1,011
Views
268
CrossRef citations to date
0
Altmetric
Research Article

Phytases: Microbial Sources, Production, Purification, and Potential Biotechnological Applications

&
Pages 29-60 | Published online: 29 Sep 2008

REFERENCES

  • Abelson, P. H. 1999. A potential phosphate crisis. Science 283: 2015.
  • Al-Asheh, S. and Duvnjak, Z. 1994. The effect of surfactants on the phytase production and the reduction of the phytic acid content in canola meal by Aspergillus carbonarius during solid-state fermentation process. Biotechnol. Lett. 16(2): 183–188.
  • Al-Asheh, S. and Duvnjak, Z. 1995. Phytase production and decrease of phytic acid content in canola meal by Aspergillus carbonarius in solid-state fermentation. World J. Microbiol. Biotechnol. 11: 228–231.
  • Amano pharmaceuticals 1995. Novel phytase. Japan Pat. 07 067 635.
  • Anno, T., Nakanishi, K., Matsuno, R., and Kamikubo, T. 1985. Enzymatic elimination of phytate in soybean milk. J. Japan Soc. Food Sci. Technol. 32: 174–180.
  • Bali, A. and Satyanarayana, T. 1997. Production and potential application of fungal Phytases. Proceedings of National Symposium on Fungi in Diversified Habitats. Osmania University, Hyderabad. July 12–13 1997, pp. 1–5.
  • Bali, A. and Satyanarayana, T. 1999. Microbial Phytases in Food Biotechnology. In: Microbial Biotechnology. pp. 93–110. Gupta, R. and Chamola, B. P., Eds., A.P.H Publishing Corporation.
  • Bali, A. and Satyanarayana, T. 2001. Microbial phytases in nutrition and combating phosphorus pollution. Everyman’s Sci. 4: 207–209.
  • Berka, R. M., Rey, M. W., Brown, K. M., Byun, T., and Klotz, A. V. 1998. Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl. Environ. Microbiol. 64: 4423–4427.
  • Berridge, M. J. and Irvine, R. F. 1989. Inositol phosphates and cell signalling. Nature 341: 197–205.
  • Billington, D. C. 1993. The Inositol Phosphates. Chemical Synthesis and Biological Significance. Verlag Chemie, Weinham.
  • Bitar, K. and Reinhold, J. G. 1972. Phytase and alkaline phosphatase activities in intestinal mucosae of rat, chicken, calf and man. Biochim. Biophys. Acta 268: 442–452.
  • Brocades. 1991a. DNA sequence encoding phytase. Pat. EP 420 358.
  • Brocades. 1991b. Production of phytase in transgenic plant or plant organ. Pat. EP 449 375.
  • Caransa, A., Simell, M., Lehmussari, M., Vaara, M., and Vaara, T. 1988. A novel enzyme application in corn wet milling. Starch 40: 409–411.
  • Carmovale, E., Lugaro, E., and Lombardi-Boccia, G. 1988. Phytic acid in faba bean and pea: effect on protein availability. Cereal Chem. 65(2): 114–117.
  • Casida, L. E. Jr. 1959. Phosphatase activity of some common soil fungi. Soil Sci. 87: 305–310.
  • Chang, C. W. 1967. Study of phytase and fluoride effects in germinating corn seeds. Cereal Chem. 44: 129–142.
  • Chen, C., Hunag, C., and Cheng, K. 2001. Improvement of phytase thermostability by using sorghum liquor wastes supplemented with starch. Biotechnol. Lett. 23: 331–333.
  • Cosgrove, D. J. 1969. Ion exchange chromatography of inositol polyphosphates. Ann. N. Y. Acad. Sci. 165: 677–686.
  • Cosgrove, D. J. 1970. Inositol phosphates of microbial origin. Inositol phosphate intermediates in the dephosphorylation of the hexaphosphates of myoinositol, scyllo-inositol, and D-chiro-inositol by a bacterial (Pseudomonas sp.) phytase. Austral. J. Biol. Sci. 23: 1207–1220.
  • Cromwell, G. L., Coffey, R. D., Parker, G. R., Monegue, H. J., and Randolph, J. H. 1995a. Efficacy of low activity microbial phytase in improving the bioavailability of phosphorus in corn-soybean meal diets for pigs. J. Animal Sci. 73: 449–456.
  • Cromwell, G. L., Coffey, R. D., Parker, G. R., Monegue, H. J., and Randolph, J. H. 1995b. Efficacy of a recombinant derived phytase in improving the bioavailability of phosphorus in corn-soybean meal diets for pigs. J. Animal Sci. 73: 2000–2008.
