1,839
Views
68
CrossRef citations to date
0
Altmetric
Review

Electrostatic interaction between proteins and polysaccharides: Physicochemical aspects and applications in emulsion stabilization

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Aguilera, J.M.;. Microstructure and Food Product Engineering. Food Technol. 2000, 54(11), 56–57.
  • Morais, G.G.; Santos, O.D.H.; Masson, D.S.; Oliveira, W.P.; Rocha Filho, P.A. Development of O/W Emulsions with Annato Oil (Bixa Orellana) Containing Liquid Crystal. J. Dispers. Sci. Technol. 2005, 26(5), 591–596. DOI:10.1081/DIS-200057647.
  • Damodaran, S.; Parkin, K.L.; Fennema, O.R. Química De Alimentos De Fennema; Artmed: Porto Alegre, Brazil, 2010; pp 898.
  • Rodrigues, L.M.; Barreto, L.C.L.D.S. Desenvolvimento E Estudo De Estabilidade Preliminar De Emulsões Óleo/Água (O/A) a Base De Óleos Vegetais Para Prevenção E/Ou Adjuvante No Tratamento De Úlceras Por Pressão. Completion of course work. Universidade de Brasília, Faculdade de Ceilândia: Distrito Federal, Brazil, 2013; pp 133.
  • Capron, I.; Costeux, S.; Djabourov, M. Water in Water Emulsions: Phase Separation and Rheology of Biopolymer Solutions. Rheologica Acta. 2001, 40(5), 441–456. DOI:10.1007/s003970100161.
  • Perrechil, F.A.; Cunha, R.L. Development of Multiple Emulsions Based on the Repulsive Interaction between Sodium Caseinate and LBG. Food Hydrocoll. 2012, 26, 126–134. DOI:10.1016/j.foodhyd.2011.04.017.
  • Benichou, A.; Aserin, A.; Garti, N. Double Emulsions Stabilized with Hybrids of Natural Polymers for Entrapment and Slow Release of Active Matters. Adv. Colloid Interface Sci. 2004, 108 – 109, 29–41. DOI:10.1016/j.cis.2003.10.013.
  • Walstra, P.;. Physical Chemistry of Foods; Marcel Dekker: New York, U.S., 2003; pp 807.
  • Fattori, B.P.; Isaac, V.L.B. Desenvolvimento De Emulsão Contendo C12 – 25 Acid. PEG 8 Estér E Avaliação Da Estabilidade Com Diferentes Concentrações De Óleo Essencial De Achilleamillefolium. Completion of course work, Universidade Estadual Paulista “Julio de Mesquita Filho”: Araraquara, São Paulo, Brazil, 2011; pp 53.
  • Da Silva, J.A.L.; Rao, M.A. Viscoelastic Properties of Food Gum Dispersions. In Viscoelastic Properties of Foods, Rao, M.A., Steffe, J.F., Eds.; Elsevier Applied Science: London, England, 1992; pp 285–316.
  • Fasolin, L.H.; Cunha, R.L. Extração E Estudo Do Polissacarídeo Solúvel De Soja E Sua Avaliação Na Estabilidade E Reologia De Suco De Graviola Adicionado De Isolado Proteico De Soja. Doctoral thesis, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil, 2009; pp 124.
  • Benichou, A.; Aserina, A.; Garti, N. Protein-Polysaccharide Interactions for Stabilization of Food Emulsions. Dispersion Sci. Technol. 2002, 23(1–3), 93–123. DOI:10.1080/01932690208984192.
  • Dickinson, E.;. Hydrocolloids at Interfaces and the Influence on the Properties of Dispersed Systems. Food Hydrocoll. 2003, 17(1), 25–39. DOI:10.1016/S0268-005X(01)00120-5.
  • Camino, N.A.; Pérez, O.E.; Pilosof, A.M.R. Molecular and Functional Modification of Hydroxypropylmethylcellulose by High-Intensity Ultrasound. Food Hydrocoll. 2009, 23(4), 1089–1095. DOI:10.1016/j.foodhyd.2008.08.015.
