967
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Mitochondria and the reactive species interactome: shaping the future of mitoredox medicine

ORCID Icon
Article: 2304348 | Received 25 Oct 2023, Accepted 04 Jan 2024, Published online: 31 Jan 2024

References

  • Adav SS, Wang Y. 2021. Metabolomics signatures of aging: recent advances. Aging Dis. 12:646–38. doi: 10.14336/AD.2020.0909.
  • Aghagolzadeh P, Radpour R, Bachtler M, van Goor H, Smith ER, Lister A, Odermatt A, Feelisch M, Pasch A. 2017. Hydrogen sulfide attenuates calcification of vascular smooth muscle cells via KEAP1/NRF2/NQO1 activation. Atherosclerosis. 265:78–86. doi: 10.1016/j.atherosclerosis.2017.08.012.
  • Ahmed R, Nakahata Y, Shinohara K, Bessho Y. 2021. Cellular senescence triggers altered circadian clocks with a prolonged period and delayed phases. Front Neurosci. 15:638122. doi: 10.3389/fnins.2021.638122.
  • Ait-El-Mkadem S, Dayem-Quere M, Gusic M, Chaussenot A, Bannwarth S, François B, Genin EC, Fragaki K, Volker-Touw CLM, Vasnier C, et al. 2017. Mutations in MDH2, encoding a Krebs cycle enzyme, cause early-onset severe encephalopathy. Am J Hum Genet. 100:151–159. doi: 10.1016/j.ajhg.2016.11.014.
  • Al Amir Dache Z, Otandault A, Tanos R, Pastor B, Meddeb R, Sanchez C, Arena G, Lasorsa L, Bennett A, Grange T, et al. 2020. Blood contains circulating cell‐free respiratory competent mitochondria. FASEB J. 34:3616–3630. doi: 10.1096/fj.201901917RR.
  • Alam MM, Kishino A, Sung E, Sekine H, Abe T, Murakami S, Akaike T, Motohashi H. 2023. Contribution of NRF2 to sulfur metabolism and mitochondrial activity. Redox Biol. 60:102624. doi: 10.1016/j.redox.2023.102624.
  • Alevriadou BR, Patel A, Noble M, Ghosh S, Gohil VM, Stathopulos PB, Madesh M. 2021. Molecular nature and physiological role of the mitochondrial calcium uniporter channel. Am J Physiol Cell Physiol. 320:C465–C482. doi: 10.1152/ajpcell.00502.2020.
  • Alexandre J, Batteux F, Nicco C, Chéreau C, Laurent A, Guillevin L, Weill B, Goldwasser F. 2006. Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo. Int J Cancer. 119:41–48. doi: 10.1002/ijc.21685.
  • Alexeev EE, Dowdell AS, Henen MA, Lanis JM, Lee JS, Cartwright IM, Schaefer REM, Ornelas A, Onyiah JC, Vögeli B, et al. 2021. Microbial-derived indoles inhibit neutrophil myeloperoxidase to diminish bystander tissue damage. FASEB J Publ Fed Am Soc Exp Biol. 35:e21552. doi: 10.1096/fj.202100027R.
  • Alkan HF, Bogner-Strauss JG. 2019. Maintaining cytosolic aspartate levels is a major function of the TCA cycle in proliferating cells. Mol Cell Oncol. 6:e1536843. doi: 10.1080/23723556.2018.1536843.
  • Altman BJ, Hsieh AL, Sengupta A, Krishnanaiah SY, Stine ZE, Walton ZE, Gouw AM, Venkataraman A, Li B, Goraksha-Hicks P, et al. 2015. MYC Disrupts the Circadian Clock and Metabolism in Cancer Cells. Cell Metab. 22:1009–1019. doi: 10.1016/j.cmet.2015.09.003.
  • Altomare A, Baron G, Gianazza E, Banfi C, Carini M, Aldini G. 2021. Lipid peroxidation derived reactive carbonyl species in free and conjugated forms as an index of lipid peroxidation: limits and perspectives. Redox Biol. 101899. doi: 10.1016/j.redox.2021.101899.
  • Alupei MC, Maity P, Esser PR, Krikki I, Tuorto F, Parlato R, Penzo M, Schelling A, Laugel V, Montanaro L, et al. 2018. Loss of proteostasis is a pathomechanism in Cockayne syndrome. Cell Rep. 23:1612–1619. doi: 10.1016/j.celrep.2018.04.041.
  • Anea CB, Zhang M, Chen F, Ali MI, Hart CMM, Stepp DW, Kovalenkov YO, Merloiu A-M, Pati P, Fulton D, et al. 2013. Circadian clock control of Nox4 and reactive oxygen species in the vasculature. PLoS One. 8:e78626. doi: 10.1371/journal.pone.0078626.
  • Angelova PR, Vinogradova D, Neganova ME, Serkova TP, Sokolov VV, Bachurin SO, Shevtsova EF, Abramov AY. 2019. Pharmacological sequestration of mitochondrial calcium uptake protects neurons against glutamate excitotoxicity. Mol Neurobiol. 56:2244–2255. doi: 10.1007/s12035-018-1204-8.
  • Anzovino A, Lane DJR, Huang ML-H, Richardson DR. 2014. Fixing frataxin: ‘ironing out’ the metabolic defect in Friedreich’s ataxia. Br J Pharmacol. 171:2174–2190. doi: 10.1111/bph.12470.
  • Arena G, Cissé MY, Pyrdziak S, Chatre L, Riscal R, Fuentes M, Arnold JJ, Kastner M, Gayte L, Bertrand-Gaday C, et al. 2018. mitochondrial MDM2 regulates respiratory complex I activity independently of p53. Mol Cell. 69:594–609.e8. doi: 10.1016/j.molcel.2018.01.023.
  • Ast J, Stiebler AC, Freitag J, Bölker M. 2013. Dual targeting of peroxisomal proteins. Front Physiol. 4:297. doi: 10.3389/fphys.2013.00297.
  • Bai L, Yan F, Deng R, Gu R, Zhang X, Bai J. 2021. Thioredoxin-1 rescues MPP+/MPTP-induced ferroptosis by increasing glutathione peroxidase 4. Mol Neurobiol. 58:3187–3197. doi: 10.1007/s12035-021-02320-1.
  • Bajzikova M, Kovarova J, Coelho AR, Boukalova S, Oh S, Rohlenova K, Svec D, Hubackova S, Endaya B, Judasova K, et al. 2019. Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab. 29:399–416.e10. doi: 10.1016/j.cmet.2018.10.014.
  • Baker ZN, Cobine PA, Leary SC. 2017. The mitochondrion: a central architect of copper homeostasis. Met Integr Biometal Sci. 9:1501–1512. doi: 10.1039/c7mt00221a.
  • Ballard JWO, Towarnicki SG. 2020. mitochondria, the gut microbiome and ROS. Cell Signal. 75:109737. doi: 10.1016/j.cellsig.2020.109737.
  • Bano D, Prehn JHM. 2018. Apoptosis-inducing factor (AIF) in physiology and disease: The tale of a repented natural born killer. EBioMedicine. 30:29–37. doi: 10.1016/j.ebiom.2018.03.016.
  • Barbier S, Chatre L, Bras M, Sancho P, Roué G, Virely C, Yuste VJ, Baudet S, Rubio M, Esquerda JE, et al. 2009. Caspase-independent type III programmed cell death in chronic lymphocytic leukemia: the key role of the F-actin cytoskeleton. Haematologica. 94:507–517. doi: 10.3324/haematol.13690.
  • Baritaud M, Cabon L, Delavallée L, Galán-Malo P, Gilles M-E, Brunelle-Navas M-N, Susin SA. 2012. AIF-mediated caspase-independent necroptosis requires ATM and DNA-PK-induced histone H2AX Ser139 phosphorylation. Cell Death Disease. 3:e390–e390. doi: 10.1038/cddis.2012.120.
  • Barshop BA. 2004. Metabolomic approaches to mitochondrial disease: correlation of urine organic acids. Mitochondrion. 4:521–527. doi: 10.1016/j.mito.2004.07.010.
  • Bartesaghi S, Radi R. 2018. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 14:618–625. doi: 10.1016/j.redox.2017.09.009.
  • Bauer TM, Murphy E. 2020. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res. 126:280–293. doi: 10.1161/CIRCRESAHA.119.316306.
  • Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, et al. 2011. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature. 476:341–345. doi: 10.1038/nature10234.
  • Bender T, Martinou J-C. 2016. The mitochondrial pyruvate carrier in health and disease: To carry or not to carry? Biochim Biophys Acta BBA - Mol Cell Res. 1863:2436–2442. doi: 10.1016/j.bbamcr.2016.01.017.
  • Benkler C, O’Neil AL, Slepian S, Qian F, Weinreb PH, Rubin LL. 2018. Aggregated SOD1 causes selective death of cultured human motor neurons. Sci Rep. 8:16393. doi: 10.1038/s41598-018-34759-z.
  • Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, Pavlov E, Sheu S-S, Soukas AA. 2023. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ. 30:1869–1885. doi: 10.1038/s41418-023-01187-0.
  • Bernardi P, Rasola A, Forte M, Lippe G. 2015. The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev. 95:1111–1155. doi: 10.1152/physrev.00001.2015.
  • Blachier F, Beaumont M, Kim E. 2019. Cysteine-derived hydrogen sulfide and gut health: a matter of endogenous or bacterial origin. Curr Opin Clin Nutr Metab Care. 22:68–75. doi: 10.1097/MCO.0000000000000526.
  • Bock FJ, Tait SWG. 2020. mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 21:85–100. doi: 10.1038/s41580-019-0173-8.
  • Bohovych I, Chan SSL, Khalimonchuk O. 2015. Mitochondrial protein quality control: The mechanisms guarding mitochondrial health. Antioxid Redox Signal. 22:977–994. doi: 10.1089/ars.2014.6199.
  • Borchard S, Bork F, Rieder T, Eberhagen C, Popper B, Lichtmannegger J, Schmitt S, Adamski J, Klingenspor M, Weiss K, et al. 2018. The exceptional sensitivity of brain mitochondria to copper. Toxicol In Vitro. 51:11–22. doi: 10.1016/j.tiv.2018.04.012.
  • Bortolotti M, Polito L, Battelli MG, Bolognesi A. 2021. Xanthine oxidoreductase: one enzyme for multiple physiological tasks. Redox Biol. 41:101882. doi: 10.1016/j.redox.2021.101882.
  • Boujrad H, Gubkina O, Robert N, Krantic S, Susin SA. 2007. AIF-mediated programmed necrosis: a highly regulated way to die. Cell Cycle Georget Tex. 6:2612–2619. doi: 10.4161/cc.6.21.4842.
  • Bourgonje AR, Feelisch M, Faber KN, Pasch A, Dijkstra G, van Goor H. 2020. Oxidative stress and redox-modulating therapeutics in inflammatory bowel disease. Trends Mol Med. 26:1034–1046. S147149142030157X. doi: 10.1016/j.molmed.2020.06.006.
  • Brand MD. 2010. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 45:466–472. doi: 10.1016/j.exger.2010.01.003.
  • Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH. 2013. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 14:32. doi: 10.1186/1471-2121-14-32.
  • Broeks MH, Meijer NW, Westland D, Bosma M, Gerrits J, German HM, Ciapaite J, van Karnebeek CD, Wanders RJ, Zwartkruis FJ, et al. 2023. The malate-aspartate shuttle is important for de novo serine biosynthesis. Cell Rep. 42. doi: 10.1016/j.celrep.2023.113043.
  • Brown JA, Sammy MJ, Ballinger SW. 2020. An evolutionary, or “Mitocentric” perspective on cellular function and disease. Redox Biol. 36:101568. doi: 10.1016/j.redox.2020.101568.
  • Bruni F. 2021. Mitochondria: from physiology to pathology. Life. 11:991. doi: 10.3390/life11090991.
  • Burner U, Furtmüller PG, Kettle AJ, Koppenol WH, Obinger C. 2000. Mechanism of reaction of myeloperoxidase with nitrite. J Biol Chem. 275:20597–20601. doi: 10.1074/jbc.M000181200.
  • Caito SW, Aschner M. 2015. Mitochondrial redox dysfunction and environmental exposures. Antioxid Redox Signal. 23:578–595. doi: 10.1089/ars.2015.6289.
  • Camara AKS, Zhou Y, Wen P-C, Tajkhorshid E, Kwok W-M. 2017. Mitochondrial VDAC1: a key gatekeeper as potential therapeutic target. Front Physiol. 8. doi: 10.3389/fphys.2017.00460.
  • Candé C, Cecconi F, Dessen P, Kroemer G. 2002. Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci. 115:4727–4734. doi: 10.1242/jcs.00210.