  • Cromwell, G. L., Stahly, T. S., Coffey, R. D., Monegue, H. J., and Randolph, J. H. 1993. Efficacy of phytase in improving the bioavailability of phosphorus in soybean meal and corn-soybean meal diets for pigs. J. Animal Sci. 71: 1831–1840.
  • Dalal, R. C. 1978. Soil organic phosphorus. Adv. Agronom. 29: 83–117.
  • Dassa, E., Marek, C., and Boquet, P. L. 1990. The complete nucleotide sequence of the E. coli gene app A reveals significant homology between pH 2.5 optimum acid phosphatase and glucose-1-phosphatase. J. Bacteriol. 172: 5497–5500.
  • Davies, N. T. and Nightingale, R. 1975. The effects of phytate on intestinal absorption and secretion of zinc and whole body retention of zinc, copper, iron and manganese in rats. Br. J. Nutr. 34: 243–258.
  • Day, P. R. 1996. Genetic modification of plants: significant issues and hurdles to success. Am. J. Clin. Nutr. 63: 651S-656S.
  • De Boland, A. R., Garner, G. B., and O’Dell, B. L. 1975. Identification and properties of “phytate” in cereal grains and oilseed products. J. Agric. Food Chem. 23 : 1186–1189.
  • Dvorakova, J. 1998. Phytase: Sources, preparation and exploitation. Folia Microbiol. 43(4): 323–338.
  • Ebune, A., Al-Asheh, S., and Duvnjak, Z. 1995. Effect of phosphate, surfactants and glucose on phytase production and hydrolysis of phytic acid in canola meal by Aspergillus ficuum during solid state fermentation. Biores. Technol. 54: 241–247.
  • Ehrlich, K. C., Montalbano, B. G., Mullaney, E. J., Dischinger, H. C., Jr., and Ullah, A. H. J. 1993. Identification and cloning of a second phytase gene (phy B) from Aspergillus niger (ficuum). Biochem. Biophys. Res. Commun. 195: 53–57.
  • Eskin, N. A. M. and Wiebe, S. 1983. Changes in phytate activity and phytase during germination of two fababean cultivars. J. Food Sci. 48: 270–271.
  • Fardiaz, D. and Markakis, P. 1981. Degradation of phytic acid in oncom (fermented peanut press cake). J. Food Sci. 46: 523–525.
  • Findenegg, G. R. and Nelemans, J. A. 1993. The effect of phytase on the availability of P from myoinositol hexaphosphate (phytate) for maize roots. Plant Soil 154: 189–196.
  • Finnish National Public Health Institute. 1994. Grampositive bacterial expression system for enhanced secretion of exoproteins. Pat. WO 9 419 471.
  • Frolich, W. 1990. Chelating properties of dietary fibre and phytate. The role for mineral availability. Adv. Exp. Med. Biol. 270: 83–93.
  • Galzy, P. 1964. Etude genetique et physiologique du metabolism de l’acide Lactique chez Saccharomyces cerevisiae. Hansen. Ann. Technol. Agric. 13: 109–259.
  • Ghareib, M. 1990. Biosynthesis, purification and some properties of extracellular phytase from Aspergillus carneus. Acta. Microbiol. Hung. 37 (2): 159–64.
  • Ghosh, S. 1997. Phytase of a thermophilic mould Sporotrichum thermophile Apinis. M.Sc dissertation, Department of Microbiology, University of Delhi, Delhi.
  • Gibson, D. M. 1987. Production of extracellular phytase from Aspergillus ficuum on starch media. Biotechnol. Lett. 5: 305–310.
  • Gibson, D. M. and Ullah, A. H. J. 1990. Phytases and their action in phytic acid. In: Inositol Metabolism in Plants. pp. 77–92. Wiley-Liss, Chichester.
  • Golovan, S. P., Hayes, M. A., Phillips, J. P., and Forsberg, C. W. 2001. Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nature Biotech. 19: 429–433.
  • Greaves, M. P., Anderson, G., and Webley, D. M. 1967. The hydrolysis of inositol phosphates by Aerobacter aerogenes. Biochim. Biophys. Acta 132: 412–418.
  • Greene, D. A., De Jesus, P. V., and Winegrad, A. I. 1975. Effcts of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J. Clin. Invest. 55: 1326–1336.
  • Greiner, R., Haller, E., Konietzny, U., and Jany, K. D. 1997. Purification and characterization of phytase from Klebsiella terrigena. Arch. Biochem. Biophys. 341: 201–206.
