408
Views
0
CrossRef citations to date
0
Altmetric
Methodology, Apparatus, Experimental Design

Multi-objective topology optimization of porous microstructure in die-bonding layer of a semiconductor

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2320691 | Received 06 Oct 2023, Accepted 14 Feb 2024, Published online: 06 Mar 2024

References

  • Zhang H, Wang W, Bai H, et al. Microstructural and mechanical evolution of silver sintering die attach for SiC power devices during high temperature applications. J Alloys Compd. 2019;774:487–15. doi: 10.1016/j.jallcom.2018.10.067
  • Chen C, Nagao S, Zhang H, et al. Mechanical deformation of sintered porous ag die attach at high temperature and its size effect for wide-bandgap power device design. J Electron Mater. 2017;46(3):1576–1586. doi: 10.1007/s11664-016-5200-3
  • Barui S, Chatterjee S, Mandal S, et al. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: experimental and computational analysis. Mater Sci Eng C. 2017;70:812–823. doi: 10.1016/j.msec.2016.09.040
  • Wang L, Kang J, Sun C, et al. Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants. Mater Des. 2017;133:62–68. doi: 10.1016/j.matdes.2017.07.021
  • Bidhar S, Kuwazuru O, Shiihara Y, et al. Empirical formulation of stress concentration factor around an arbitrary-sized spherical dual-cavity system and its application to aluminum die castings. Appl Math Modell. 2015;39:5707–5723. doi: 10.1016/j.apm.2015.01.032
  • Sigmund O. On the design of compliant mechanisms using topology optimization. J Struct Mech. 1997;25(4):493–524. doi: 10.1080/08905459708945415
  • Zhu B, Zhang X, Zhang H, et al. Design of compliant mechanisms using continuum topology optimization: a review. Mech Mach Theory. 2020;143:103622. doi: 10.1016/j.mechmachtheory.2019.103622
  • Pereira A, Talischi C, Paulino GH, et al. Fluid flow topology optimization in PolyTop: stability and computational implementation. Struct Multidiscipl Optim. 2016;54:1345–1364. doi: 10.1007/s00158-014-1182-z
  • Yaji K, Yamada T, Yoshino M, et al. Topology optimization in thermal-fluid flow using the lattice Boltzmann method. J Comput Phys. 2016;307:355–377. doi: 10.1016/j.jcp.2015.12.008
  • Xia Q, Xia L, Shi T. Topology optimization of thermal actuator and its support using the level set based multiple–type boundary method and sensitivity analysis based on constrained variational principle. Struct Multidiscipl Optim. 2018;57(3):1317–1327. doi: 10.1007/s00158-017-1814-1
  • Langelaar M, Yoon GH, Kim YY, et al. Topology optimization of planar shape memory alloy thermal actuators using element connectivity parameterization. Int J Numer Methods Eng. 2011;88(9):817–840.
  • Bendsøe MP. Optimal shape design as a material distribution problem. Struct Optim. 1989;1(4):193–202. doi: 10.1007/BF01650949
  • Allaire G, Jouve F, Toader AM. Structural optimization using sensitivity analysis and a level-set method. J Comput Phys. 2004;194(1):363–393. doi: 10.1016/j.jcp.2003.09.032
  • Wang MY, Wang X, Guo D. A level set method for structural topology optimization. Comput Methods Appl Mech Eng. 2003;192(1–2):227–246. doi: 10.1016/S0045-7825(02)00559-5
  • Sethian JA, Wiegmann A. Structural boundary design via level set and immersed interface methods. J Comput Phys. 2000;163(2):489–528. doi: 10.1006/jcph.2000.6581
  • Van Dijk NP, Maute K, Langelaar M, et al. Level-set methods for structural topology optimization: a review. Struct Multidiscipl Optim. 2013;48(3):437–472.