  • Gordon, L.; Pilosof, A.M.R. Application of High-Intensity Ultrasounds to Control the Size of Whey Proteins Particles. Food Biophys. 2010, 5(3), 203–210. DOI:10.1007/s11483-010-9161-4.
  • Arzeni, C.; Martínez, K.; Zema, P.; Arias, A.; Pérez, O.E.; Pilosof, A.M.R. Comparative Study of High Intensity Ultrasound Effects on Food Proteins Functionality. J. Food Eng. 2012, 108(3), 463–472. DOI:10.1016/j.jfoodeng.2011.08.018.
  • Chandrapala, J.; Oliver, C.; Kentish, S.; Ashokkumar, M. Ultrasonics in Food Processing. Ultrason. Sonochem. 2012, 19(5), 975–983. DOI:10.1016/j.ultsonch.2012.01.010.
  • Kaltsa, O.; Michon, C.; Yanniotis, S.; Mandala, I. Ultrasonic Energy Input Influence on the Production of Sub-Micron O/W Emulsions Containing Whey Protein and Common Stabilizers. Ultrason. Sonochem. 2013, 20(3), 881–891. DOI:10.1016/j.ultsonch.2012.11.011.
  • Simo, O.K.; Mao, Y.; Tokle, T.; Decker, E.A.; Mcclements, D.J. Novel Strategies for Fabricating Reduced Fat Foods: Heteroaggregation of Lipid Droplets with Polysaccharides. Food Res. Int. 2012, 48(2), 337–345. DOI:10.1016/j.foodres.2012.04.018.
  • McClements, D.J.;. Food Emulsions: Principles, Practice, and Techniques; CRC Press: Boca Raton, Washington, U.S., 2005; pp 632.
  • Dickinson, E.A.;. Introduction to Food Colloids; Oxford Science Publishers: Oxford, England, 1992; pp 216.
  • Friberg, S.; Larsson, K.; Sjoblom, J. Food Emulsions; Marcel Dekker: New York, U.S., 2004; pp 132.
  • Hill, S.E.;. Emulsions. In Methods of Testing Protein Functionality, Hall, G.M., Ed.; Blackie Academic and Professional: New York, U.S, 1996; pp 153–185.
  • Meinders, M.B.J.; Van Vliet, T. The Role Interfacial Rheological Properties on Ostwald Ripening in Emulsions. Adv. Colloid Interf. Sci. 2004, 108-109, 119–126. DOI:10.1016/j.cis.2003.10.005.
  • Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M.J. Curr. Opin. Colloid Interface Sci. 2005, 10(3–4), 102–110. DOI:10.1016/j.cocis.2005.06.004.
  • McClements, D.J.;. Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Crit. Rev. Food Sci. Nutr. 2007, 47(7), 611–649. DOI:10.1080/10408390701289292.
  • Kourniatis, L.R.; Spinelli, L.S.; Mansur, C.R.E. Nanoemulsões Óleo De Laranja/Água Preparadas Em Homogeneizador De Alta Pressão. Quim. Nova. 2010, 33(2), 295–300. DOI:10.1590/S0100-40422010000200013.
  • Pickering, S.U.;. Emulsions. J. Chem. Soc. 1907, 91, 2001–2021.
  • Xiao, J.; Li, Y.; Huang, Q. Recent Advances on Food-Grade Particles Stabilized Pickering Emulsions: Fabrication, Characterization and Research Trends. Trends Food Sci. Technol. 2016, 55, 48–60. DOI:10.1016/j.tifs.2016.05.010.
  • Berton-Carabin, C.C.; Schröen, K. Pickering Emulsions for Food Applications: Background,Trends, and Challenges. Rev. Food Sci. Technol. 2015, 6, 12.1–12.35.