  • Greiner, R. and Konietzny, U. 1996. Construction of a bioreactor to produce special breakdown products of phytate. J. Biotechnol. 48: 153–159.
  • Greiner, R., Konitzny, U., and Jany, K. D. 1993. Purification and characterization of two phytases from Escherchia coli. Arch. Biochem. Biophys. 303: 107–113.
  • Gutknecht, K. 1997. Green genes: Alfalfa biofarming is about to take root. Wisconsin Agriculturist, Mid-March, pp. 8–10
  • Ha, N. C., Kim, Y. O., Oh, T. K., and Oh, B. H. 1999. Preliminary X-ray crystallographic analysis of a novel phytase from a Bacillus amyloliquefaciens strain. Acta crystallogr. D. Biol. Crystallogr. 55: 691–693.
  • Han, Y. W. 1988. Removal of phytic acid from soybean and cotton seed meals by A. ficuum phytase. J. Agric. Food Chem. 36: 1181–1183.
  • Han, Y. W. and Gallagher, D. J. 1987. Phytase production by Aspergillus ficuum on semi-solid substrate. J. Ind. Microbiol. 2: 195–200.
  • Han, Y., Wilson, D. B., and Lei, X. G. 1999. Expression of an Aspergillus niger phytase gene (phy A) in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 65 (5): 1915–1918.
  • Harland, B. F. and Morris, E. R. 1995. Phytate: A good or a bad food component. Nutr. Res. 15(5): 733–754.
  • Hemrika, W., Renirie, R., Dekker, H. L., Barnett, P., and Weaver, R. 1997. From phosphatases to vanadium peroxidases: A similar architechture of the active site. Proc. Natl. Acad. Sci. USA 94: 2145–2149.
  • Howson, S. J. and Davis, R. P. 1983. Production of phytate hydrolysing enzymes by some fungi. Enz. Microb. Technol. 5: 377–389.
  • Ichibiki. 1995. Phytase and its preparation. Japan Pat. 07 059 562.
  • Igbal, T. H., Lewis, K. O., and Cooper B. T. 1994. Phytase activity in the human and rat small intestine. Gut 35: 1233–236.
  • Irving, G. C. J. and Cosgrove, D. J. 1971. Inositol phosphate phosphatases of microbiological origin. Some properties of a partially purified bacterial (Pseudomonas sp.) phytase. Aust. J. Biol. Sci. 24: 547–557.
  • Irving, G. C. J. and Cosgrove, D. J. 1974. Inositol phosphate phosphatases of microbiological origin. Some properties of the partially purified phosphatases of Aspergillus ficuum NRRL 3135. Aust. J. Biol. Sci. 27: 361–368.
  • Jareonkitmongkol, S., Ohya, M., Watanbe, R., Takagi, H., and Nakamori, S. 1997. Partial purification of phytase from a soil isolate bacterium, Klebsiella oxytoca MO-3. J. Ferm. Bioeng. 83 (4): 393–394.
  • Johnson, L. F. and Tate, M. E. 1969. The structure of myo-inositol pentaphosphates. Ann. N. Y. Acad. Sci. 165: 526–532.
  • Kerovuo, J., Lappalainen, I., and Reinikainen, T. 2000. The metal dependence of Bacillus subtilis phytase. Biochim. Biophys. Res. Commun. 268 (2): 365–9.
  • Kerovuo, J., Lauraeus, M., Nurminen, P., Kalkkinen, N., and Apajalahti, J. 1998. Isolation, characterization, molecular gene cloning and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol. 64: 2079–2085.
  • Khare, S. K., Jha, K., and Gupta, M. N. 1994. Entrapment of wheat phytase in polyacrylamide gel and its application in soy milk phytate hydrolysis. Biotechnol. Appl. Biochem. 19: 193–198.
  • Kim, Y. O., Kim, H. K., Bae, K. S., Yu, J. H., and Oh, T. K. 1998. Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enz. Microb. Technol. 22: 2–7.
  • Knorr, D., Watkins, T. R., and Carlson, B. L. 1981 Enzymatic reduction of phytate in whole wheat breads. J. Food Sci. 46: 1866–1869.
  • Kostrewa, D., Gruninger-Leitch, F., D’Arcy, A., Broger, C., Mitchell, D., and van Loon, A. P. G. M. 1997. Crystal structure of phytase from Aspergillus ficuum at 2.5 Å resolution. Nat. Struct. Biol. 4: 185–190.
  • Laboure, A. M., Gagnon, J., and Lescure, A. M. 1993. Purification and characterization of a phytase (myoinositol hexakisphosphate phosphohydrolase) accumulated in maize (zea mays) seedlings during germination. Biochem. J. 295: 413–419.
