126
Views
2
CrossRef citations to date
0
Altmetric
Articles

Longitudinal metabolic alterations in plasma of rats exposed to low doses of high linear energy transfer radiation

, , ORCID Icon, , , , , , , , & show all

References

  • Cucinotta FA, Schimmerling W, Wilson JW, et al. Space radiation cancer risks and uncertainties for mars missions. Radiat Res. 2001;156(5 Pt 2):682–688. doi:10.1667/0033-7587(2001)156[0682:SRCRAU]2.0.CO;2.
  • Borak TB, Heilbronn LH, Krumland N, Weil MM. Design and dosimetry of a facility to study health effects following exposures to fission neutrons at low dose rates for long durations [published online ahead of print Novmber 14, 2019[. Int J Radiat Biol. doi:10.1080/09553002.2019.1688884.
  • Cheema AK, Suman S, Kaur P, Singh R, Fornace AJ, Jr., Datta K. Long-term differential changes in mouse intestinal metabolomics after γ and heavy ion radiation exposure. PLoS One. 2014;9(1):e87079. doi:10.1371/journal.pone.0087079.
  • Vlkolinsky R, Titova E, Krucker T, et al. Exposure to 56Fe-particle radiation accelerates electrophysiological alterations in the hippocampus of APP23 transgenic mice. Radiat Res. 2010;173(3):342–352. doi:10.1667/RR1825.1.
  • Zeitlin C. Physical interactions of charged particles for radiotherapy and space applications. Health Phys. 2012;103(5):540–546. doi:10.1097/HP.0b013e3182611125.
  • Hu S, Kim MH, McClellan GE, Cucinotta FA. Modeling the acute health effects of astronauts from exposure to large solar particle events. Health Phys. 2009;96(4):465–476. doi:10.1097/01.HP.0000339020.92837.61.
  • Cheema AK, Pathak R, Zandkarimi F, et al. Liver metabolomics reveals increased oxidative stress and fibrogenic potential in gfrp transgenic mice in response to ionizing radiation. J Proteome Res. 2014;13(6):3065–3074. doi:10.1021/pr500278t.
  • Niemantsverdriet M, van Goethem MJ, Bron R, et al. High and low LET radiation differentially induce normal tissue damage signals. Int J Radiat Oncol Biol Phys. 2012;83(4):1291–1297. doi:10.1016/j.ijrobp.2011.09.057.
  • Patterson AD, Lanz C, Gonzalez FJ, Idle JR. The role of mass spectrometry-based metabolomics in medical countermeasures against radiation. Mass Spectrom Rev. 2010;29(3):503–521. doi:10.1002/mas.20272.
  • Coy SL, Cheema AK, Tyburski JB, Laiakis EC, Collins SP, Fornace A, Jr. Radiation metabolomics and its potential in biodosimetry. Int J Radiat Biol. 2011;87(8):802–823. doi:10.3109/09553002.2011.556177.
  • Liu H, Wang Z, Zhang X, et al. Selection of candidate radiation biomarkers in the serum of rats exposed to gamma-rays by GC/TOFMS-based metabolomics. Radiat Prot Dosimetry. 2013;154(1):9–17. doi:10.1093/rpd/ncs138.
  • Moon JY, Shin HJ, Son HH, et al. Metabolic changes in serum steroids induced by total-body irradiation of female C57B/6 mice. J Steroid Biochem Mol Biol. 2014;141:52–59. doi:10.1016/j.jsbmb.2014.01.004.
  • Sridharan DM, Asaithamby A, Blattnig SR, et al. Evaluating biomarkers to model cancer risk post cosmic ray exposure. Life Sci Space Res (Amst)). 2016;9:19–47. doi:10.1016/j.lssr.2016.05.004.
  • Casero D, Gill K, Sridharan V, et al. Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome. Microbiome. 2017;5(1):105 doi:10.1186/s40168-017-0325-z.
  • Sridharan V, Seawright JW, Landes RD, et al. Effects of single-dose protons or oxygen ions on function and structure of the cardiovascular system in male Long Evans rats. Life Sci Space Res (Amst)). 2020;26:62–68. doi:10.1016/j.lssr.2020.04.002.
  • Libiseller G, Dvorzak M, Kleb U, et al. IPO: a tool for automated optimization of XCMS parameters. BMC Bioinformatics. 2015;16:118. doi:10.1186/s12859-015-0562-8.
  • Li S, Park Y, Duraisingham S, et al. Predicting network activity from high throughput metabolomics. PLoS Comput Biol. 2013;9(7):e1003123. doi:10.1371/journal.pcbi.1003123.