  • Garti, N.; Leser, M.E. Emulsification Properties of Hydrocolloids. Polym. Adv. Technol. 2001, 12(1–2), 123–135. DOI:10.1002/1099-1581(200101/02)12:1/2<>1.0.CO;2-L.
  • Perrechil, F.A. Avaliação Estrutural E Reológica De Emulsões Simples E Múltiplas Estabilizadas Por Caseinato De Sódio E Jataí. Master’s dissertation, Universidade de Campinas, Campinas, São Paulo, Brazil, 2008; pp 117.
  • Turgeon, S.L.; Gauthier, S.F.; Mollé, D.; Léonil, J. Interfacial Properties of Tryptic Peptides of β-lactoglobulin. J. Agric. Food Chem. 1992, 40(4), 669–675. DOI:10.1021/jf00016a030.
  • McClements, D.J.;. Comments on Viscosity Enhancement and Depletion Flocculation by Polysaccharides. Food Hydrocoll. 2000, 14(2), 173–177. DOI:10.1016/S0268-005X(99)00065-X.
  • Morris, V.J.;. Gelation of Polysaccharides. In Functional Properties of Food Macromolecules, Hill, S.E., Ledward, D.A., Mitchell, J.R., Eds.; Aspen Publishers, Inc: Gaithersburg, Maryland, 1998; pp 143–226.
  • Andrade, C.T.; Rojas, E.G.A. Biopolymers. In Biopolymer Engineering in Food Processing, Telis, V.R.N., Ed.; CRC Press: New York, US., 2012; pp 17–68. 398 pp
  • Turbiani, F.R.B.; Kieckbusch, T.G. Desenvolvimento E Caracterização De Filmes Ativos De Alginato De Sódio Reticulados Com Benzoato De Cálcio. Master’s dissertation, Universidade de Campinas, Campinas, São Paulo, Brazil, 2007; pp 116.
  • Stokke, B.T.; Draget, K.I.; Smidsrød, O.; Yuguchi, Y.; Urakawa, H.; Kajiwara, K. Small-Angle X-Ray Scattering and Rheological Characterization of Alginate Gels. 1. Ca-Alginate Gels. Macromolecules. 2000, 33(5), 1853–1863. DOI:10.1021/ma991559q.
  • Draget, K.I.; Skjåk-Bræk, G.; Stokke, B.T. Similarities and Differences between Alginic Acid Gels and Ionically Crosslinked Alginate Gels. Food Hydrocoll. 2006, 20(2–3), 170–175. DOI:10.1016/j.foodhyd.2004.03.009.
  • Fernández Farrés, I.; Norton, I.T. Formation Kinetics and Rheology of Alginate Fluid Gels Produced by In-Situ Calcium Release. Food Hydrocoll. 2014, 40, 76–84. DOI:10.1016/j.foodhyd.2014.02.005.
  • Simsek-Ege, F.A.; Gillian, M.; Bond, G.M.; Stringer, J. Polyelectrolye Complex Formation between Alginate and Chitosan as a Function of pH. J. Appl. Polym. Sci. 2003, 88(2), 346–351. DOI:10.1002/app.11989.
  • Annan, N.T.; Borza, A.D.; Truelstrup Hansen, L. Encapsulation in Alginate-Coated Gelatin Microspheres Improves Survival of the Probiotic Bifidobacterium Adolescentis 15703T during Exposure to Simulated Gastro-Intestinal Conditions. Food Res. Int. 2008, 41(2), 184–193. DOI:10.1016/j.foodres.2007.11.001.
  • Pongsawatmanit, R.; Harnsilawat, T.; McClements, D.J. Influence of Alginate, pH and Ultrasound Treatment on Palm Oil-In-Water Emulsions Stabilized by β-lactoglobulin. Sci. Direct. 2006, 287(1–3), 59–67.
  • Gombotz, W.R.; Wee, S.F. Protein Release from Alginate Matrices. Adv. Drug Deliv. Rev. 1998, 31(3), 267–285. DOI:10.1016/S0169-409X(97)00124-5.