  • Lambrechts, C., Boze, H., Moulin, G., and Galzy, P. 1992. Utilization of phytate by some yeasts. Biotechnol. Lett. 14(1): 63–66.
  • Lamosa, P., Burke, A., Peist, R., Huber, R., Liu, M. Y., Silva, G. , Rodrigues-Pousada, C., Legall, J., Maycock, C., and Santos, H. 2000. Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus. Appl. Environ. Microbiol. 66: 1974–1979.
  • Lassen, S. F., Bech, L., Fuglsang, C. C., Breinholt, J., Ohmann, A., and Ostergaard, P. R. 1997. “Phytase polypeptides.” International patent application, No. W098/28408.
  • Laumen, K. and Ghisalba, O. 1994. Preparative scale chemo enzymatic synthesis of optically pure d-myo-inositol 1–phosphate. Biosci. Biotech. Biochem. 58: 2046–2049.
  • Li, J., Hegeman, C. E., Hanlon, R. W., Lacy, G. H., Denbow, D. M., and Grabau, E. A. 1997. Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol. 114: 19.
  • Liu, B., Rafiq, A., Tzeng, Y., and Rob, A. 1998. The induction and characterization of phytase and beyond. Enz. Microb. Technol. 22: 415–424.
  • Maga, J. A. 1982. Phytate: its chemistry, occurrence, food interactions, nutritional significance, and methods of analysis. J. Agric. Food Chem. 30: 1–9.
  • Maugenest, S., Martinez, I., and Lescure, A. M. 1997. Cloning and characterization of a cDNA encoding a maize seedling phytase. Biochem. J. 322: 511–517.
  • Mayer, A. F., Hellmuth, K., Schlieker, H., Lopez – Ulibarri, R., Oertel, S., Dahlems, U., Strasser, A. W., and van Loon, A. P. 1999. An expression system matures: a highly efficient and cost effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol. Bioeng. 63(3): 373–381.
  • Mc collum, E. V. and Hart, E. B. 1908. On the occurrence of a phytin splitting enzyme in animal tissue. J. Biol. Chem. 4: 497–500.
  • Mellanby, E. 1949. The rickets producing and anticalcifying action of phytate. J. Physiol. (London) 109: 488–493.
  • Mitchell, D. B., Vogel, K., Weimann, B. J., Pasamontes, L., and van Loon, A. P. 1997. The phytase subfamily of histidine acid phosphatase; isolation of genes for two novel phytases from the Aspergillus terreus and Myceliophthora thermophila. Microbiology. 143: 245–252.
  • Mohanna, C. and Nys, Y. 1999. Changes in zinc and manganese availability in broiler chicks induced by vegetal and microbial phytases. Anim. Feed Sci. Technol. 77: 241–253.
  • Moore, E., Helly, V. R., Conneely, O. M., Ward, P. P., Power, R. F., and Headon, D. R. 1995. Molecular cloning, expression and evaluation of phosphohydrolases for phytate degrading activity. J. Ind. Microbiol. 14: 396–402.
  • Mullaney, E. J., Daly, C. B., and Ullah, A. H. J. 2000. Advances in phytase research. Adv. Appl. Microbiol. 47: 157–199.
  • Mullaney, E. J., Gibson, D. M., and Ullah, A. H. J. 1991. Positive identification of a X gt11 clone containing a region of fungal phytase gene by immunoprobe and sequence verification. Appl. Microbiol. Biotechnol. 35: 611–614.
  • Mwachireya, S. A., Beames, R. M., Higgs, D. A., and Dosanjh, B. S. 1999. Digestibility of canola protein products derived from the physical, enzymatic and chemical processing of commercial canola meal in rainbow trout Oncorhynchus mykiss (Walbaum) held in fresh water. Aquacul. Nutr. 5: 73–82.
  • Nakamura, Y., Fukuhara, H., and Sano, K. 2000. Secreted phytase activities of yeasts. Biosci. Biotechnol. Biochem. 64 (4): 841–844.
  • Nair, V. C. and Duvnjak, Z. 1990. Reduction of phytic acid content in canola meal by Aspergillus ficuum in solid state fermentation process. Appl. Microbiol. Biotechnol. 34: 183–188.
  • Nair, V. C., Laflamme, J., and Duvnjak, Z. 1991. Production of phytase by Aspergillus ficuum and reduction of phytic acid content in canola meal. J. Sci. Food Agric. 54: 356–365.
