2022). Al–Mn–Cr–Zr-based alloys tailored for powder bed fusion-laser beam process: Alloy design, printability, resulting microstructure and alloy properties. Journal of Materials Research, 3, 1–13. https://doi.org/10.1557/s43578-022-00533-1
  • Schropp, A., Döhrmann, R., Botta, S., Brückner, D., Kahnt, M., Lyubomirskiy, M., Ossig, C., Scholz, M., Seyrich, M., Stuckelberger, M. E., & Schroer, C. G. (2020). PtyNAMi: Ptychographic nano-analytical microscope. Journal of Applied Crystallography, 53(Pt 4), 957–971. https://doi.org/10.1107/S1600576720008420
  • Shechtman, D., Schaefer, R. J., & Biancaniello, F. S. (1984). Precipitation in rapidly solidified Al-Mn alloys. Metallurgical Transactions A, 15(11), 1987–1997. https://doi.org/10.1007/BF02646833
  • Solé, V. A., Papillon, E., Cotte, M., Walter, P., & Susini, J. (2007). A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochimica Acta B, 62(1), 63–68. https://doi.org/10.1016/j.sab.2006.12.002
  • Totten, G. E. (Ed.), (2016). Age-hardening of aluminium alloys. In Heat treating of nonferrous alloys. ASM International. https://doi.org/10.31399/asm.hb.v04e.a0006268
  • Troian, A., Otnes, G., Zeng, X., Chayanun, L., Dagytė, V., Hammarberg, S., Salomon, D., Timm, R., Mikkelsen, A., Borgstrom, M. T., & Wallentin, J. (2018). Nanobeam X-ray fluorescence dopant mapping reveals dynamics of in situ Zn-doping in nanowires. Nano Letters, 18(10), 6461–6468. https://doi.org/10.1021/acs.nanolett.8b02957
  • Tweddle, D., Johnson, J. A., Kapoor, M., Mileski, S., Carsley, J. E., & Thompson, G. B. (2022). Direct observation of PFIB-induced clustering in precipitation-­strengthened Al alloys by atom probe tomography. Microscopy and Microanalysis, 28(2), 1–6. https://doi.org/10.1017/S1431927621013970
  • Unocic, K. A., Mills, M. J., & Daehn, G. S. (2010). Effect of gallium focused ion beam milling on preparation of aluminium thin foils. Journal of Microscopy, 240(3), 227–238. https://doi.org/10.1111/j.1365-2818.2010.03401.x
  • Vijayan, S., Bedard, B. A., Gleason, M. A., Leonard, H. R., Cote, D. L., & Aindow, M. (2019). Studies of thermally activated processes in gas-atomized Al alloy powders: in situ STEM heating experiments on FIB-cut cross sections. Journal of Materials Science, 54(13), 9921–9932. https://doi.org/10.1007/s10853-019-03562-0
  • Wang, G., Ouyang, H., Fan, C., Guo, Q., Li, Z., Yan, W., & Li, Z. (2020). The origin of high-density dislocations in additively manufactured metals. Materials Research Letters, 8(8), 283–290. https://doi.org/10.1080/21663831.2020.1751739
  • Xiao, Y., Maier-Kiener, V., Michler, J., Spolenak, R., & Wheeler, J. M. (2019). Deformation behavior of aluminum pillars produced by Xe and Ga focused ion beams: Insights from strain rate jump tests. Materials and Design., 181, 107914. https://doi.org/10.1016/j.matdes.2019.107914
  • Zhong, X., Wade, C. A., Withers, P. J., Zhou, X., Cai, C., Haigh, S. J., & Burke, M. G. (2021). Comparing Xe + pFIB and Ga + FIB for TEM sample preparation of Al alloys: Minimising FIB-induced artefacts. Journal of Microscopy, 282(2), 101–112. https://doi.org/10.1111/jmi.12983