  • Cao X, Ding L, Xie Z, Yang Y, Whiteman M, Moore PK, Bian J-S. 2019. A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid Redox Signal. 31:1–38. doi: 10.1089/ars.2017.7058.
  • Cao SS, Kaufman RJ. 2014. Endoplasmic reticulum stress and oxidative stress in cell Fate decision and human disease. Antioxid Redox Signal. 21:396–413. doi: 10.1089/ars.2014.5851.
  • Carlström M, Moretti CH, Weitzberg E, Lundberg JO. 2020. Microbiota, diet and the generation of reactive nitrogen compounds. Free Radic Biol Med. 161:321–325. doi: 10.1016/j.freeradbiomed.2020.10.025.
  • Carraro M, Bernardi P. 2023. The mitochondrial permeability transition pore in Ca2+ homeostasis. Cell Calcium. 111:102719. doi: 10.1016/j.ceca.2023.102719.
  • Carvalho C, Cardoso S. 2021. Diabetes–Alzheimer’s disease link: targeting mitochondrial dysfunction and redox imbalance. Antioxid Redox Signal. 34:631–649. doi: 10.1089/ars.2020.8056.
  • Casey JR, Grinstein S, Orlowski J. 2010. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol. 11:50–61. doi: 10.1038/nrm2820.
  • Castiglione N, Rinaldo S, Giardina G, Stelitano V, Cutruzzolà F. 2012. Nitrite and nitrite reductases: from molecular mechanisms to dignificance in human health and disease. Antioxid Redox Signal. 17:684–716. doi: 10.1089/ars.2011.4196.
  • Caterino M, Ruoppolo M, Mandola A, Costanzo M, Orrù S, Imperlini E. 2017. Protein–protein interaction networks as a new perspective to evaluate distinct functional roles of voltage-dependent anion channel isoforms. Mol Biosyst. 13:2466–2476. doi: 10.1039/C7MB00434F.
  • Chatre L, Biard DSF, Sarasin A, Ricchetti M. 2015. Reversal of mitochondrial defects with CSB-dependent serine protease inhibitors in patient cells of the progeroid Cockayne Syndrome. Proc Natl Acad Sci. 112:E2910–E2919. doi: 10.1073/pnas.1422264112.
  • Chatre L, Ducat A, Spradley FT, Palei AC, Chéreau C, Couderc B, Thomas KC, Wilson AR, Amaral LM, Gaillard I, et al. 2022. Increased NOS coupling by the metabolite tetrahydrobiopterin (BH4) reduces preeclampsia/IUGR consequences. Redox Biol. 55:102406. doi: 10.1016/j.redox.2022.102406.
  • Chatre L, Ricchetti M. 2011. Nuclear mitochondrial DNA activates replication in Saccharomyces cerevisiae. PLoS One. 6:e17235. doi: 10.1371/journal.pone.0017235.
  • Chatre L, Ricchetti M. 2013. Prevalent coordination of mitochondrial DNA transcription and initiation of replication with the cell cycle. Nucleic Acids Res. 41:3068–3078. doi: 10.1093/nar/gkt015.
  • Cheema JY, He J, Wei W, Fu C. 2021. The Endoplasmic Reticulum-mitochondria encounter structure and its regulatory proteins. Contact. 4:251525642110644. doi: 10.1177/25152564211064491.
  • Chen Y, Azad MB, Gibson SB. 2009. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 16:1040–1052. doi: 10.1038/cdd.2009.49.
  • Chen S, Chen L, Qi Y, Xu J, Ge Q, Fan Y, Chen D, Zhang Y, Wang L, Hou T, et al. 2021. Bifidobacterium adolescentis regulates catalase activity and host metabolism and improves healthspan and lifespan in multiple species. Nat Aging. 1:991–1001. doi: 10.1038/s43587-021-00129-0.
  • Chevrollier A, Loiseau D, Reynier P, Stepien G. 2011. Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism. Biochim Biophys Acta BBA - Bioenerg. 1807:562–567. doi: 10.1016/j.bbabio.2010.10.008.
  • Choi ME, Price DR, Ryter SW, Choi AMK. 2019. Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight. 4:e128834. doi: 10.1172/jci.insight.128834.
  • Chornyi S, IJlst L, van Roermund CWT, Wanders RJA, Waterham HR. 2021. Peroxisomal metabolite and cofactor transport in humans. Front Cell Dev Biol. 8. doi: 10.3389/fcell.2020.613892.
  • Chrétien D, Bénit P, Ha H-H, Keipert S, El-Khoury R, Chang Y-T, Jastroch M, Jacobs HT, Rustin P, Rak M. 2018. Mitochondria are physiologically maintained at close to 50 °C. PLoS Biol. 16:e2003992. doi: 10.1371/journal.pbio.2003992.
  • Cighetti G, Bortone L, Sala S, Allevi P. 2001. Mechanisms of action of malondialdehyde and 4-hydroxynonenal on xanthine oxidoreductase. Arch Biochem Biophys. 389:195–200. doi: 10.1006/abbi.2001.2328.
  • Clark A, Mach N. 2017. The Crosstalk between the gut microbiota and mitochondria during exercise. Front Physiol. 8. doi: 10.3389/fphys.2017.00319.
  • Colepicolo P, Camarero VC, Hastings JW. 1992. A circadian rhythm in the activity of superoxide dismutase in the photosynthetic alga gonyaulax polyedra. Chronobiol Int. 9:266–268. doi: 10.3109/07420529209064536.
  • Cortese-Krott MM, Koning A, Kuhnle GGC, Nagy P, Bianco CL, Pasch A, Wink DA, Fukuto JM, Jackson AA, van Goor H, et al. 2017. The reactive species interactome: evolutionary emergence, biological significance, and opportunities for redox metabolomics and personalized medicine. In: Mary AL, editor. Antioxid Redox Signal. p. 684–712. doi: 10.1089/ars.2017.7083.
  • Cortese-Krott MM, Santolini J, Wootton SA, Jackson AA, Feelisch M. 2020. The reactive species interactome. In: Oxidative stress. Elsevier; p. 51–64. doi: 10.1016/B978-0-12-818606-0.00004-3.
  • Crochemore C, Fernández-Molina C, Montagne B, Salles A, Ricchetti M. 2019. CSB promoter downregulation via histone H3 hypoacetylation is an early determinant of replicative senescence. Nat Commun. 10:5576. doi: 10.1038/s41467-019-13314-y.
  • Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG. 2020. The gut microbiome in neurological disorders. Lancet Neurol. 19:79–194. doi: 10.1016/S1474-4422(19)30356-4.
  • Cui L, Gouw AM, LaGory EL, Guo S, Attarwala N, Tang Y, Qi J, Chen Y-S, Gao Z, Casey KM, et al. 2021. Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nat Biotechnol. 39:357–367. doi: 10.1038/s41587-020-0707-9.
  • Cumpstey AF, Clark AD, Santolini J, Jackson AA, Feelisch M. 2021. COVID-19: a redox disease-what a stress pandemic can teach us about resilience and what we may learn from the reactive species interactome about its treatment. Antioxid Redox Signal. 35:1226–1268. doi: 10.1089/ars.2021.0017.
  • Cunningham CN, Rutter J. 2020. Picometers under the OMM: diving into the vastness of mitochondrial metabolite transport. EMBO Rep. 21:e50071. doi: 10.15252/embr.202050071.
  • Cvetko F, Caldwell ST, Higgins M, Suzuki T, Yamamoto M, Prag HA, Hartley RC, Dinkova-Kostova AT, Murphy MP. 2021. Nrf2 is activated by disruption of mitochondrial thiol homeostasis but not by enhanced mitochondrial superoxide production. J Biol Chem. 296:100169. doi: 10.1074/jbc.RA120.016551.
  • Cӑtoi AF, Corina A, Katsiki N, Vodnar DC, Andreicuț AD, Stoian AP, Rizzo M, Pérez-Martínez P. 2020. Gut microbiota and aging-A focus on centenarians. Biochim Biophys Acta BBA - Mol Basis Dis. 1866:165765. doi: 10.1016/j.bbadis.2020.165765.
  • D’Acunzo P, Pérez-González R, Kim Y, Hargash T, Miller C, Alldred MJ, Erdjument-Bromage H, Penikalapati SC, Pawlik M, Saito M, et al. 2021. Mitovesicles are a novel population of extracellular vesicles of mitochondrial origin altered in Down syndrome. Sci Adv. 7:eabe5085. doi: 10.1126/sciadv.abe5085.
  • de Araujo TH, Okada SS, Ghosn EEB, Taniwaki NN, Rodrigues MR, de Almeida SR, Mortara RA, Russo M, Campa A, Albuquerque RC. 2013. Intracellular localization of myeloperoxidase in murine peritoneal B-lymphocytes and macrophages. Cell Immunol. 281:27–30. doi: 10.1016/j.cellimm.2013.01.002.
  • de Bari L, Scirè A, Minnelli C, Cianfruglia L, Kalapos MP, Armeni T. 2020. Interplay among oxidative stress, methylglyoxal pathway and S-Glutathionylation. Antioxidants. 10:19. doi: 10.3390/antiox10010019.
  • Deng F, Zhao B-C, Yang X, Lin Z-B, Sun Q-S, Wang Y-F, Yan Z-Z, Liu W-F, Li C, Hu J-J, et al. 2021. The gut microbiota metabolite capsiate promotes Gpx4 expression by activating TRPV1 to inhibit intestinal ischemia reperfusion-induced ferroptosis. Gut Microbes. 13:1–21. doi: 10.1080/19490976.2021.1902719.
  • Deng W, Zhu S, Zeng L, Liu J, Kang R, Yang M, Cao L, Wang H, Billiar TR, Jiang J, et al. 2018. The circadian clock controls immune checkpoint pathway in sepsis. Cell Rep. 24:366–378. doi: 10.1016/j.celrep.2018.06.026.
  • Deragon MA, McCaig WD, Patel PS, Haluska RJ, Hodges AL, Sosunov SA, Murphy MP, Ten VS, LaRocca TJ. 2020. Mitochondrial ROS prime the hyperglycemic shift from apoptosis to necroptosis. Cell Death Discov. 6:132. doi: 10.1038/s41420-020-00370-3.
  • De Stefani D, Raffaello A, Teardo E, Szabò I, Rizzuto R. 2011. A 40 kDa protein of the inner membrane is the mitochondrial calcium uniporter. Nature. 476:336–340. doi: 10.1038/nature10230.
  • Deus CM, Yambire KF, Oliveira PJ, Raimundo N. 2020. Mitochondria–lysosome crosstalk: from physiology to neurodegeneration. Trends Mol Med. 26:71–88. doi: 10.1016/j.molmed.2019.10.009.
  • Di Domenico F, Tramutola A, Butterfield DA. 2017. Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of Alzheimer disease and other selected age-related neurodegenerative disorders. Free Radic Biol Med. 111:253–261. doi: 10.1016/j.freeradbiomed.2016.10.490.
  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al. 2012. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. doi: 10.1016/j.cell.2012.03.042.
  • Doridot L, Châtre L, Ducat A, Vilotte J-L, Lombès A, Méhats C, Barbaux S, Calicchio R, Ricchetti M, Vaiman D. 2014. Nitroso-redox balance and mitochondrial homeostasis are regulated by STOX1, a pre-eclampsia-associated gene. Antioxid Redox Signal. 21:819–834. doi: 10.1089/ars.2013.5661.
  • Doruk YU, Yarparvar D, Akyel YK, Gul S, Taskin AC, Yilmaz F, Baris I, Ozturk N, Türkay M, Ozturk N, et al. 2020. A clock-binding small molecule disrupts the interaction between clock and bmal1 and enhances circadian rhythm amplitude. J Biol Chem. 295:3518–3531. doi: 10.1074/jbc.RA119.011332.
  • Douma LG, Gumz ML. 2018. Circadian clock-mediated regulation of blood pressure. Free Radic Biol Med. 119:108–114. doi: 10.1016/j.freeradbiomed.2017.11.024.
  • Dubey AK, Godbole A, Mathew MK. 2016. Regulation of VDAC trafficking modulates cell death. Cell Death Discov. 2:1–10. doi: 10.1038/cddiscovery.2016.85.
  • Dumitrescu L, Popescu-Olaru I, Cozma L, Tulbă D, Hinescu ME, Ceafalan LC, Gherghiceanu M, Popescu BO. 2018. Oxidative Stress and the microbiota-gut-brain axis. Oxid Med Cell Longev. 2018:2406594. doi: 10.1155/2018/2406594.
  • Edeas M, Saleh J, Peyssonnaux C. 2020. Iron: innocent bystander or vicious culprit in covid-19 pathogenesis? Int J Infect Dis IJID Publ Int Soc Infect Dis. 97:303–305. doi: 10.1016/j.ijid.2020.05.110.