  • Nayini, N. R. and Markakis, P. 1984. The phytase of yeast. Lebensm. Wiss. Technol. 17: 24–26.
  • Nelson, T. S. 1967. The utilization of phytate phosphorus by poultry. Poult. Sci. 46: 862–871.
  • Nelson, T. S., Sheih, T. R., Wodzinski, R. J., and Ware, J. H. 1971. Effect of supplement phytase on the utilizaion of phytate phosphorus by chicks. J. Nutr. 101: 1289–1294.
  • Nelson, T. S., Shieh, T. R., Wodzinski, R. J., and Ware, J. H. 1968. The availability of phytate phosphorus in soybean meal before and after treatment with a mold phytase. Poult. Sci. 47: 1842–1848.
  • Ngashima, T., Tange, T., and Anazawa, H. 1999. Dephosphorylation of phytate by using Aspergillus niger phytase with a high affinity for phytate. Appl. Environ. Microbiol. 65(10): 4682–4684.
  • Novo Nordisk A/S. 1999. New phytase could make a world of difference. BioTimes 14(3): 6–7.
  • O’Dell, B. L. and Savage, J. E. 1960. Effect of phytic acid on zinc availability. Proc. Soc. Exp. Biol. Med. 103: 304.
  • O’Quinn, P. R., Knabe, D. A., and Gregg, E. J. 1997. Efficacy of Natuphos in sorghum-based diets of finishing swine. J. Anim. Sci. 75: 1299–1307.
  • Ostanin, K., Harms, E., Stevis, P. E., Kuciel, R., Zhou, M. M., and van Etten, R. L. 1992. Overexpression, site directed mutagenesis, and mechanism of Escherichia coli acid phosphatase. J. Biol. Chem. 267: 22830–22836.
  • Panda, A. K., Reddy, M. R., Rao, S. V. R., and Praharaj, N. K. 1998. The role of yeast culture Saccharomyces cerevisiae as feed additive in poultry. Poult. Punch. 25–27.
  • Pasamontes, L., Haiker, M., Wyss, M., Tessier, M., and van Loon, A. P. G. M. 1997. Gene cloning, purification and characterization of a heat stable phytase from the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 63(5): 1696–1700.
  • Patwardhan, V. N. 1937. The occurrence of a phytin splitting enzyme in the intestines of albino rats. Biochem. J. 31: 560–564.
  • Pen, J., Verwoerd, T. C., van Paridon, P.A., Beudeker, R. F., and van den Elzen, P. J. M. 1993. Phytase containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Bio/Technol. 11: 811–814.
  • Pen, J., Verwoerd, T. C., van Paridon, P.A., van Coyen, A. J. J., van den Elzen, P. J. M., and Hoekema, A. 1994. Production of high value proteins in plants. J. Cell. Biochem. 18A: 77.
  • Pfeffer, E. 1993. cited in D. C. Billington: The Inositol Phosphates. Chemical Synthesis and Biological Significance. Verlag Chemie, Weinheim.
  • Piddington, C. S., Houston, C. S., Palobeimo, M., Cantrell, M., Micttinen-Oinonen, A., Nevalinen, H., and Ram Bosek, J. 1993. The cloning and sequencing of the genes encoding phytase (phyA) and pH 2.5 optimum acid phosphatase (aph) from Aspergillus niger var. awamorii. Gene 133: 5562.
  • Posternak 1903. Compt. Rend. 137, 202. Phytase. In: Advances in Applied Microbiology, 1996. 42: 263–302.
  • Powar, V. K. and Jagannathan, V. 1967. Phytase from Bacillus subtilis. Indian J. Biochem. 4: 184–185.
  • Powar, V. K. and Jagannathan, V. 1982. Purification and properties of phytate specific phosphatase from Bacillus subtilis. J. Bacteriol. 151: 1102–1108.
  • Quan, C. S., Zhang, L. H., Wang, Y. J., and Ohta, Y. Y. 2001. Production of phytase in a low phosphate medium by a novel yeast Candida krusei. J. Biosci. Bioeng. 92(2): 154–160.
  • Raboy, V. and Gerbasi, P. 1996. Genetics of myoinositol phosphate synthesis and accumulation. In “Subcellular Biochemistry.” Vol. 26: myoinositol phosphates, phosphoinositides, and signal transduction, pp. 257–285. Biswas, B. B., and Biswas, S., Eds., Plenum Press, New York.
  • Rapoport, S., Leva, E., and Guest, G. M. 1941. Phytase in plasma and erythrocytes of vertebrates. J. Biol. Chem. 139: 621–632.