  • Yamada T, Yamasaki S, Nishiwaki S, et al. Design of compliant thermal actuators using structural optimization based on the level set method. J Comput Inf Sci Eng. 2011;11(1):011005. doi: 10.1115/1.3563049
  • Li H, Kondoh T, Jolivet P, et al. Three-dimensional topology optimization of a fluid–structure system using body-fitted mesh adaption based on the level-set method. Appl Math Model. 2022;101:276–308. doi: 10.1016/j.apm.2021.08.021
  • Zhou J, Watanabe I, Yamada T. Computational morphology design of duplex structure considering interface debonding. Compos Struct. 2022;302:116200. doi: 10.1016/j.compstruct.2022.116200
  • Noguchi Y, Yamada T, Izui K, et al. Topology optimization for hyperbolic acoustic meta-materials using a high-frequency homogenization method. Comput Methods Appl Mech Eng. 2018;335:419–471. doi: 10.1016/j.cma.2018.02.031
  • Allaire G, Yamada T. Optimization of dispersive coefficients in the homogenization of the wave equation in periodic structures. Numer Math. 2018;140(2):265–326. doi: 10.1007/s00211-018-0972-4
  • Huang X, Radman A, Xie YM. Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput Mater Sci. 2011;50(6):1861–1870. doi: 10.1016/j.commatsci.2011.01.030
  • Yang XY, Huang X, Rong JH, et al. Design of 3D orthotropic materials with prescribed ratios for effective Young’s moduli. Comput Mater Sci. 2013;67:229–237. doi: 10.1016/j.commatsci.2012.08.043
  • Andreassen E, Lazarov BS, Sigmund O. Design of manufacturable 3D extremal elastic microstructure. Mech Mater. 2014;69(1):1–10. doi: 10.1016/j.mechmat.2013.09.018
  • Huang X, Zhou SW, Xie YM, et al. Topology optimization of microstructures of cellular materials and composites for macrostructures. Comput Mater Sci. 2013;67:397–407. doi: 10.1016/j.commatsci.2012.09.018
  • Watanabe I, Nakamura G, Yuge K, et al. Maximization of strengthening effect of microscopic morphology in duplex steels. In : advanced structured materials: from creep damage mechanics to homogenization methods. Cham: Springer; 2015. doi: 10.1007/978-3-319-19440-024
  • Chen W, Liu S. Topology optimization of microstructures of viscoelastic damping materials for a prescribed shear modulus. Struct Multidiscipl Optim. 2014;50(2):287–296. doi: 10.1007/s00158-014-1049-3
  • Bruggi M, Corigliano A. Optimal 2D auxetic micro-structures with band gap. Meccanica. 2019;54(13):2001–2027. doi: 10.1007/s11012-019-00981-w
  • Vogiatzis P, Chen S, Wang X, et al. Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method. Comput Aided Des. 2017;83:15–32. doi: 10.1016/j.cad.2016.09.009
  • Zhou S, Li Q. Computational design of multi-phase microstructural materials for extremal conductivity. Comput Mater Sci. 2008;43(3):549–564. doi: 10.1016/j.commatsci.2007.12.021
  • Zheng X, Chen TT, Jiang X, et al. Deep learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized voronoi lattices. Sci Technol Adv Mater. 2023;24(1):2157682. doi: 10.1080/14686996.2022.2157682
  • Pabst W, Uhlířová T, Gregorová E. Shear and bulk moduli of isotropic porous and cellular alumina ceramics predicted from thermal conductivity via cross-property relations. Ceram Int. 2018;444(7):8100–8108. doi: 10.1016/j.ceramint.2018.01.254
  • Sigmund O. Design of multiphysics actuators using topology optimization–part I: one- material structures. Comput Methods Appl Mech Eng. 2001;190(49–50):6577–6604. doi: 10.1016/S0045-7825(01)00251-1
  • Sigmund O. Design of multiphysics actuators using topology optimization–part II: two-material structures. Comput Methods Appl Mech Eng. 2001;190(49–50):6605–6627. doi: 10.1016/S0045-7825(01)00252-3
  • Sato Y, Izui K, Yamada T, et al. Data mining based on clustering and association rule analysis for knowledge discovery in multi-objective topology optimization. Expert Syst Appl. 2019;119:247–261. doi: 10.1016/j.eswa.2018.10.047
  • Chen Y, Zhou S, Li Q. Multiobjective topology optimization for finite periodic structures. Comput Struct. 2010;88(11–12):806–811. doi: 10.1016/j.compstruc.2009.10.003