  • Datta K, Suman S, Kallakury BV, Fornace AJ. Jr. Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine. PLoS One. 2012;7(8):e42224. doi:10.1371/journal.pone.0042224.
  • Suman S, Johnson MD, Fornace AJ, Jr., Datta K. Exposure to ionizing radiation causes long-term increase in serum estradiol and activation of PI3K-Akt signaling pathway in mouse mammary gland. Int J Radiat Oncol Biol Phys. 2012;84(2):500–507. doi:10.1016/j.ijrobp.2011.12.033.
  • Rola R, Sarkissian V, Obenaus A, et al. High-LET radiation induces inflammation and persistent changes in markers of hippocampal neurogenesis. Radiat Res. 2005;164(4):556–560. doi:10.1667/rr3412.1.
  • Tseng BP, Giedzinski E, Izadi A, et al. Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation. Antioxid Redox Signal. 2014;20(9):1410–1422. doi:10.1089/ars.2012.5134.
  • Snyder AR, Morgan WF. Gene expression profiling after irradiation: clues to understanding acute and persistent responses? Cancer Metastasis Rev. 2004;23(3–4):259–268. doi:10.1023/B:CANC.0000031765.17886.fa.
  • Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature. 2014;510(7503):58–67. doi:10.1038/nature13475.
  • Milhas D, Clarke CJ, Hannun YA. Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett. 2010;584(9):1887–1894. doi:10.1016/j.febslet.2009.10.058.
  • Okunieff P, Chen Y, Maguire DJ, Huser AK. Molecular markers of radiation-related normal tissue toxicity. Cancer Metastasis Rev. 2008;27(3):363–374. doi:10.1007/s10555-008-9138-7.
  • Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327(1–2):48–60. doi:10.1016/j.canlet.2011.12.012.
  • Yuan H, Lu J, Xiao J, et al. PPARδ induces estrogen receptor-positive mammary neoplasia through an inflammatory and metabolic phenotype linked to mTOR activation . Cancer Res. 2013;73(14):4349–4361. doi:10.1158/0008-5472.CAN-13-0322.
  • Pannkuk EL, Fornace AJ, Jr., Laiakis EC. Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules. Int J Radiat Biol. 2017;93(10):1151–1176. doi:10.1080/09553002.2016.1269218.
  • Maceyka M, Harikumar KB, Milstien S, Spiegel S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 2012;22(1):50–60. doi:10.1016/j.tcb.2011.09.003.
  • Yu RK, Nakatani Y, Yanagisawa M. The role of glycosphingolipid metabolism in the developing brain. J Lipid Res. 2009;50:S440–S445. doi:10.1194/jlr.R800028-JLR200.
  • Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis. Oncogene. 2003;22(37):5897–5906. doi:10.1038/sj.onc.1206702.
  • Feinendegen LE, Pollycove M, Sondhaus CA. Responses to low doses of ionizing radiation in biological systems. Nonlinearity Biol Toxicol Med. 2004;2(3):143–171. doi:10.1080/15401420490507431.
  • Prithivirajsingh S, Story MD, Bergh SA, et al. Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett. 2004;571(1–3):227–232. doi:10.1016/j.febslet.2004.06.078.
  • Eaton S, Bartlett K, Pourfarzam M. Mammalian mitochondrial beta-oxidation. Biochem J. 1996;320 (2):345–357. doi:10.1042/bj3200345.
  • Rutkowsky JM, Knotts TA, Ono-Moore KD, et al. Acylcarnitines activate proinflammatory signaling pathways. Am J Physiol Endocrinol Metab. 2014;306(12):E1378–1387. doi:10.1152/ajpendo.00656.2013.
  • Gomez LA, Heath SH, Hagen TM. Acetyl-L-carnitine supplementation reverses the age-related decline in carnitine palmitoyltransferase 1 (CPT1) activity in interfibrillar mitochondria without changing the L-carnitine content in the rat heart. Mech Ageing Dev. 2012;133(2–3):99–106. doi:10.1016/j.mad.2012.01.007.
  • Bernard A, Rigault C, Mazue F, Le Borgne F, Demarquoy J. L-carnitine supplementation and physical exercise restore age-associated decline in some mitochondrial functions in the rat. J Gerontol A Biol Sci Med Sci. 2008;63(10):1027–1033. doi:10.1093/gerona/63.10.1027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.