  • Robinson, E. H., Jackson, S., and Li, M. H. 1996. Supplemental phytase in catfish diets. Aquacul. Mag. 22: 80–82.
  • Rodriguez, E., Mullaney, E. J., and Lei, X. G. 2000. Expression of Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of recombinant enzyme. Biochem. Biophys. Res. Commun. 268 (2): 373–8.
  • Rodriguez, E., Porres, J. M., Han, Y., and Lei, X. G. 1999. Different sensitivity of recombinant Aspergillus niger (r-Phy A) and Escherichia coli pH 2.5 acid phosphatase (r-AppA) to trypsin and pepsin in vitro. Arch. Biochem. Biophys. 365(2): 262–267.
  • Rumsey, G. L. 1993. Fish meal and alternate sources of protein in fish feeds: Update, Fisheries 18: 14–19.
  • Sandberg, A. S., Hulthen, L. R., and Turk, M. 1996. Dietary Aspergillus niger phytase increases iron absorption in humans. J. Nutr. 126: 476–480.
  • Sandberg, A. S., Larsen, T., and Sandstorm, B. 1993. High dietary calcium level decreases phytate degradation in pigs fed a rapeseed diet. J. Nutr. 123: 559–566.
  • Sano, K., Fukuhara, H., and Nakamura, Y. 1999. Phytase of the yeast Arxula adeninivorans. Biotechnol. Lett. 21: 33–38.
  • Scott, N. and Steven, D. 2000. Engineering a disulfide bond in recombinant manganese peroxidase results in increased thermostability. Biotechnol. Prog. 16: 326–333.
  • Sebastian, S., Touchburn, S. P., Chavez, E. R., and Lague, P. C. 1996. The effect of supplemental phytase on the performance and utilization of dietary calcium, phosphorus, copper and zinc in broiler chickens fed corn soybean diets. Poult. Sci. 76: 729–736.
  • Segueilha, L., Lambrechts, C., Boze, H., Moulin, G., and Galzy, P. 1992. Purification and properties of the phytase from Schwanniomyces castellii. J. Ferment. Bioeng. 74(1): 7–11.
  • Segueilha, L., Moulin, G., and Galzy, P. 1993. Reduction of phytate content in wheat bran and glandless cotton flour by Schwanniomyces castellii. J. Agric. Food Chem. 41: 2451–2454
  • Shieh, T.R. and Ware, J. H. 1968. Survey of microorganisms for the production of extracellular phytase. Appl. Microbiol. 169(9): 1348–1351.
  • Shieh, T. R., Wodzinski, R. J., and Ware, J. H. 1969. Regulation of the formation of acid phosphatase by inorganic phosphate in Aspergillus ficuum. J. Bacteriol. 100: 1161–1165.
  • Shimizu, M. 1992. Purification and characterization of phytase from Bacillus subtilis (natto) N-77. Biosci. Biotechnol. Biochem. 56(8): 1266–1269.
  • Simell, M., Turunen, M., Piironen, J., and Vaara, T. 1989. Feed and food applications of phytase. Lecture at 3rd Meet. Industrial Applications of Enzymes, Barcelona (Spain).
  • Simons, P. C. M., Versteegh, H. A. J., Jongbloed, A. W., Kemme, P. A., Slump, P., Bos, K. D., Wolters, M. G. E., Beudeker, R. F., and Verschoor, G. J. 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br. J. Nutr. 64: 525–540.
  • Siren, M. 1986a. Stabilized pharmaceutical and biological material composition. Pat. SE 003 165.
  • Siren, M. 1986b. New myo-inositol triphosphoric acid isomer. Pat. SW 052 950.
  • Skowronaski, T. 1978. Some properties of partially purified phytase from Aspergillus niger. Acta Micro. Pol. 27: 41–48.
  • Spitzer, R. S. and Phillips, P. H. 1972. Cited in K. Bitar, J. G. Reinhold. Phytase and alkaline phosphatase activities in intestinal mucosae of rat, chicken, calf and man. Biochim. Biophys. Acta 268: 442–452.
  • Sreeramulu, G., Srinivasa, D. S., Nand, K., and Joseph, R. 1996. Lactobacillus amylovorus as a phytase producer in submerged culture. Lett. Appl. Microbiol. 23: 385–388.
  • Stahl, C. H., Roneker, K. R., Thornton, J. R., and Lei, X. G. 2000. A new phytase in yeast effectively improves the bioavailability of phytate phosphorus to weanling pigs. J. Anim. Sci. 78 (3): 668–674.