  • Edeas M, Weissig V. 2013. Targeting mitochondria: strategies, innovations and challenges: The future of medicine will come through mitochondria. Mitochondrion. 13:389–390. doi: 10.1016/j.mito.2013.03.009.
  • Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, Xu Y, Pan M, Valekunja UK, Feeney KA, et al. 2012. Peroxiredoxins are conserved markers of circadian rhythms. Nature. 485:459–464. doi: 10.1038/nature11088.
  • Esch T, Stefano GB, Ptacek R, Kream RM. 2020. Emerging Roles of blood-borne intact and respiring mitochondria as bidirectional mediators of pro- and anti-inflammatory processes. Med Sci Monit Int Med J Exp Clin Res. 26:e924337-1–e924337–3. doi: 10.12659/MSM.924337.
  • Espinoza SE, Guo H, Fedarko N, DeZern A, Fried LP, Xue Q-L, Leng S, Beamer B, Walston JD. 2008. Glutathione peroxidase enzyme activity in aging. J Gerontol A Biol Sci Med Sci. 63:505–509. doi: 10.1093/gerona/63.5.505.
  • Esteras N, Abramov AY. 2022. Nrf2 as a regulator of mitochondrial function: energy metabolism and beyond. Free Radic Biol Med. 189:136–153. doi: 10.1016/j.freeradbiomed.2022.07.013.
  • Esterhuizen K, van der Westhuizen FH, Louw R. 2017. Metabolomics of mitochondrial disease. Mitochondrion. 35:97–110. doi: 10.1016/j.mito.2017.05.012.
  • Farah C, Michel LYM, Balligand J-L. 2018. Nitric oxide signalling in cardiovascular health and disease. Nat Rev Cardiol. 15:292–316. doi: 10.1038/nrcardio.2017.224.
  • Farhat F, Amérand A, Simon B, Guegueniat N, Moisan C. 2017. Gender-dependent differences of mitochondrial function and oxidative stress in rat skeletal muscle at rest and after exercise training. Redox Rep Commun Free Radic Res. 22:508–514. doi: 10.1080/13510002.2017.1296637.
  • Feelisch M. 2012. NO and hypoxia: taking nitrate to new heights. Nitric Oxide. 27:S4. doi: 10.1016/j.niox.2012.04.016.
  • Fiermonte G, Parisi G, Martinelli D, De Leonardis F, Torre G, Pierri CL, Saccari A, Lasorsa FM, Vozza A, Palmieri F, et al. 2011. A new caucasian case of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD): a clinical, molecular, and functional study. Mol Genet Metab. 104:501–506. doi: 10.1016/j.ymgme.2011.08.022.
  • Fiorese CJ, Schulz AM, Lin Y-F, Rosin N, Pellegrino MW, Haynes CM. 2016. The transcription factor ATF5 Mediates a mammalian mitochondrial UPR. Curr Biol CB. 26:2037–2043. doi: 10.1016/j.cub.2016.06.002.
  • Forstermann U, Sessa WC. 2012. Nitric oxide synthases: regulation and function. Eur Heart J. 33:829–837. doi: 10.1093/eurheartj/ehr304.
  • Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK. 2011. ER tubules mark sites of mitochondrial division. Sci. 334:358–362. doi: 10.1126/science.1207385.
  • Fukai T, Ushio-Fukai M. 2011. Superoxide Dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 15:1583–1606. doi: 10.1089/ars.2011.3999.
  • Galijasevic S, Saed GM, Diamond MP, Abu-Soud HM. 2003. Myeloperoxidase up-regulates the catalytic activity of inducible nitric oxide synthase by preventing nitric oxide feedback inhibition. Proc Natl Acad Sci. 100:14766–14771. doi: 10.1073/pnas.2435008100.
  • Galimberti D, Mazzola G. 2021. Chapter 12 - chronobiology and chrononutrition: relevance for aging. In: Caruso C, Candore G, editors. Human aging. Cambridge: Academic Press; p. 219–254. doi: 10.1016/B978-0-12-822569-1.00006-8.
  • Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al. 2018. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25:486–541. doi: 10.1038/s41418-017-0012-4.
  • Gan B. 2021. Mitochondrial regulation of ferroptosis. J Cell Biol. 220:e202105043. doi: 10.1083/jcb.202105043.
  • Ganini D, Santos JH, Bonini MG, Mason RP. 2018. Switch of mitochondrial superoxide dismutase into a prooxidant peroxidase in manganese-deficient cells and mice. Cell Chem Biol. 25:413–425.e6. doi: 10.1016/j.chembiol.2018.01.007.
  • Gao P, Yan Z, Zhu Z. 2020. Mitochondria-Associated endoplasmic reticulum membranes in cardiovascular diseases. Front Cell Dev Biol. 8:604240. doi: 10.3389/fcell.2020.604240.
  • Garai D, Ríos-González BB, Furtmüller PG, Fukuto JM, Xian M, López-Garriga J, Obinger C, Nagy P. 2017. Mechanisms of myeloperoxidase catalyzed oxidation of H2S by H2O2 or O2 to produce potent protein Cys-polysulfide-inducing species. Free Radic Biol Med. 113:551–563. doi: 10.1016/j.freeradbiomed.2017.10.384.
  • Garbincius JF, Elrod JW. 2022. Mitochondrial calcium exchange in physiology and disease. Physiol Rev. 102:893–992. doi: 10.1152/physrev.00041.2020.
  • Garcia-Bonilla L, Iadecola C. 2012. Peroxiredoxin sets the brain on fire after stroke. Nat Med. 18:858–859. doi: 10.1038/nm.2797.
  • Garza NM, Swaminathan AB, Maremanda KP, Zulkifli M, Gohil VM. 2023. Mitochondrial copper in human genetic disorders. Trends Endocrinol Metab. 34:21–33. doi: 10.1016/j.tem.2022.11.001.
  • Gaschler MM, Stockwell BR. 2017. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 482:419–425. doi: 10.1016/j.bbrc.2016.10.086.
  • Geertsema S, Bourgonje AR, Fagundes RR, Gacesa R, Weersma RK, van Goor H, Mann GE, Dijkstra G, Faber KN. 2023. The NRF2/Keap1 pathway as a therapeutic target in inflammatory bowel disease. Trends Mol Med. 29:830–842. doi: 10.1016/j.molmed.2023.07.008.
  • Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ. 1998. Role of the CLOCK protein in the mammalian circadian mechanism. Sci. 280:1564–1569. doi: 10.1126/science.280.5369.1564.
  • Ghafourifar P, Cadenas E. 2005. Mitochondrial nitric oxide synthase. Trends Pharmacol Sci. 26:190–195. doi: 10.1016/j.tips.2005.02.005.
  • Ghosh S, Dai C, Brown K, Rajendiran E, Makarenko S, Baker J, Ma C, Halder S, Montero M, Ionescu VA, et al. 2011. Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am J Physiol Gastrointest Liver Physiol. 301:G39–49. doi: 10.1152/ajpgi.00509.2010.
  • Ghosh A, Trivedi PP, Timbalia SA, Griffin AT, Rahn JJ, Chan SSL, Gohil VM. 2014. Copper supplementation restores cytochrome c oxidase assembly defect in a mitochondrial disease model of COA6 deficiency. Hum Mol Genet. 23:3596–3606. doi: 10.1093/hmg/ddu069.
  • Giacomello M, Pyakurel A, Glytsou C, Scorrano L. 2020. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 21:204–224. doi: 10.1038/s41580-020-0210-7.
  • Giampietro R, Spinelli F, Contino M, Colabufo NA. 2018. The pivotal role of copper in neurodegeneration: a new strategy for the therapy of neurodegenerative disorders. Mol Pharm. 15:808–820. doi: 10.1021/acs.molpharmaceut.7b00841.
  • Giorgi C, Marchi S, Pinton P. 2018. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol. 19:713–730. doi: 10.1038/s41580-018-0052-8.
  • Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabó I, et al. 2013. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci U S A. 110:5887–5892. doi: 10.1073/pnas.1217823110.
  • Gladyshev VN. 2014. The free radical theory of aging is dead. Long live the damage theory! Antioxid. Redox Signal. 20:727–731. doi: 10.1089/ars.2013.5228.
  • Glorieux C, Calderon PB. 2017. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol Chem. 398:1095–1108. doi: 10.1515/hsz-2017-0131.
  • Gonzalvez F, Schug ZT, Houtkooper RH, MacKenzie ED, Brooks DG, Wanders RJA, Petit PX, Vaz FM, Gottlieb E. 2008. Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J Cell Biol. 183:681–696. doi: 10.1083/jcb.200803129.
  • Gordaliza‐Alaguero I, Cantó C, Zorzano A. 2019. Metabolic implications of organelle–mitochondria communication. EMBO Rep. 20. doi: 10.15252/embr.201947928.
  • Gordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S, Braberg H, Jureka AS, Obernier K, Guo JZ, Batra J, et al. 2020. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Sci. 370:eabe9403. doi: 10.1126/science.abe9403.
  • Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O’Meara MJ, Rezelj VV, Guo JZ, Swaney DL, et al. 2020. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 583:459–468. doi: 10.1038/s41586-020-2286-9.
  • Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, Suomalainen A, Thorburn DR, Zeviani M, Turnbull DM. 2016. Mitochondrial diseases. Nat Rev Dis Primer. 2:1–22. doi: 10.1038/nrdp.2016.80.
  • Go Y-M, Uppal K, Walker DI, Tran V, Dury L, Strobel FH, Baubichon-Cortay H, Pennell KD, Roede JR, Jones DP. 2014. Mitochondrial metabolomics using high-resolution fourier-transform mass spectrometry. In: Raftery D, editor. Mass spectrometry in metabolomics. New York: Springer; p. 43–73. 10.1007/978-1-4939-1258-2_4.
  • Guaragnella N, Coyne LP, Chen XJ, Giannattasio S. 2018. Mitochondria–cytosol–nucleus crosstalk: learning from saccharomyces cerevisiae. FEMS Yeast Res. 18. doi: 10.1093/femsyr/foy088.
  • Guarnieri JW, Dybas JM, Fazelinia H, Kim MS, Frere J, Zhang Y, Soto Albrecht Y, Murdock DG, Angelin A, Singh LN, et al. 2023. Core mitochondrial genes are down-regulated during SARS-CoV-2 infection of rodent and human hosts. Sci Transl Med. 15:eabq1533. doi: 10.1126/scitranslmed.abq1533.
  • Gucek M, Sack MN. 2021. Proteomic and metabolomic advances uncover biomarkers of mitochondrial disease pathophysiology and severity. J Clin Invest. 131. doi: 10.1172/JCI145158.
  • Gu L-F, Chen J-Q, Lin Q-Y, Yang Y-Z. 2021. Roles of mitochondrial unfolded protein response in mammalian stem cells. World J Stem Cells. 13:737–752. doi: 10.4252/wjsc.v13.i7.737.
  • Guillén-Samander A, Leonzino M, Hanna MG IV, Tang N, Shen H, De Camilli P. 2021. VPS13D bridges the ER to mitochondria and peroxisomes via Miro. J Cell Biol. 220:e202010004. doi: 10.1083/jcb.202010004.
  • Gumeni S, Papanagnou E-D, Manola MS, Trougakos IP. 2021. Nrf2 activation induces mitophagy and reverses Parkin/Pink1 knock down-mediated neuronal and muscle degeneration phenotypes. Cell Death Disease. 12:1–12. doi: 10.1038/s41419-021-03952-w.
  • Guo D, He H, Meng Y, Luo S, Lu Z. 2023. Determiners of cell fates: the tricarboxylic acid cycle versus the citrate-malate shuttle. Protein Cell. 14:162–164. doi: 10.1093/procel/pwac026.
  • Guo J-H, Qu W-M, Chen S-G, Chen X-P, Lv K, Huang Z-L, Wu Y-L. 2014. Keeping the right time in space: importance of circadian clock and sleep for physiology and performance of astronauts. Mil Med Res. 1:23. doi: 10.1186/2054-9369-1-23.
  • Gutierrez Lopez DE, Lashinger LM, Weinstock GM, Bray MS. 2021. Circadian rhythms and the gut microbiome synchronize the host’s metabolic response to diet. Cell Metab. 33:873–887. doi: 10.1016/j.cmet.2021.03.015.
  • Hacker K, Medler KF. 2008. Mitochondrial calcium buffering contributes to the maintenance of basal calcium levels in mouse taste cells. J Neurophysiol. 100:2177–2191. doi: 10.1152/jn.90534.2008.