  • Blandino, A.; Macias, M.; Cantero, D. Formation of Calcium Alginate Gel Capsules: Influence of Sodium Alginate and Cac12 Concentration on Gelation Kinetics. J. Biosci. Bioencineering. 1999, 88(6), 686–689. DOI:10.1016/S1389-1723(00)87103-0.
  • Bajpai, S.K.; Tankhiwale, R. Investigation of Water Uptake Behavior and Stability of Calcium Alginate/Chitosan Bi-Polymeric Beads: Part-1. React. Funct. Polym. 2006, 66(6), 645–658. DOI:10.1016/j.reactfunctpolym.2005.10.017.
  • Yoo, S.H.; Song, Y.B.; Chang, P.S.; Lee, H.G. Microencapsulation of Alphatocopherol Using Sodium Alginate and Its Controlled Release Properties. Int. J. Biol. Macromol. 2006, 38(1), 25–30. DOI:10.1016/j.ijbiomac.2005.12.013.
  • Silva, C.M.; Ribeiro, A.J.; Figueiredo, I.V.; Goncalves, A.R.; Veiga, F. Alginate Microspheres Prepared by Internal Gelation: Development and Effect on Insulin Stability. Int. J. Pharm. 2006, 311(1–2), 1–10. DOI:10.1016/j.ijpharm.2005.10.050.
  • Mukai-Correa, R.; Grosso, C.R.F. Produção De Micropartículas Por Gelificação Iônica Para Alimentação De Larvas De Peixe: Estudos Em Sistema-Modelo Com Inclusão De Micropartículas Lipídicas Ou Emulsão Lipídica E Testes in Vivo. Doctoral thesis, Universidade de Campinas, Campinas, São Paulo, Brazil, 2008, pp 151.
  • Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Formulation of Antimicrobial Edible Nanoemulsions with Pseudo-Ternary Phase Experimental Design. Food Bioproc. Technol. 2014, 7(10), 3022–3032. DOI:10.1007/s11947-014-1314-x.
  • Salvia-Trujillo, L.; Rojas-Graü, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Food Hydrocolloids Physicochemical Characterization and Antimicrobial Activity of Food- Grade Emulsions and Nanoemulsions Incorporating Essential Oils. Food Hydrocoll. 2015, 43, 547–556. DOI:10.1016/j.foodhyd.2014.07.012.
  • Artiga-Artigas, M.; Acevedo-Fani, A.; Martín-Belloso, O. Effect of Sodium Alginate Incorporation Procedure on the Physicochemical Properties of Nanoemulsions. Food Hydrocoll. 2017, 70, 191–200. DOI:10.1016/j.foodhyd.2017.04.006.
  • Sosa-Herrera, M.G.; Lozano-Esquivel, I.E.; Ponce De León-Ramírez, Y.R.; Martínez-Padilla, L.P. Effect of Added Calcium Chloride on the Physicochemical and Rheological Properties of Aqueous Mixtures of Sodium Caseinate/Sodium Alginate and Respective Oil-In-Water Emulsions. Food Hydrocoll. 2012, 29(1), 175–184. DOI:10.1016/j.foodhyd.2012.02.017.
  • Coelho, M.T. Pectina: Características E Aplicações Em Alimentos Academic work, Universidade Federal de Pelotas: Pelotas, Rio Grande do Sul, Brazil, 2008; pp 33.
  • Lam, M.; Paulsen, P.; Corredig, M. Interactions of Soy Protein Fractions with High-Methoxyl Pectin. J. Agric. Food Chem. 2008, 56(12), 4726–4735. DOI:10.1021/jf073375d.
  • Bobbio, F.O.; Bobbio, P.A. Introdução a Química De Alimentos; Varela: São Paulo, Brazil, 1989; pp 223.