  • Cadman JE, Zhou S, Chen Y, et al. On design of multi-functional microstructural materials. J Mater Sci. 2013;48:51–66. doi: 10.1007/s10853-012-6643-4
  • Francisco P, Faria L, Simões R. Multi-objective and multi-load topology optimization and experimental validation of homogenized coupled fluid flow and heat transfer and structural stiffness. Struct Multidiscipl Optim. 2020;62(5):2571–2598. doi: 10.1007/s00158-020-02625-0
  • Watanabe I, Yamanaka A. Voxel coarsening approach on image-based finite element modeling of representative volume element. Int J Mech Sci. 2019;150:314–321. doi: 10.1016/j.ijmecsci.2018.10.028
  • Bargmann S, Klusemann B, Markmann J, et al. Generation of 3D representative volume elements for heterogeneous materials: a review. Prog Mater Sci. 2018;96:322–384. doi: 10.1016/j.pmatsci.2018.02.003
  • Zheng X, Guo X, Watanabe I. A mathematically defined 3D auxetic metamaterial with tunable mechanical and conduction properties. Mater Des. 2021;198:109313. doi: 10.1016/j.matdes.2020.109313
  • Hassani B, Hinton E. A review of homogenization and topology optimization III—topology optimization using optimality criteria. Comput Struct. 1998;69(6):739–756. doi: 10.1016/S0045-7949(98)00133-3
  • Andreassen E, Andreasen CS. How to determine composite material properties using numerical homogenization. Comput Mater Sci. 2014;83:488–495. doi: 10.1016/j.commatsci.2013.09.006
  • Zhang J, Peng J, Liu T, et al. Multi-objective periodic topology optimization of thermo- mechanical coupling structure with anisotropic materials by using the element-free Galerkin method. Int J Mech Mater Des. 2022;18(4):939–960. doi: 10.1007/s10999-022-09600-1
  • Zhang X, Ye H, Wei N, et al. Design optimization of multifunctional metamaterials with tunable thermal expansion and phononic bandgap. Mater Des. 2021;209:109990. doi: 10.1016/j.matdes.2021.109990
  • Alacoque L, Watkins RT, Tamijani AY. Stress-based and robust topology optimization for thermoelastic multi-material periodic microstructures. Comput Methods Appl Mech Eng. 2021;379:113749. doi: 10.1016/j.cma.2021.113749
  • Allaire G. Homogenization and two-scale convergence. SIAM J Math Anal. 1992;23(6):1482–1518. doi: 10.1137/0523084
  • Allaire G. Mathematical approaches and methods. Homogenization and porous media. New York (NY): Springer; 1996.
  • Watanabe I, Terada K. A method of predicting macroscopic yield strength of polycrystalline metals subjected to plastic forming by micro–macro de-coupling scheme. Int J Mech Sci. 2010;52(2):343–355. doi: 10.1016/j.ijmecsci.2009.10.006
  • Watanabe I, Setoyama D, Nagasako N, et al. Multiscale prediction of mechanical behavior of ferrite–pearlite steel with numerical material testing. Int J Numer Methods Eng. 2012;89(7):829–845. doi: 10.1002/nme.3264
  • Li Y, Yang Q, Chang T, et al. Multi-load cases topological optimization by weighted sum method based on load case severity degree and ideality. Adv Mech Eng. 2020;12(8):1687814020947510. doi: 10.1177/1687814020947510
  • Marler RT, Arora JS. The weighted sum method for multi-objective optimization: new insights. Struct Multidiscipl Optim. 2010;41(6):853–862. doi: 10.1007/s00158-009-0460-7
  • Ryu N, Seo M, Min S. Multi-objective topology optimization incorporating an adaptive weighed-sum method and a configuration-based clustering scheme. CMAME. 2021;385:114015. doi: 10.1016/j.cma.2021.114015
  • Fleury C. Structural weight optimization by dual methods of convex programming. Int J Numer Meth Eng. 1979;14(12):1761–1783. doi: 10.1002/nme.1620141203
  • Fleury C. CONLIN: an efficient dual optimizer based on convex approximation concepts. Struct Optim. 1989;1(2):81–89. doi: 10.1007/BF01637664
  • Zheng X, Chen T, Guo X, et al. Controllable inverse design of auxetic metamaterials using deep learning. Mater Des. 2021;211:110178. doi: 10.1016/j.matdes.2021.110178