  • Hadian K, Stockwell BR. 2023. The therapeutic potential of targeting regulated non-apoptotic cell death. Nat Rev Drug Discov. 22:723–742. doi: 10.1038/s41573-023-00749-8.
  • Halestrap AP, McStay GP, Clarke SJ. 2002. The permeability transition pore complex: another view. Biochimie. 84:153–166. doi: 10.1016/S0300-9084(02)01375-5.
  • Hara Y, Kume S, Kataoka Y, Watanabe N. 2021. Changes in TCA cycle and TCA cycle-related metabolites in plasma upon citric acid administration in rats. Heliyon. 7:e08501. doi: 10.1016/j.heliyon.2021.e08501.
  • Harbauer AB, Zahedi RP, Sickmann A, Pfanner N, Meisinger C. 2014. The protein import machinery of mitochondria—a regulatory hub in metabolism, stress, and disease. Cell Metab. 19:357–372. doi: 10.1016/j.cmet.2014.01.010.
  • Hayyan M, Hashim MA, AlNashef IM. 2016. Superoxide Ion: Generation and chemical implications. Chem Rev. 116:3029–3085. doi: 10.1021/acs.chemrev.5b00407.
  • Hiemstra S, Fehling-Kaschek M, Kuijper IA, Bischoff LJM, Wijaya LS, Rosenblatt M, Esselink J, van Egmond A, Mos J, Beltman JB, et al. 2022. Dynamic modeling of Nrf2 pathway activation in liver cells after toxicant exposure. Sci Rep. 12:7336. doi: 10.1038/s41598-022-10857-x.
  • Hillen AEJ, Heine VM. 2020. Glutamate carrier involvement in mitochondrial dysfunctioning in the brain white matter. Front Mol Biosci. 7:151. doi: 10.3389/fmolb.2020.00151.
  • Hilton JB, Kysenius K, White AR, Crouch PJ. 2018. The accumulation of enzymatically inactive cuproenzymes is a CNS-specific phenomenon of the SOD1G37R mouse model of ALS and can be restored by overexpressing the human copper transporter hCTR1. Exp Neurol. 307:118–128. doi: 10.1016/j.expneurol.2018.06.006.
  • Holmström KM, Finkel T. 2014. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 15:411–421. doi: 10.1038/nrm3801.
  • Holmström KM, Kostov RV, Dinkova-Kostova AT. 2016. The multifaceted role of Nrf2 in mitochondrial function. Curr Opin Toxicol. 1:80–91. doi: 10.1016/j.cotox.2016.10.002.
  • Hong P-P, Zhu X-X, Yuan W-J, Niu G-J, Wang J-X. 2021. Nitric Oxide synthase regulates gut microbiota homeostasis by erk-nf-κb pathway in shrimp. Front Immunol. 12:778098. doi: 10.3389/fimmu.2021.778098.
  • Hu Y, Bi Y, Yao D, Wang P, Li Y. 2019. Omi/HtrA2 protease associated cell apoptosis participates in blood-brain barrier dysfunction. Front Mol Neurosci. 12:48. doi: 10.3389/fnmol.2019.00048.
  • Ikeda T, Osaka H, Shimbo H, Tajika M, Yamazaki M, Ueda A, Murayama K, Yamagata T. 2018. Mitochondrial DNA 3243A>T mutation in a patient with MELAS syndrome. Hum Genome Var. 5:1–4. doi: 10.1038/s41439-018-0026-6.
  • Janssen JJE, Grefte S, Keijer J, de Boer VCJ. 2019. Mito-Nuclear communication by mitochondrial metabolites and its regulation by b-vitamins. Front Physiol. 10:78. doi: 10.3389/fphys.2019.00078.
  • Jovaisaite V, Mouchiroud L, Auwerx J. 2014. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol. 217:137–143. doi: 10.1242/jeb.090738.
  • Jung H, Kim SY, Canbakis Cecen FS, Cho Y, Kwon S-K. 2020. Dysfunction of mitochondriaL CA2+ regulatory Machineries in brain aging and neurodegenerative diseases. Front Cell Dev Biol. 8. doi: 10.3389/fcell.2020.599792.
  • Jung K-A, Lee S, Kwak M-K. 2017. NFE2L2/NRF2 activity is linked to MITOCHONDRIA and AMP-activated protein kinase signaling in cancers through miR-181c/mitochondria-encoded cytochrome c oxidase regulation. Antioxid Redox Signal. 27:945–961. doi: 10.1089/ars.2016.6797.
  • Kamer KJ, Mootha VK. 2015. The molecular era of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol. 16:545–553. doi: 10.1038/nrm4039.
  • Kanellopoulos AK, Mariano V, Spinazzi M, Woo YJ, McLean C, Pech U, Li KW, Armstrong JD, Giangrande A, Callaerts P, et al. 2020. Aralar Sequesters gaba into hyperactive mitochondria, causing social behavior deficits. Cell. 180:1178–1197.e20. doi: 10.1016/j.cell.2020.02.044.
  • Kanemitsu T, Tsurudome Y, Kusunose N, Oda M, Matsunaga N, Koyanagi S, Ohdo S. 2017. Periodic variation in bile acids controls circadian changes in uric acid via regulation of xanthine oxidase by the orphan nuclear receptor PPARα. J Biol Chem. 292:21397–21406. doi: 10.1074/jbc.M117.791285.
  • Kao MPC, Ang DSC, Pall A, Struthers AD. 2010. Oxidative stress in renal dysfunction: mechanisms, clinical sequelae and therapeutic options. J Hum Hypertens. 24:1–8. doi: 10.1038/jhh.2009.70.
  • Karch J, Kanisicak O, Brody MJ, Sargent MA, Michael DM, Molkentin JD. 2015. Necroptosis interfaces with MOMP and the MPTP in mediating cell death. PLoS One. 10:e0130520. doi: 10.1371/journal.pone.0130520.
  • Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF. 2017. Pathogenic mechanisms following ischemic stroke. Neurol Sci J Ital Neurol Soc Ital Soc Clin Neurophysiol. 38:1167–1186. doi: 10.1007/s10072-017-2938-1.
  • Kinnally KW, Peixoto PM, Ryu S-Y, Dejean LM. 2011. Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim Biophys Acta. 1813:616–622. doi: 10.1016/j.bbamcr.2010.09.013.
  • Kirches E. 2011. LHON: mitochondrial mutations and more. Curr Genomics. 12:44–54. doi: 10.2174/138920211794520150.
  • Kirichenko TV, Markina YV, Sukhorukov VN, Khotina VA, Wu W-K, Orekhov AN. 2020. A Novel insight at atherogenesis: the role of microbiome. Front Cell Dev Biol. 8. doi: 10.3389/fcell.2020.586189.
  • Kirichenko TV, Ryzhkova AI, Sinyov VV, Sazonova MD, Orekhova VA, Karagodin VP, Gerasimova EV, Voevoda MI, Orekhov AN, Ragino YI, et al. 2020. Impact of mitochondrial DNA mutations on carotid intima-media thickness in the novosibirsk region. Life Basel Switz. 10:E160. doi: 10.3390/life10090160.
  • Kitada M, Xu J, Ogura Y, Monno I, Koya D. 2020. Manganese Superoxide dismutase dysfunction and the pathogenesis of kidney disease. Front Physiol. 11. doi: 10.3389/fphys.2020.00755.
  • Klingenberg M. 2009. Cardiolipin and mitochondrial carriers. Biochim Biophys Acta. 1788:2048–2058. doi: 10.1016/j.bbamem.2009.06.007.
  • Koch CD, Gladwin MT, Freeman BA, Lundberg JO, Weitzberg E, Morris A. 2017. Enterosalivary nitrate metabolism and the microbiome: intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radic Biol Med. 105:48–67. doi: 10.1016/j.freeradbiomed.2016.12.015.
  • Kolluru GK, Shen X, Bir SC, Kevil CG. 2013. Hydrogen sulfide chemical biology: pathophysiological roles and detection. Nitric Oxide. 35:5–20. doi: 10.1016/j.niox.2013.07.002.
  • Krueger K, Koch K, Jühling A, Tepel M, Scholze A. 2010. Low expression of thiosulfate sulfurtransferase (rhodanese) predicts mortality in hemodialysis patients. Clin Biochem. 43:95–101. doi: 10.1016/j.clinbiochem.2009.08.005.
  • Kunieda T, Minamino T, Miura K, Katsuno T, Tateno K, Miyauchi H, Kaneko S, Bradfield CA, FitzGerald GA, Komuro I. 2008. Reduced nitric oxide causes age-associated impairment of circadian rhythmicity. Circ Res. 102:607–614. doi: 10.1161/CIRCRESAHA.107.162230.
  • Kyriazis ID, Vassi E, Alvanou M, Angelakis C, Skaperda Z, Tekos F, Garikipati VNS, Spandidos DA, Kouretas D. 2022. The impact of diet upon mitochondrial physiology (Review). Int J Mol Med. 50:1–26. doi: 10.3892/ijmm.2022.5191.
  • Lacza Z, Pankotai E, Busija DW. 2009. Mitochondrial nitric oxide synthase: current concepts and controversies. Front Biosci Landmark Ed. 14:4436–4443. doi: 10.2741/3539.
  • Lambert AJ, Brand MD. 2009. Reactive oxygen species production by mitochondria. In: Stuart JA, editor. Mitochondrial DNA. Totowa, New Jersey: Humana Press; p. 165–181. doi: 10.1007/978-1-59745-521-3_11.
  • Lananna BV, Musiek ES. 2020. The wrinkling of time: aging, inflammation, oxidative stress, and the circadian clock in neurodegeneration. Neurobiol Dis. 139:104832. doi: 10.1016/j.nbd.2020.104832.
  • Lande-Diner L, Boyault C, Kim JY, Weitz CJ. 2013. A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery. Proc Natl Acad Sci U S A. 110:16021–16026. doi: 10.1073/pnas.1305980110.
  • Lee J, Choi J, Selen Alpergin ES, Zhao L, Hartung T, Scafidi S, Riddle RC, Wolfgang MJ. 2017. Loss of hepatic mitochondrial long-chain fatty acid oxidation confers resistance to diet-induced obesity and glucose intolerance. Cell Rep. 20:655–667. doi: 10.1016/j.celrep.2017.06.080.
  • Lei L, Zhang J, Decker EA, Zhang G. 2021. Roles of Lipid peroxidation-derived electrophiles in pathogenesis of colonic inflammation and colon cancer. Front Cell Dev Biol. 9:665591. doi: 10.3389/fcell.2021.665591.
  • Lemattre C, Imbert-Bouteille M, Gatinois V, Benit P, Sanchez E, Guignard T, Tran Mau-Them F, Haquet E, Rivier F, Carme E, et al. 2019. Report on three additional patients and genotype-phenotype correlation in SLC25A22-related disorders group. Eur J Hum Genet EJHG. 27:1692–1700. doi: 10.1038/s41431-019-0433-2.
  • Levine DC, Hong H, Weidemann BJ, Ramsey KM, Affinati AH, Schmidt MS, Cedernaes J, Omura C, Braun R, Lee C, et al. 2020. NAD+ controls circadian reprogramming through PER2 Nuclear translocation to counter aging. Mol Cell. 78:835–849.e7. doi: 10.1016/j.molcel.2020.04.010.
  • Lewis SC, Uchiyama LF, Nunnari J. 2016. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science. 353:aaf5549. doi: 10.1126/science.aaf5549.
  • Liang X, Bushman FD, FitzGerald GA. 2015. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc Natl Acad Sci U S A. 112:10479–10484. doi: 10.1073/pnas.1501305112.
  • Liang Y, Cui L, Gao J, Zhu M, Zhang Y, Zhang H-L. 2021. Gut microbial metabolites in Parkinson’s disease: implications of mitochondrial dysfunction in the pathogenesis and treatment. Mol Neurobiol. 58:3745–3758. doi: 10.1007/s12035-021-02375-0.
  • Liang W, Sagar S, Ravindran R, Najor RH, Quiles JM, Chi L, Diao RY, Woodall BP, Leon LJ, Zumaya E, et al. 2023. Mitochondria are secreted in extracellular vesicles when lysosomal function is impaired. Nat Commun. 14:5031. doi: 10.1038/s41467-023-40680-5.
  • Li J, Cao F, Yin H, Huang Z, Lin Z, Mao N, Sun B, Wang G. 2020. Ferroptosis: past, present and future. Cell Death Disease. 11:88. doi: 10.1038/s41419-020-2298-2.
  • Li Q, Hoppe T. 2023. Role of amino acid metabolism in mitochondrial homeostasis. Front Cell Dev Biol. 11:1127618. doi: 10.3389/fcell.2023.1127618.