  • Sutardi, M. and Buckle, K. A. 1988. Characterization of extra and intracellular phytase from Rhizopus oligosporus used in tempeh production. Int. J. Food Microbiol. 6: 67–69.
  • Suzuki, U., Yoshimura, K., and Takaishi, M. 1907. Ueber ein Enzym “Phytase” das “Anhydro-oxymethylen diphosphorsaure” Spaltet. Tokyo Imper. Univ. Coll. Agric. Bull. 7: 503–512.
  • Tambe, S. M., Kakli, S. G., Kelkar, S. M., and Parekh, L. J. 1994. Two distinct molecular forms of phytase from Klebsiella aerogenes: Evidence for unusually small active enzyme peptide. J. Ferm. Bioeng. 77(1): 23–27.
  • Tomschy, A., Wyss, M., Kostrewa, D., Vogel, K., Tessier, M., Hofer, S., Burgin, H., Kronenberg, A., Remy, R., and van Loon, A.P.G.M. 2000a. Active site residue 297 of Aspergillus niger phytase critically affects the catalytic properties. FEBS Lett. 472: 169–172.
  • Tomschy, A., Tessier, M., Wyss, M., Brugger, R., Broger, R., Shnoebelen, L., van Loon, A. P. G. M., and Pasamontes, L. 2000b. Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three dimensional structure. Protein Sci. 9: 1304–1311.
  • Tomschy, A., Brugger, R., Lehmann, M., Svendsen, A., Vogel, K., Kostrewa, D., Lassen, S. F., Burger, D., Kronenberger, A., van Loon, A. P. G. M., Pasamontes, L., and Wyss, M. 2002. Engineering of phytase for improved activity at low pH. Appl. Environ. Microbiol. 68: 1907–1913.
  • Thompson, L. U. and Yoon, J. H. 1984. Starch digestibility as affected by polyphenols and phytic acid. J. Food Sci. 49: 1228–1229.
  • Tyagi, P. K., Tyagi, P. K., and Verma, S. V. S. 1998. Phytate phosphorus content of some common poultry feed stuffs. Indian J. Poult. Sci. 33(1): 86–88.
  • Ullah, A. H. J. and Cummins, B. J. 1988. A. ficuum extracellular phytase: Immobilization on glutaraldehyde-activated silicate. Ann. N. Y. Acad. Sci. 542: 102–106.
  • Ullah, A. H. J., Cummins, B. J., and Dischinger, H. C., Jr. 1991. Cyclohexanedione modification of arginine at the active site of Aspergillus ficuum phytase. Biochem. Biophys. Res. Commun. 178: 45–53.
  • Ullah, A. H. J. and Dischinger, H. C., Jr. 1992. Identification of residues involved in active site formation in A. ficuum phytase. Ann. N. Y. Acad. Sci. 672: 45–51.
  • Ullah, A. H. J. and Dischinger, H. C. 1993. Aspergillus ficuum phytase: complete primary structure elucidation by chemical sequencing. Biochem. Biophys. Res. Commun. 192: 747–753.
  • Ullah, A. H. J. and Gibson, D. M. 1987. Extracellular phytase (EC 3.1.3.8) from Aspergillus ficuum NRRL 3135: purification and characterization. Prep. Biochem. 17: 63–91.
  • Ullah, A. H. J. and Mullaney, E. J. 1996. Disulfide bonds are necessary for structure and activity in Aspergillus ficuum phytase. Biochem. Biophys. Res. Commun. 227 (2): 311–317.
  • Ullah, A. H. and Phillippy, B. Q. 1988. Immobilization of Aspergillus ficuum phytase: product characterization of the bioreactor. Prep. Biochem. 18 (4): 483–9.
  • Ullah, A. H., Sethumadhavan, K., Mullaney, E. J., Ziegelhoffer, T., and Austin-Phillips, S. 1999. Characterization of recombinant fungal phytase (phy A) expressed in tobacco leaves. Biochem. Biophys. Res. Commun. 264 (1): 201–206.
  • Ullah, A. H., Sethumadhavan, K., Mullaney, E. J., Ziegelhoffer, T., and Austin-Phillips, S. 2002. Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase. Biochem. Biophys. Res. Commun. 290: 1343–1348.
  • Van de Velde, F., Konemann, L., van Rantwijk, F., and Sheldon, R. A. 2000. The rational design of semisynthetic peroxidases. Biotechnol. Bioeng. 67: 87–96.
  • Van Dijck, P. W. M. 1999. Chymosin and phytase, made by genetic engineering. J. Biotechnol. 67: 77–80.