  • Li X, Liu X, Meng Q, Wu X, Bing X, Guo N, Zhao X, Hou X, Wang B, Xia M, et al. 2022. Circadian clock disruptions link oxidative stress and systemic inflammation to metabolic syndrome in obstructive sleep apnea patients. Front Physiol. 13. doi:10.3389/fphys.2022.932596.
  • Li X-X, Tsoi B, Li Y-F, Kurihara H, He R-R. 2015. Cardiolipin and its different properties in mitophagy and apoptosis. J Histochem Cytochem. 63:301–311. doi: 10.1369/0022155415574818.
  • Liu S, Gao J, Zhu M, Liu K, Zhang H-L. 2020. Gut microbiota and dysbiosis in alzheimer’s disease: implications for pathogenesis and treatment. Mol Neurobiol. 57:5026–5043. doi: 10.1007/s12035-020-02073-3.
  • Liu TF, Vachharajani VT, Yoza BK, McCall CE. 2012. Nad±dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J Biol Chem. 287:25758–25769. doi: 10.1074/jbc.M112.362343.
  • Li Q, Vande Velde C, Israelson A, Xie J, Bailey AO, Dong M-Q, Chun S-J, Roy T, Winer L, Yates JR, et al. 2010. ALS-linked mutant superoxide dismutase 1 (SOD1) alters mitochondrial protein composition and decreases protein import. Proc Natl Acad Sci. 107:21146–21151. doi: 10.1073/pnas.1014862107.
  • Li L, Wang C, Yang H, Liu S, Lu Y, Fu P, Liu J. 2017. Metabolomics reveal mitochondrial and fatty acid metabolism disorders that contribute to the development of DKD in T2DM patients. Mol Biosyst. 13:2392–2400. doi: 10.1039/C7MB00167C.
  • Li R, Yan G, Li Q, Sun H, Hu Y, Sun J, Xu B. 2012. MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (h2o2)-induced apoptosis through targeting the mitochondria apoptotic pathway. PLoS One. 7:e44907. doi: 10.1371/journal.pone.0044907.
  • Lopes AFC. 2020. Mitochondrial metabolism and DNA methylation: a review of the interaction between two genomes. Clin Epigenetics. 12:182. doi: 10.1186/s13148-020-00976-5.
  • Lopez J, Tait SWG. 2015. Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer. 112:957–962. doi: 10.1038/bjc.2015.85.
  • Lorenzo HK, Susin SA, Penninger J, Kroemer G. 1999. Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ. 6:516–524. doi: 10.1038/sj.cdd.4400527.
  • Lozoya OA, Wang T, Grenet D, Wolfgang TC, Sobhany M, Ganini da Silva D, Riadi G, Chandel N, Woychik RP, Santos JH. 2019. Mitochondrial acetyl-CoA reversibly regulates locus-specific histone acetylation and gene expression. Life Sci Alli. 2:e201800228. doi: 10.26508/lsa.201800228.
  • Lu B, Gong X, Wang Z, Ding Y, Wang C, Luo T, Piao M, Meng F, Chi G, Luo Y, et al. 2017. Shikonin induces glioma cell necroptosis in vitro by ROS overproduction and promoting RIP1/RIP3 necrosome formation. Acta Pharmacol Sin. 38:1543–1553. doi: 10.1038/aps.2017.112.
  • Lu Q, Haragopal H, Slepchenko KG, Stork C, Li YV. 2016. Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus. Int J Physiol Pathophysiol Pharmacol. 8:35–43.
  • Luo Y, Chatre L, Melhem S, Al-Dahmani ZM, Homer NZM, Miedema A, Deelman LE, Groves MR, Feelisch M, Morton NM, et al. 2023. Thiosulfate sulfurtransferase deficiency promotes oxidative distress and aberrant NRF2 function in the brain. Redox Biol. 68:102965. doi: 10.1016/j.redox.2023.102965.
  • Lynch DR, Farmer G. 2021. Mitochondrial and metabolic dysfunction in Friedreich ataxia: update on pathophysiological relevance and clinical interventions. Neuronal Signal. 5:NS20200093. doi: 10.1042/NS20200093.
  • Mailloux RJ, McBride SL, Harper M-E. 2013. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem Sci. 38:592–602. doi: 10.1016/j.tibs.2013.09.001.
  • Malard E, Valable S, Bernaudin M, Pérès E, Chatre L. 2021. The Reactive species interactome in the brain. Antioxid Redox Signal Ars. 35:1176–1206. doi: 10.1089/ars.2020.8238.
  • Mani S, Swargiary G, Ralph SJ. 2022. Targeting the redox imbalance in mitochondria: a novel mode for cancer therapy. Mitochondrion. 62:50–73. doi: 10.1016/j.mito.2021.11.002.
  • Marshall KD, Baines CP. 2014. Necroptosis: is there a role for mitochondria? Front Physiol. 5. doi: 10.3389/fphys.2014.00323.
  • Martínez-Reyes I, Chandel NS. 2020. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 11:102. doi: 10.1038/s41467-019-13668-3.
  • Martín-Jiménez R, Lurette O, Hebert-Chatelain E. 2020. Damage in mitochondriaL DNA associated with Parkinson’s disease. DNA Cell Biol. 39:1421–1430. doi: 10.1089/dna.2020.5398.
  • Maurya SR, Mahalakshmi R. 2016. VDAC-2: mitochondrial outer membrane regulator masquerading as a channel? FEBS J. 283:1831–1836. doi: 10.1111/febs.13637.
  • McCommis KS, Finck BN. 2015. Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem J. 466:443–454. doi: 10.1042/BJ20141171.
  • Meijer AJ, Lorin S, Blommaart EF, Codogno P. 2015. Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids. 47:2037–2063. doi: 10.1007/s00726-014-1765-4.
  • Mellis A-T, Misko AL, Arjune S, Liang Y, Erdélyi K, Ditrói T, Kaczmarek AT, Nagy P, Schwarz G. 2021. The role of glutamate oxaloacetate transaminases in sulfite biosynthesis and H2S metabolism. Redox Biol. 38:101800. doi: 10.1016/j.redox.2020.101800.
  • Meng J, Lv Z, Zhang Y, Wang Y, Qiao X, Sun C, Chen Y, Guo M, Han W, Ye A, et al. 2021. Precision redox: the key for antioxidant pharmacology. Antioxid Redox Signal. 34:1069–1082. doi: 10.1089/ars.2020.8212.
  • Mezhnina V, Ebeigbe OP, Poe A, Kondratov RV. 2022. Circadian control of mitochondria in reactive oxygen species homeostasis. Antioxid Redox Signal. 37:647–663. doi: 10.1089/ars.2021.0274.
  • Mitter SK, Rao HV, Cai J, Thampi P, Qi X, Dunn WA, Grant MB, Boulton ME. 2010. Nitric oxide affects the circadian rhythmicity of autophagy in retinal microvascular endothelial cells. Invest Ophthalmol Visual Sci. 51:5624.
  • Miyamoto R, Otsuguro K, Yamaguchi S, Ito S. 2014. Contribution of cysteine aminotransferase and mercaptopyruvate sulfurtransferase to hydrogen sulfide production in peripheral neurons. J Neurochem. 130:29–40. doi: 10.1111/jnc.12698.
  • Morin AL, Win PW, Lin AZ, Castellani CA. 2022. Mitochondrial genomic integrity and the nuclear epigenome in health and disease. Front Endocrinol. 13:1059085. doi: 10.3389/fendo.2022.1059085.
  • Morioka E, Kasuga Y, Kanda Y, Moritama S, Koizumi H, Yoshikawa T, Miura N, Ikeda M, Higashida H, Holmes TC, et al. 2022. Mitochondrial LETM1 drives ionic and molecular clock rhythms in circadian pacemaker neurons. Cell Rep. 39:110787. doi: 10.1016/j.celrep.2022.110787.
  • Mossad O, Batut B, Yilmaz B, Dokalis N, Mezö C, Nent E, Nabavi LS, Mayer M, Maron FJM, Buescher JM, et al. 2022. Gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N6-carboxymethyllysine. Nat Neurosci. 25:295–305. doi: 10.1038/s41593-022-01027-3.
  • Mottawea W, Chiang C-K, Mühlbauer M, Starr AE, Butcher J, Abujamel T, Deeke SA, Brandel A, Zhou H, Shokralla S, et al. 2016. Altered intestinal microbiota–host mitochondria crosstalk in new onset Crohn’s disease. Nat Commun. 7:13419. doi: 10.1038/ncomms13419.
  • Müller S, Versini A, Sindikubwabo F, Belthier G, Niyomchon S, Pannequin J, Grimaud L, Cañeque T, Rodriguez R. 2018. Metformin reveals a mitochondrial copper addiction of mesenchymal cancer cells. PLoS One. 13:e0206764. doi: 10.1371/journal.pone.0206764.
  • Murphy MP. 2009. How mitochondria produce reactive oxygen species. Biochem J. 417:1–13. doi: 10.1042/BJ20081386.
  • Murros KE. 2022. hydrogen sulfide produced by gut bacteria may induce Parkinson’s disease. Cells. 11:978. doi: 10.3390/cells11060978.
  • Najbauer EE, Becker S, Giller K, Zweckstetter M, Lange A, Steinem C, de Groot BL, Griesinger C, Andreas LB. 2021. Structure, gating and interactions of the voltage-dependent anion channel. Eur Biophys J. 50:159–172. doi: 10.1007/s00249-021-01515-7.
  • Nakao N, Kurokawa T, Nonami T, Tumurkhuu G, Koide N, Yokochi T. 2008. Hydrogen peroxide induces the production of tumor necrosis factor-α in RAW 264.7 macrophage cells via activation of p38 and stress-activated protein kinase. Innate Immun. 14:190–196. doi: 10.1177/1753425908093932.
  • Nardo T, Oneda R, Spivak G, Vaz B, Mortier L, Thomas P, Orioli D, Laugel V, Stary A, Hanawalt PC, et al. 2009. A UV-sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proc Natl Acad Sci. 106:6209–6214. doi: 10.1073/pnas.0902113106.
  • Navigatore-Fonzo LS, Delgado SM, Gimenez MS, Anzulovich AC. 2014. Daily rhythms of catalase and glutathione peroxidase expression and activity are endogenously driven in the hippocampus and are modified by a vitamin A-free diet. Nutr Neurosci. 17:21–30. doi: 10.1179/1476830513Y.0000000062.
  • Neufeld-Cohen A, Robles MS, Aviram R, Manella G, Adamovich Y, Ladeuix B, Nir D, Rousso-Noori L, Kuperman Y, Golik M, et al. 2016. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc Natl Acad Sci. 113:E1673–E1682. doi: 10.1073/pnas.1519650113.
  • Nicolli A, Petronilli V, Bernardi P. 1993. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by matrix pH. Evidence that the pore open-closed probability is regulated by reversible histidine protonation. Biochemistry. 32:4461–4465. doi: 10.1021/bi00067a039.
  • Ni C, Li X, Wang L, Li X, Zhao J, Zhang H, Wang G, Chen W. 2021. Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism. Food Funct. 12:7054–7067. doi: 10.1039/D1FO00198A.
  • Nomiyama T, Setoyama D, Yasukawa T, Kang D. 2022. Mitochondria metabolomics reveals a role of β-nicotinamide mononucleotide metabolism in mitochondrial DNA replication. J Biochem (Tokyo). 171:325–338. doi: 10.1093/jb/mvab136.
  • Norambuena A, Sun X, Wallrabe H, Cao R, Sun N, Pardo E, Shivange N, Wang DB, Post LA, Ferris HA, et al. 2022. SOD1 mediates lysosome-to-mitochondria communication and its dysregulation by amyloid-β oligomers. Neurobiol Dis. 169:105737. doi: 10.1016/j.nbd.2022.105737.
  • Nørgård MØ, Lund PM, Kalisi N, Andresen TL, Larsen JB, Vogel S, Svenningsen P. 2023. Mitochondrial reactive oxygen species modify extracellular vesicles secretion rate. FASEB BioAdvances. 5:355–366. doi: 10.1096/fba.2023-00053.
  • Novotny BC, Fernandez MV, Wang C, Budde JP, Bergmann K, Eteleeb AM, Bradley J, Webster C, Ebl C, Norton J, et al. 2023. Metabolomic and lipidomic signatures in autosomal dominant and late-onset Alzheimer’s disease brains. Alzheimers Dement J Alzheimers Assoc. 19:1785–1799. doi: 10.1002/alz.12800.
  • Ogino K, Kodama N, Nakajima M, Yamada A, Nakamura H, Nagase H, Sadamitsu D, Maekawa T. 2001. Catalase catalyzes nitrotyrosine formation from sodium azide and hydrogen peroxide. Free Radic Res. 35:735–747. doi: 10.1080/10715760100301241.
  • Olson KR. 2018. H2S and polysulfide metabolism: conventional and unconventional pathways. Biochem Pharmacol. 149:77–90. doi: 10.1016/j.bcp.2017.12.010.
  • Olson KR. 2020. Are reactive sulfur species the new reactive oxygen species? antioxid. Redox Signal Ars. 33:1125–1142. 2020.8132. doi: 10.1089/ars.2020.8132.
  • Olson KR, Gao Y, Arif F, Arora K, Patel S, DeLeon ER, Sutton TR, Feelisch M, Cortese-Krott MM, Straub KD. 2018. Metabolism of hydrogen sulfide (H2S) and Production of reactive sulfur species (RSS) by superoxide dismutase. Redox Biol. 15:74–85. doi: 10.1016/j.redox.2017.11.009.
  • Olson KR, Gao Y, DeLeon ER, Arif M, Arif F, Arora N, Straub KD. 2017. Catalase as a sulfide-sulfur oxido-reductase: an ancient (and modern?) regulator of reactive sulfur species (RSS). Redox Biol. 12:325–339. doi: 10.1016/j.redox.2017.02.021.
  • Özdemir BC, Gerard CL, Espinosa da Silva C. 2022. Sex and gender differences in anticancer treatment toxicity: a call for revisiting drug dosing in oncology. Endocrinology. 163:bqac058. doi: 10.1210/endocr/bqac058.
  • Padmanabhan K, Billaud M. 2017. Desynchronization of Circadian clocks in cancer: a metabolic and epigenetic connection. Front Endocrinol. 8. doi: 10.3389/fendo.2017.00136.
  • Pálinkás Z, Furtmüller PG, Nagy A, Jakopitsch C, Pirker KF, Magierowski M, Jasnos K, Wallace JL, Obinger C, Nagy P. 2015. Interactions of hydrogen sulfide with myeloperoxidase: sulfide is a substrate and inhibitor of myeloperoxidase. Br J Pharmacol. 172:1516–1532. doi: 10.1111/bph.12769.
  • Palma FR, He C, Danes JM, Paviani V, Coelho DR, Gantner BN, Bonini MG. 2020. Mitochondrial superoxide dismutase: what the established, the intriguing, and the novel reveal about a key cellular redox switch. Antioxid Redox Signal. 32:701–714. doi: 10.1089/ars.2019.7962.
  • Palmieri F. 2013. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med. 34:465–484. doi: 10.1016/j.mam.2012.05.005.
  • Palmieri F, Monné M. 2016. Discoveries, metabolic roles and diseases of mitochondrial carriers: a review. Biochim Biophys Acta BBA - Mol Cell Res. 1863:2362–2378. doi: 10.1016/j.bbamcr.2016.03.007.
  • Pandey R, Caflisch L, Lodi A, Brenner AJ, Tiziani S. 2017. Metabolomic signature of brain cancer. Mol Carcinog. 56:2355–2371. doi: 10.1002/mc.22694.
  • Pardo B, Contreras L, Satrústegui J. 2013. De novo synthesis of glial glutamate and glutamine in young mice requires aspartate provided by the neuronal mitochondrial aspartate-glutamate carrier aralar/AGC1. Front Endocrinol. 4. doi: 10.3389/fendo.2013.00149.
  • Paré B, Lehmann M, Beaudin M, Nordström U, Saikali S, Julien J-P, Gilthorpe JD, Marklund SL, Cashman NR, Andersen PM, et al. 2018. Misfolded SOD1 pathology in sporadic amyotrophic lateral sclerosis. Sci Rep. 8:14223. doi: 10.1038/s41598-018-31773-z.
  • Park MH, Jo M, Kim YR, Lee C-K, Hong JT. 2016. Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol Ther. 163:1–23. doi: 10.1016/j.pharmthera.2016.03.018.
  • Park YS, Koh YH, Takahashi M, Miyamoto Y, Suzuki K, Dohmae N, Takio K, Honke K, Taniguchi N. 2003. Identification of the Binding site of methylglyoxal on glutathione peroxidase: methylglyoxal inhibits glutathione peroxidase activity via binding to glutathione binding sites arg 184 and 185. Free Radic Res. 37:205–211. doi: 10.1080/1071576021000041005.
  • Parsanathan R, Jain SK. 2019. Hydrogen sulfide regulates circadian-clock genes in C2C12 myotubes and the muscle of high-fat-diet-fed mice. Arch Biochem Biophys. 672:108054. doi: 10.1016/j.abb.2019.07.019.
  • Paul BD, Snyder SH, Kashfi K. 2020. Effects of hydrogen sulfide on mitochondrial function and cellular bioenergetics. Redox Biol. 38:101772. doi: 10.1016/j.redox.2020.101772.
  • Peek CB, Affinati AH, Ramsey KM, Kuo H-Y, Yu W, Sena LA, Ilkayeva O, Marcheva B, Kobayashi Y, Omura C, et al. 2013. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Sci. 342:1243417. doi: 10.1126/science.1243417.
  • Peeters A, Shinde AB, Dirkx R, Smet J, De Bock K, Espeel M, Vanhorebeek I, Vanlander A, Van Coster R, Carmeliet P, et al. 2015. Mitochondria in peroxisome-deficient hepatocytes exhibit impaired respiration, depleted DNA, and PGC-1α independent proliferation. Biochim Biophys Acta BBA - Mol Cell Res. 1853:285–298. doi: 10.1016/j.bbamcr.2014.11.017.
  • Petrova VY, Drescher D, Kujumdzieva AV, Schmitt MJ. 2004. Dual targeting of yeast catalase a to peroxisomes and mitochondria. Biochem J. 380:393–400. doi: 10.1042/BJ20040042.
  • Pfanner N, Warscheid B, Wiedemann N. 2019. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol. 20:267–284. doi: 10.1038/s41580-018-0092-0.
  • Pilchova I, Klacanova K, Tatarkova Z, Kaplan P, Racay P. 2017. The Involvement of Mg2+ in Regulation of cellular and mitochondrial functions. Oxid Med Cell Longev. 2017:6797460. doi: 10.1155/2017/6797460.
  • Pileggi CA, Blondin DP, Hooks BG, Parmar G, Alecu I, Patten DA, Cuillerier A, O’Dwyer C, Thrush AB, Fullerton MD, et al. 2022. Exercise training enhances muscle mitochondrial metabolism in diet-resistant obesity. EBioMedicine. 83:104192. doi: 10.1016/j.ebiom.2022.104192.
  • Pittalà MGG, Conti Nibali S, Reina S, Cunsolo V, Di Francesco A, De Pinto V, Messina A, Foti S, Saletti R. 2021. Vdacs post-translational modifications discovery by mass spectrometry: impact on their hub function. Int J Mol Sci. 22:12833. doi: 10.3390/ijms222312833.
  • Podlesniy P, Puigròs M, Serra N, Fernández-Santiago R, Ezquerra M, Tolosa E, Trullas R. 2019. Accumulation of mitochondrial 7S DNA in idiopathic and LRRK2 associated Parkinson’s disease. EBioMedicine. 48:554–567. doi: 10.1016/j.ebiom.2019.09.015.
  • Pollicino F, Veronese N, Dominguez LJ, Barbagallo M. 2023. Mediterranean diet and mitochondria: new findings. Exp Gerontol. 176:112165. doi: 10.1016/j.exger.2023.112165.
  • Qin J, Guo Y, Xue B, Shi P, Chen Y, Su QP, Hao H, Zhao S, Wu C, Yu L, et al. 2020. ER-mitochondria contacts promote mtDNA nucleoids active transportation via mitochondrial dynamic tubulation. Nat Commun. 11:4471. doi: 10.1038/s41467-020-18202-4.
  • Ravi A, Palamiuc L, Loughran RM, Triscott J, Arora GK, Kumar A, Tieu V, Pauli C, Reist M, Lew RJ, et al. 2021. PI5P4Ks drive metabolic homeostasis through peroxisome-mitochondria interplay. Dev Cell. 56:1661–1676.e10. doi: 10.1016/j.devcel.2021.04.019.
  • Ray RS, Katyal A. 2016. Myeloperoxidase: Bridging the gap in neurodegeneration. Neurosci Biobehav Rev. 68:611–620. doi: 10.1016/j.neubiorev.2016.06.031.
  • Reddam A, McLarnan S, Kupsco A. 2022. Environmental chemical exposures and mitochondrial dysfunction: a review of recent literature. Curr Environ Health Rep. 9:631–649. doi: 10.1007/s40572-022-00371-7.
  • Reelfs O, Abbate V, Cilibrizzi A, Pook MA, Hider RC, Pourzand C. 2019. The role of mitochondrial labile iron in Friedreich’s ataxia skin fibroblasts sensitivity to ultraviolet A. Metallomics. 11:656–665. doi: 10.1039/C8MT00257F.
  • Ricchetti M. 2018. Replication stress in mitochondria. Mutat Res Mol Mech Mutagen. 808:93–102. doi: 10.1016/j.mrfmmm.2018.01.005.
  • Ricchetti M, Tekaia F, Dujon B. 2004. Continued colonization of the human genome by mitochondrial DNA. PLoS Biol. 2:e273. doi: 10.1371/journal.pbio.0020273.
  • Richards BJ, Slavin M, Oliveira AN, Sanfrancesco VC, Hood DA. 2022. Mitochondrial protein import and UPRmt in skeletal muscle remodeling and adaptation. Semin Cell Dev Biol. S1084-9521(22)00004-0. doi: 10.1016/j.semcdb.2022.01.002.
  • Rodríguez LR, Lapeña-Luzón T, Benetó N, Beltran-Beltran V, Pallardó FV, Gonzalez-Cabo P, Navarro JA. 2022. Therapeutic Strategies targeting mitochondrial calcium signaling: a new hope for neurological diseases? Antioxidants. 11(1):165. doi: 10.3390/antiox11010165.
  • Rodriguez J, Li T, Xu Y, Sun Y, Zhu C. 2021. Role of apoptosis-inducing factor in perinatal hypoxic-ischemic brain injury. Neural Regen Res. 16:205–213. doi: 10.4103/1673-5374.290875.
  • Roe ND, Ren J. 2012. Nitric oxide synthase uncoupling: A therapeutic target in cardiovascular diseases. Vascul Pharmacol. 57:168–172. doi: 10.1016/j.vph.2012.02.004.
  • Rostovtseva TK, Bezrukov SM, Hoogerheide DP. 2021. Regulation of mitochondriaL Respiration by VDAC is enhanced by membrane-bound inhibitors with disordered polyanionic c-terminal domains. Int J Mol Sci. 22:7358. doi: 10.3390/ijms22147358.
  • Rouault TA. 2016. Mitochondrial iron overload: causes and consequences. Curr Opin Genet Dev. 38:31–37. doi: 10.1016/j.gde.2016.02.004.
  • Rubin JB. 2022. The spectrum of sex differences in cancer. Trends Cancer. 8:303–315. doi: 10.1016/j.trecan.2022.01.013.
  • Rueda CB, Llorente-Folch I, Traba J, Amigo I, Gonzalez-Sanchez P, Contreras L, Juaristi I, Martinez-Valero P, Pardo B, Del Arco A, et al. 2016. Glutamate excitotoxicity and Ca 2+ -regulation of respiration: Role of the Ca 2+ activated mitochondrial transporters (CaMCs). Biochim Biophys Acta BBA - Bioenerg. 1857:1158–1166. doi: 10.1016/j.bbabio.2016.04.003.
  • Ruiz LM, Libedinsky A, Elorza AA. 2021. Role of copper on mitochondrial function and metabolism. Front Mol Biosci. 8. doi: 10.3389/fmolb.2021.711227.
  • Ruprecht JJ, Kunji ERS. 2020. The SLC25 mitochondrial carrier family: structure and mechanism. Trends Biochem Sci. 45:244–258. doi: 10.1016/j.tibs.2019.11.001.
  • Ryan DG, Yang M, Prag HA, Blanco GR, Nikitopoulou E, Segarra-Mondejar M, Powell CA, Young T, Burger N, Miljkovic JL, et al. 2021. Disruption of the TCA cycle reveals an ATF4-dependent integration of redox and amino acid metabolism. eLife. 10:e72593.doi:10.7554/eLife.72593.
  • Sabharwal SS, Schumacker PT. 2014. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer. 14:709–721. doi: 10.1038/nrc3803.
  • Saeedi BJ, Liu KH, Owens JA, Hunter-Chang S, Camacho MC, Eboka RU, Chandrasekharan B, Baker NF, Darby TM, Robinson BS, et al. 2020. Gut-resident lactobacilli activate hepatic Nrf2 and protect against oxidative liver injury. Cell Metab. 31:956–968.e5. doi: 10.1016/j.cmet.2020.03.006.