  • Van Etten, R. L. 1982. Human prostatic acid phosphatase: a histidine phosphatase. Ann. N.Y. Acad. Sci. 390: 27–51.
  • Van Etten, R. L., Davidson, R., Stevis, P. E., MacArthur, H., and Moore, D. L. 1991. Covalent structure, disulfide bonding and identification of reactive surface and active site residues of human prostatic acid phosphatase. J. Biol. Chem. 266: 2313–2319.
  • Van Hartinsveldt, W., van Zeijl, C. M., Harteeld, G. M., Gouka, R. J., Suykerbuyk, M. E., Luiten, R. G., van Paridon, P. A., Selten, G. C., Veenstra, A. E., van Gorcom, R. F. M., and van den Hondel, C. A. M. J. J. 1993. Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene 127: 87–94.
  • Vohra, A. and Satyanarayana, T. 2001. Phytase production by the yeast Pichia anomala. Biotechnol. Lett. 23(7): 551–554.
  • Vohra, A. and Satyanarayana, T. 2002a. Statistial optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala. Process Biochem. 37: 999–1004.
  • Vohra, A. and Satyanarayana, T. 2002b. Purification and characterization of a thermostable and acidstable phytase from Pichia anomala. World J. Microbiol. Biotechnol. 18: 687–691.
  • Walsh, G. A., Power, R. F., and Headon, D. R. 1993. Enzymes in the animal feed industry. TIBTECH 11: 424–430.
  • Wang, H. L., Savain, W., and Hesseltine, C.W. 1980. Phytase of molds used in oriental food fermentation. J. Food Sci. 45: 1261–1266.
  • Watanbe, K. and Suzuki, Y. 1998. Protein thermostabilization by proline substitutions. J. Mol. Cat. B: Enzymatic 4: 167–180.
  • Whitelam, G. C. 1995. The production of recombinant proteins in plants. J. Sci. Food Agric. 68: 1–9.
  • Wodzinski, R. J. and Ullah, A. H. J. 1996. Phytase. Adv. Appl. Microbiol. 42: 263–302.
  • Wyss, M. R., Brugger, R., Kronenberger, A., Remy, R., Fimbel, R., Oesterhelt, G., Lehmann, M. and van Loon, A. P. G. M. 1999. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl. Environ. Microbiol. 65: 367–373.
  • Wyss, M., Pasamontes, L., Remy, R., Kohler, J., Kusznir, E., Gadient, M., Muller, F., and Van loon, A. P. G. M. 1998. Comparison of thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase and A. niger pH 2.5 acid phosphatase. Appl. Environ. Microbiol. 64: 4446–4451.
  • Yamada, K., Minoda, Y., Kobayashi, T., Hidaka, Y., Matuo, H., and Kobayashi, M. 1968. Phytase from Aspergillus terreus I production, purification and some general properties of the enzyme. Agric. Biol. Chem. 32: 1275–1282.
  • Yanke, L. J., Bae, H. D., Selinger, L. B., and Cheng, K. J. 1998. Phytase activity of anaerobic ruminal bcteria. Microbiology 144: 1565–1573.
  • Yanke, L. J., Selinger, L. B., and Cheng, K. J. 1999. Phytase activity of Selenomonas ruminantium: a preliminary characterization. Lett. Appl. Microbiol. 29: 20–25.
  • Yi, Z., Kornegay, E. T., and Denbow, D. M. 1997. Supplemental microbial phytase improves zinc utilization in broilers. Poult. Sci. 75: 540–546.
  • Yi, Z., Kornegay, E. T., Ravindran, V., and Denbow D. M. 1996. Improving phytate phosphorus availability in corn and soybean meal for broilers using microbial phytase and calculation of phosphorus equivalency values for phytase. Poult. Sci. 75: 240–249.
  • Yoon, S. J., Choi, Y. J., Min, H. K., Cho, K. K., Kim, J. W., Zee, S. C., and Jung, Y. H. 1996. Isolation and identification ofphytase producing bacterium, Enterobacter sp. 4 and enzymatic properties of phytase enzyme. Enz. Microb. Technol. 18: 449–454.
  • Zyta, K. and Gogol, D. 2002. In vitro efficacies of phosphorolytic enzymes synthesized in mycelial cells of Aspergillus niger AbZ4 grown by a liquid surface fermentation. J. Agric. Food Chem. 50(4): 899–905.
  • Zyta, K., Koreleski, J., and Kujawski, M. 1989. Dephosphorylation of phytate compounds by means of acid phosphatase from Aspergillus niger. J. Sci. Food Agric. 49:315–324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.