  • Saint-Georges-Chaumet Y, Edeas M. 2016. Microbiota-mitochondria inter-talk: consequence for microbiota-host interaction. Pathog Dis. 74:ftv096. doi: 10.1093/femspd/ftv096.
  • Saito Y, Nishio K, Ogawa Y, Kimata J, Kinumi T, Yoshida Y, Noguchi N, Niki E. 2006. Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free Radic Res. 40:619–630. doi: 10.1080/10715760600632552.
  • Saleh J, Peyssonnaux C, Singh KK, Edeas M. 2020. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion. 54:1–7. doi: 10.1016/j.mito.2020.06.008.
  • Sánchez-Caballero L, Ruzzenente B, Bianchi L, Assouline Z, Barcia G, Metodiev MD, Rio M, Funalot B, van den Brand MAM, Guerrero-Castillo S, et al. 2016. Mutations in complex i assembly factor tmem126b result in muscle weakness and isolated complex i deficiency. Am J Hum Genet. 99:208–216. doi: 10.1016/j.ajhg.2016.05.022.
  • Sander P, Gudermann T, Schredelseker J. 2021. A calcium guard in the outer membrane: is vdac a regulated gatekeeper of mitochondrial calcium uptake? Int J Mol Sci. 22:946. doi: 10.3390/ijms22020946.
  • Santolini J, Wootton SA, Jackson AA, Feelisch M. 2019. The redox architecture of physiological function. Curr Opin Physiol. 9:34–47. doi: 10.1016/j.cophys.2019.04.009.
  • Santos JH. 2021. Mitochondria signaling to the epigenome: a novel role for an old organelle. Free Radic Biol Med. 170:59–69. doi: 10.1016/j.freeradbiomed.2020.11.016.
  • Scammahorn JJ, Nguyen ITN, Bos EM, Van Goor H, Joles JA. 2021. Fighting oxidative stress with sulfur: hydrogen sulfide in the renal and cardiovascular systems. Antioxid Basel Switz. 10:373. doi: 10.3390/antiox10030373.
  • Schalkwijk CG, Stehouwer CDA. 2020. Methylglyoxal, a Highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol Rev. 100:407–461. doi: 10.1152/physrev.00001.2019.
  • Schmidt O, Pfanner N, Meisinger C. 2010. Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol. 11:655–667. doi: 10.1038/nrm2959.
  • Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli LM, Witzig M, Ishihara N, Mihara K, Ripperger JA, Albrecht U, et al. 2018. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab. 27:657–666.e5. doi: 10.1016/j.cmet.2018.01.011.
  • Schuler M-H, English AM, Xiao T, Campbell TJ, Shaw JM, Hughes AL. 2021. Mitochondrial-derived compartments facilitate cellular adaptation to amino acid stress. Mol Cell. 81:3786–3802.e13. doi: 10.1016/j.molcel.2021.08.021.
  • Scrima R, Cela O, Agriesti F, Piccoli C, Tataranni T, Pacelli C, Mazzoccoli G, Capitanio N. 2020. Mitochondrial calcium drives clock gene-dependent activation of pyruvate dehydrogenase and of oxidative phosphorylation. Biochim Biophys Acta BBA - Mol Cell Res. 1867:118815. doi: 10.1016/j.bbamcr.2020.118815.
  • Scrima R, Cela O, Merla G, Augello B, Rubino R, Quarato G, Fugetto S, Menga M, Fuhr L, Relógio A, et al. 2016. Clock-genes and mitochondrial respiratory activity: evidence of a reciprocal interplay. Biochim Biophys Acta BBA - Bioenerg. 1857:1344–1351. doi: 10.1016/j.bbabio.2016.03.035.
  • Sena LA, Chandel NS. 2012. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 48:158–167. doi: 10.1016/j.molcel.2012.09.025.
  • Shai N, Schuldiner M, Zalckvar E. 2016. No peroxisome is an island — peroxisome contact sites. Biochim Biophys Acta BBA - Mol Cell Res. 1863:1061–1069. doi: 10.1016/j.bbamcr.2015.09.016.
  • Shan Y, Cortopassi G. 2016. Mitochondrial Hspa9/Mortalin regulates erythroid differentiation via iron-sulfur cluster assembly. Mitochondrion. 26:94–103. doi: 10.1016/j.mito.2015.12.005.
  • Shandilya S, Kumar S, Kumar Jha N, Kumar Kesari K, Ruokolainen J. 2022. Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. J Adv Res. 38:223–244. doi: 10.1016/j.jare.2021.09.005.
  • Shang H, Huang C, Xiao Z, Yang P, Zhang S, Hou X, Zhang L. 2023. Gut microbiota-derived tryptophan metabolites alleviate liver injury via AhR/Nrf2 activation in pyrrolizidine alkaloids-induced sinusoidal obstruction syndrome. Cell Biosci. 13:127. doi: 10.1186/s13578-023-01078-4.
  • Shanmugasundaram K, Nayak BK, Friedrichs WE, Kaushik D, Rodriguez R, Block K. 2017. NOX4 functions as a mitochondrial energetic sensor coupling cancer metabolic reprogramming to drug resistance. Nat Commun. 8:997. doi: 10.1038/s41467-017-01106-1.
  • Shin WH, Chung KC. 2020. Human telomerase reverse transcriptase positively regulates mitophagy by inhibiting the processing and cytoplasmic release of mitochondrial PINK1. Cell Death Disease. 11:425. doi: 10.1038/s41419-020-2641-7.
  • Siddiqui R, Akbar N, Khan NA. 2021. Gut microbiome and human health under the space environment. J Appl Microbiol. 130:14–24. doi: 10.1111/jam.14789.
  • Sies H. 2015. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 4:180–183. doi: 10.1016/j.redox.2015.01.002.
  • Sies H. 2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 11:613–619. doi: 10.1016/j.redox.2016.12.035.
  • Sies H. 2020. Findings in redox biology: from H2O2 to oxidative stress. J Biol Chem. 295:13458–13473. doi: 10.1074/jbc.X120.015651.
  • Sies H, Jones DP. 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 21:363–383. doi: 10.1038/s41580-020-0230-3.
  • Singhapol C, Pal D, Czapiewski R, Porika M, Nelson G, Saretzki GC. 2013. Mitochondrial telomerase protects cancer cells from nuclear dna damage and apoptosis. PLoS One. 8:e52989. doi: 10.1371/journal.pone.0052989.
  • Singh R, Chandrashekharappa S, Bodduluri SR, Baby BV, Hegde B, Kotla NG, Hiwale AA, Saiyed T, Patel P, Vijay-Kumar M, et al. 2019. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun. 10:89. doi: 10.1038/s41467-018-07859-7.
  • Singh R, Singh RK, Mahdi AA, Singh RK, Kumar A, Tripathi AK, Rai R, Singh U, Cornélissen G, Schwartzkopff O, et al. 2003. Circadian periodicity of plasma lipid peroxides and other anti-oxidants as putative markers in gynecological malignancies. Vivo Athens Greece. 17:593–600.
  • Singh V, Yeoh BS, Xiao X, Kumar M, Bachman M, Borregaard N, Joe B, Vijay-Kumar M. 2015. Interplay between enterobactin, myeloperoxidase and lipocalin 2 regulates E. coli survival in the inflamed gut. Nat Commun. 6:7113. doi: 10.1038/ncomms8113.
  • Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, Dmitriev AA. 2019. ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev. 2019:1–17. doi: 10.1155/2019/6175804.
  • Solier S, Müller S, Cañeque T, Versini A, Mansart A, Sindikubwabo F, Baron L, Emam L, Gestraud P, Pantoș GD, et al. 2023. A druggable copper-signalling pathway that drives inflammation. Nature. 617:386–394. doi: 10.1038/s41586-023-06017-4.
  • Song J, Herrmann JM, Becker T. 2021. Quality control of the mitochondrial proteome. Nat Rev Mol Cell Biol. 22:54–70. doi: 10.1038/s41580-020-00300-2.
  • Song X, Long D. 2020. Nrf2 and ferroptosis: a new research direction for neurodegenerative diseases. Front Neurosci. 14. doi: 10.3389/fnins.2020.00267.
  • Šrejber M, Navrátilová V, Paloncýová M, Bazgier V, Berka K, Anzenbacher P, Otyepka M. 2018. Membrane-attached mammalian cytochromes P450: An overview of the membrane’s effects on structure, drug binding, and interactions with redox partners. J Inorg Biochem. 183:117–136. doi: 10.1016/j.jinorgbio.2018.03.002.
  • Stangherlin A, Reddy AB. 2013. Regulation of Circadian clocks by redox homeostasis*. J Biol Chem. 288:26505–26511. doi: 10.1074/jbc.R113.457564.
  • Stier A. 2021. Human blood contains circulating cell-free mitochondria, but are they really functional? Am J Physiol -Endocrinol Metab. 320:E859–E863. doi: 10.1152/ajpendo.00054.2021.
  • Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al. 2017. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. doi: 10.1016/j.cell.2017.09.021.
  • Strasser B, Wolters M, Weyh C, Krüger K, Ticinesi A. 2021. The Effects of lifestyle and diet on gut microbiota composition, inflammation and muscle performance in our aging society. Nutrients. 13:2045. doi: 10.3390/nu13062045.
  • Stukalov A, Girault V, Grass V, Karayel O, Bergant V, Urban C, Haas DA, Huang Y, Oubraham L, Wang A, et al. 2021. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature. 594:246–252. doi: 10.1038/s41586-021-03493-4.
  • Sullivan LB, Gui DY, Hosios AM, Bush LN, Freinkman E, Vander Heiden MG. 2015. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell. 162:552–563. doi: 10.1016/j.cell.2015.07.017.
  • Sun Q, Zeng C, Du L, Dong C. 2021. Mechanism of circadian regulation of the NRF2/ARE pathway in renal ischemia‑reperfusion. Exp Ther Med. 21:1. doi: 10.3892/etm.2021.9622.
  • Suomalainen A, Battersby BJ. 2018. Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol. 19:77–92. doi: 10.1038/nrm.2017.66.
  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, et al. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 397:441–446. doi: 10.1038/17135.
  • Susin SA, Zamzami N, Kroemer G. 1998. Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta BBA - Bioenerg. 1366:151–165. doi: 10.1016/S0005-2728(98)00110-8.
  • Szczepanowska K, Trifunovic A. 2021. Mitochondrial matrix proteases: quality control and beyond. FEBS J. 289:7128–7146. doi: 10.1111/febs.15964.
  • Tadokoro T, Ikeda M, Ide T, Deguchi H, Ikeda S, Okabe K, Ishikita A, Matsushima S, Koumura T, Yamada K, et al. 2020. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. 5. doi:10.1172/jci.insight.132747.
  • Tafuri F, Ronchi D, Magri F, Comi GP, Corti S. 2015. SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front Cell Neurosci. 9:336. doi: 10.3389/fncel.2015.00336.
  • Tamaru T, Hattori M, Ninomiya Y, Kawamura G, Varès G, Honda K, Mishra DP, Wang B, Benjamin I, Sassone-Corsi P, et al. 2013. ROS stress resets circadian clocks to coordinate pro-survival signals. PLoS One. 8:e82006. doi: 10.1371/journal.pone.0082006.
  • Tanaka H, Okazaki T, Aoyama S, Yokota M, Koike M, Okada Y, Fujiki Y, Gotoh Y. 2019. Peroxisomes control mitochondrial dynamics and the mitochondrion-dependent pathway of apoptosis. J Cell Sci Jcs. 224766. doi: 10.1242/jcs.224766.
  • Tang X, Yan Z, Miao Y, Ha W, Li Z, Yang L, Mi D. 2023. Copper in cancer: from limiting nutrient to therapeutic target. Front Oncol. 13. doi: 10.3389/fonc.2023.1209156.
  • Tartour K, Andriani F, Folco EG, Letkova D, Schneider R, Saidi I, Sato T, Welz P-S, Benitah SA, Allier C, et al. 2022. Mammalian PERIOD2 regulates H2A.Z incorporation in chromatin to orchestrate circadian negative feedback. Nature Structural & Molecular Biology. 29:549–562. doi: 10.1038/s41594-022-00777-9.
  • Taylor RW, Turnbull DM. 2005. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 6:389–402. doi: 10.1038/nrg1606.
  • Tedesco L, Rossi F, Ragni M, Ruocco C, Brunetti D, Carruba MO, Torrente Y, Valerio A, Nisoli E. 2020. A Special amino-acid formula tailored to boosting cell respiration prevents mitochondrial dysfunction and oxidative stress caused by doxorubicin in mouse cardiomyocytes. Nutrients. 12:282. doi: 10.3390/nu12020282.
  • Teramoto S, Tomita T, Matsui H, Ohga E, Matsuse T, Ouchi Y. 1999. Hydrogen peroxide-induced apoptosis and necrosis in human lung fibroblasts: protective roles of glutathione. Jpn J Pharmacol. 79:33–40. doi: 10.1254/jjp.79.33.
  • Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y. 2021. Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front Physiol. 12:627837. doi: 10.3389/fphys.2021.627837.
  • Todkar K, Ilamathi HS, Germain M. 2017. Mitochondria and Lysosomes: discovering bonds. Front Cell Dev Biol. 5:106. doi: 10.3389/fcell.2017.00106.
  • Tonazzi A, Giangregorio N, Console L, Palmieri F, Indiveri C. 2021. The mitochondrial Carnitine acyl-carnitine carrier (SLC25A20): molecular mechanisms of transport, role in redox sensing and interaction with drugs. Biomolecules. 11:521. doi: 10.3390/biom11040521.
  • Tonelli C, Chio IIC, Tuveson DA. 2018. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 29:1727–1745. doi: 10.1089/ars.2017.7342.
  • Torrens-Mas M, Pons D-G, Sastre-Serra J, Oliver J, Roca P. 2020. Sexual hormones regulate the redox status and mitochondrial function in the brain. Pathological Implications Redox Biol. 31:101505. doi: 10.1016/j.redox.2020.101505.
  • Trisolini L, Laera L, Favia M, Muscella A, Castegna A, Pesce V, Guerra L, De Grassi A, Volpicella M, Pierri CL. 2021. Differential expression of ADP/ATP carriers as a biomarker of metabolic remodeling and survival in kidney cancers. Biomolecules. 11:38. doi: 10.3390/biom11010038.
  • Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al. 2022. Copper induces cell death by targeting lipoylated TCA cycle proteins. Sci. 375:1254–1261. doi: 10.1126/science.abf0529.
  • Tyagi S, Tyagi S, Sathnur S, Sen U, Akinterinwa O, Zheng Y, Mokshagundam S, Singh M. 2023. Role of the circadian clock system in trans-sulfuration pathway and tissue remodeling. Physiology. 38:5732949. doi: 10.1152/physiol.2023.38.S1.5732949.
  • Vergeade A, Mulder P, Vendeville C, Ventura-Clapier R, Thuillez C, Monteil C. 2012. Xanthine oxidase contributes to mitochondrial ROS generation in an experimental model of cocaine-induced diastolic dysfunction. J Cardiovasc Pharmacol. 60:538–543. doi: 10.1097/FJC.0b013e318271223c.
  • Verma M, Lizama BN, Chu CT. 2022. Excitotoxicity, calcium and mitochondria: a triad in synaptic neurodegeneration. Transl Neurodegener. 11:3. doi: 10.1186/s40035-021-00278-7.
  • Vezza T, Abad-Jiménez Z, Marti-Cabrera M, Rocha M, Víctor VM. 2020. Microbiota-mitochondria inter-talk: a potential therapeutic strategy in obesity and type 2 diabetes. Antioxidants. 9:848. doi: 10.3390/antiox9090848.
  • Voigt RM, Summa KC, Forsyth CB, Green SJ, Engen P, Naqib A, Vitaterna MH, Turek FW, Keshavarzian A. 2016. The Circadian Clock mutation promotes intestinal dysbiosis. Alcohol Clin Exp Res. 40:335–347. doi: 10.1111/acer.12943.
  • Voorhies AA, Mark Ott C, Mehta S, Pierson DL, Crucian BE, Feiveson A, Oubre CM, Torralba M, Moncera K, Zhang Y, et al. 2019. Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome. Sci Rep. 9:9911. doi: 10.1038/s41598-019-46303-8.
  • Wallace DC. 2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 39:359. doi: 10.1146/annurev.genet.39.110304.095751.
  • Wallace DC. 2013. A mitochondrial bioenergetic etiology of disease. J Clin Invest. 123:1405–1412. doi: 10.1172/JCI61398.
  • Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AMS, Elsas LJ, Nikoskelainen EK. 1988. Mitochondrial DNA mutation associated with leber’s hereditary optic Neuropathy. Science. 242:1427–1430. doi: 10.1126/science.3201231.
  • Wang G, Fan Y, Cao P, Tan K. 2022. Insight into the mitochondrial unfolded protein response and cancer: opportunities and challenges. Cell Biosci. 12:18. doi: 10.1186/s13578-022-00747-0.
  • Wang Y, Zhang X, Yao H, Chen X, Shang L, Li P, Cui X, Zeng J. 2022. Peroxisome-generated succinate induces lipid accumulation and oxidative stress in the kidneys of diabetic mice. J Biol Chem. 298:101660. doi: 10.1016/j.jbc.2022.101660.
  • Wible RS, Ramanathan C, Sutter CH, Olesen KM, Kensler TW, Liu AC, Sutter TR. 2018. NRF2 regulates core and stabilizing circadian clock loops, coupling redox and timekeeping in Mus musculus. eLife. 7:e31656. doi: 10.7554/eLife.31656.
  • Wibom R, Lasorsa FM, Töhönen V, Barbaro M, Sterky FH, Kucinski T, Naess K, Jonsson M, Pierri CL, Palmieri F, et al. 2009. AGC1 deficiency associated with global cerebral hypomyelination. N Engl J Med. 361:489–495. doi: 10.1056/NEJMoa0900591.
  • Wiehe RS, Gole B, Chatre L, Walther P, Calzia E, Ricchetti M, Wiesmüller L. 2018. Endonuclease G promotes mitochondrial genome cleavage and replication. Oncotarget. 9:18309–18326. doi: 10.18632/oncotarget.24822.
  • Wu D, Hu Q, Zhu D. 2018. An update on hydrogen sulfide and nitric oxide interactions in the cardiovascular system. Oxid Med Cell Longev. 2018:1–16. doi: 10.1155/2018/4579140.
  • Wu R, Li S, Hudlikar R, Wang L, Shannar A, Peter R, Chou PJ, Kuo H-CD, Liu Z, Kong A-N. 2022. Redox signaling, mitochondrial metabolism, epigenetics and redox active phytochemicals. Free Radic Biol Med. 179:328–336. doi: 10.1016/j.freeradbiomed.2020.12.007.
  • Wu S, Lu H, Bai Y. 2019. Nrf2 in cancers: a double-edged sword. Cancer Med. 8:2252–2267. doi: 10.1002/cam4.2101.
  • Wu P, Zhang X, Duan D, Zhao L. 2023. Organelle-specific mechanisms in crosstalk between apoptosis and ferroptosis. Oxid Med Cell Longev. 2023:3400147. doi: 10.1155/2023/3400147.
  • Wu B, Zhao TV, Jin K, Hu Z, Abdel MP, Warrington KJ, Goronzy JJ, Weyand CM. 2021. Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nat Immunol. 22:1551–1562. doi: 10.1038/s41590-021-01065-2.
  • Xia M, Zhang Y, Jin K, Lu Z, Zeng Z, Xiong W. 2019. Communication between mitochondria and other organelles: a brand-new perspective on mitochondria in cancer. Cell Biosci. 9:27. doi: 10.1186/s13578-019-0289-8.
  • Yan B, Ai Y, Sun Q, Ma Y, Cao Y, Wang J, Zhang Z, Wang X. 2021. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol Cell. 81:355–369.e10. doi: 10.1016/j.molcel.2020.11.024.
  • Yang X, Wang H, Huang C, He X, Xu W, Luo Y, Huang K. 2017. Zinc enhances the cellular energy supply to improve cell motility and restore impaired energetic metabolism in a toxic environment induced by OTA. Sci Rep. 7:14669. doi: 10.1038/s41598-017-14868-x.
  • Ye R, Selby CP, Chiou Y-Y, Ozkan-Dagliyan I, Gaddameedhi S, Sancar A. 2014. Dual modes of CLOCK: BMAL1 inhibition mediated by cryptochrome and Period proteins in the mammalian circadian clock. Genes Dev. 28:1989–1998. doi: 10.1101/gad.249417.114.
  • Yin W, Wang C, Peng Y, Yuan W, Zhang Z, Liu H, Xia Z, Ren C, Qian J. 2020. Dexmedetomidine alleviates H2O2-induced oxidative stress and cell necroptosis through activating of α2-adrenoceptor in H9C2 cells. Mol Biol Rep. 47:3629–3639. doi: 10.1007/s11033-020-05456-w.
  • Yoo HC, Yu YC, Sung Y, Han JM. 2020. Glutamine reliance in cell metabolism. Exp. Mol. Med. 52:1496–1516. doi: 10.1038/s12276-020-00504-8.
  • Zhang Y, Li Y, Barber AF, Noya SB, Williams JA, Li F, Daniel SG, Bittinger K, Fang J, Sehgal A. 2023. The microbiome stabilizes circadian rhythms in the gut. Proc Natl Acad Sci. 120:e2217532120. doi: 10.1073/pnas.2217532120.
  • Zhang Y, Peng L, Song W. 2020. Mitochondria hyperactivity contributes to social behavioral impairments. Signal Transduct Target Ther. 5:126. doi: 10.1038/s41392-020-00239-y.
  • Zhang G, Sheng M, Wang J, Teng T, Sun Y, Yang Q, Xu Z. 2018. Zinc improves mitochondrial respiratory function and prevents mitochondrial ROS generation at reperfusion by phosphorylating STAT3 at Ser727. J Mol Cell Cardiol. 118:169–182. doi: 10.1016/j.yjmcc.2018.03.019.
  • Zhang Y, Wong HS. 2021. Are mitochondria the main contributor of reactive oxygen species in cells? J Exp Biol. 224:jeb221606. doi: 10.1242/jeb.221606.
  • Zhang S, Xin W, Anderson GJ, Li R, Gao L, Chen S, Zhao J, Liu S. 2022. Double-edge sword roles of iron in driving energy production versus instigating ferroptosis. Cell Death Disease. 13:1–13. doi: 10.1038/s41419-021-04490-1.
  • Zhang S, Zhao Y, Ohland C, Jobin C, Sang S. 2019. Microbiota facilitates the formation of the aminated metabolite of green tea polyphenol (-)-epigallocatechin-3-gallate which trap deleterious reactive endogenous metabolites. Free Radic Biol Med. 131:332–344. doi: 10.1016/j.freeradbiomed.2018.12.023.
  • Zhao T-X, Wei Y-X, Wang J-K, Han L-D, Sun M, Wu Y-H, Shen L-J, Long C-L, Wu S-D, Wei G-H. 2020. The gut-microbiota-testis axis mediated by the activation of the Nrf2 antioxidant pathway is related to prepuberal steroidogenesis disorders induced by di-(2-ethylhexyl) phthalate. Environ Sci Pollut Res. 27:35261–35271. doi: 10.1007/s11356-020-09854-2.
  • Zhao F, Zou M-H. 2021. Role of the mitochondrial protein import machinery and protein processing in heart disease. Front Cardiovasc Med. 8. doi: 10.3389/fcvm.2021.749756.
  • Zheng J, Chen X, Liu Q, Zhong G, Zhuang M. 2021. Ubiquitin ligase MARCH5 localizes to peroxisomes to regulate pexophagy. J Cell Biol. 221:e202103156. doi: 10.1083/jcb.202103156.
  • Zheng F, Gonçalves FM, Abiko Y, Li H, Kumagai Y, Aschner M. 2020. Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol. 34:101475. doi: 10.1016/j.redox.2020.101475.
  • Zheng Q, Huang J, Wang G. 2019. Mitochondria, telomeres and telomerase subunits. Front Cell Dev Biol. 7:274. doi: 10.3389/fcell.2019.00274.
  • Zhu D, Wu X, Zhou J, Li X, Huang X, Li J, Wu J, Bian Q, Wang Y, Tian Y. 2020. NuRD mediates mitochondrial stress–induced longevity via chromatin remodeling in response to acetyl-CoA level. Sci Adv. 6:eabb2529. doi: 10.1126/sciadv.abb2529.
  • Zhu L, Zhou Q, He L, Chen L. 2021. Mitochondrial unfolded protein response: an emerging pathway in human diseases. Free Radic Biol Med. 163:125–134. doi: 10.1016/j.freeradbiomed.2020.12.013.
  • Zinghirino F, Pappalardo XG, Messina A, Nicosia G, De Pinto V, Guarino F. 2021. VDAC genes expression and regulation in mammals. Front Physiol. 12:708695. doi: 10.3389/fphys.2021.708695.
  • Zischka H, Einer C. 2018. Mitochondrial copper homeostasis and its derailment in Wilson disease. Int J Biochem Cell Biol. 102:71–75. doi: 10.1016/j.biocel.2018.07.001.