  • Cheftel, J.C.; Cheftel, H. Introduccíon a La Bioquímica Y Tecnología De Los Alimentos; Acribia: Zaragoza, Spain, 1976; pp 315.
  • Turquois, T.; Rinaudo, M.; Taravel, F.R.; Heyraud, A. Extraction of Highly Gelling Pectic Substances from Sugar Beet Pulp and Potato Pulp: Influence of Extrinsic Parameters on Their Gelling Properties. Food Hydrocoll. 1999, 13(3), 255–262. DOI:10.1016/S0268-005X(99)00007-7.
  • Bowers, J.;. Food Theory and Aplications; Macmillan Publishing Company: New York, U.S., 1992; pp 777.
  • Jarvis, M.C.;. Plant Cell Walls: Supramolecular Assemblies. Food Hydrocoll. 2011, 25(2), 257–262. DOI:10.1016/j.foodhyd.2009.09.010.
  • Dziezak, J.D.;. Microencapsulation and Encapsulated Ingredients. Food Technol. 1988, 42(4), 136–148.
  • Wong, D.W.S.;. Química De Los Alimentos: Mecanismos Y Teoria; Acribia: Zaragoza, Spain, 1995; pp 476.
  • Belitz, H.D.; Grosch, W. Química De Los Alimentos; Acribia: Zaragoza, Spain, 1997; pp 1087.
  • Cristensen, S.H.;. Pectins. In Food Hydrocolloids, Glicksman, M., Ed.; CRC Press: Boca Raton; 1986; pp 205–230.
  • Kuhn, K.R.; Picone, C.S.F.; Cunha, R.L. Food Gels. In Biopolymer Engineering in Food Processing, Telis, V.R.N., Ed.; CRC Press: New York, US., 2012a; pp 111–144. 398 pp
  • Krešić, G.; Lelas, V.; Jambrak, A.R.; Herceg, Z.; Brnic, S.R. Influence of Novel Food Processing Technologies on the Rheological and Thermophysical Properties of Whey Proteins. Sci. Direct. 2008, 87(1), 64–73.
  • Foegeding, E.A.; Davis, J.P.; Doucet, D.; Mcguffey, M.K. Advances in Modifying and Understanding Whey Protein Functionality. Trends Food Sci. Technol. 2002, 13(5), 151–159. DOI:10.1016/S0924-2244(02)00111-5.
  • Baldasso, C.; Barros, T.C.; Tessaro, I.C. Concentration and Purification of Whey Proteins by Ultrafiltration. Desalination. 2011, 278(1–3), 381–386. DOI:10.1016/j.desal.2011.05.055.
  • Considine, T.; Noisuwan, A.; Hemar, Y.; Wilkinson, B.; Bronlund, J.; Kasapis, S. Rheological Investigations of the Interactions between Starch and Milk Proteins in Model Dairy Systems: A Review. Food Hydrocoll. 2011, 25(8), 2008–2017. DOI:10.1016/j.foodhyd.2010.09.023.
  • De Wit, J.N.;. Thermal Behavior of Bovine β-lactoglobulin at Temperatures up to 150°C. A Review. Trends Food Sci. Technol. 2009, 20(1), 27–34. DOI:10.1016/j.tifs.2008.09.012.
  • Morr, C.V.; Ha, E.Y.W. Whey Protein Concentrates and Isolates: Processing and Functional Properties. Crit. Rev. Food Sci. Nutr. 1993, 33(6), 431–476. DOI:10.1080/10408399309527643.
  • Hoffmann, M.A.M.; Van Mil, P.J.J.M. Heat-Induced Aggregation of β- Lactoglobulin: Role of the Free Thiol Group and Disulfide Bonds. J. Agric. Food Chem. 1997, 45(8), 2942 2948. DOI:10.1021/jf960789q.
  • Nicolai, T.; Britten, M.; Schmitt, C. β-Lactoglobulin and WPI Aggregates: Formation, Structure and Applications. Food Hydrocoll. 2011, 25(8), 1945–1962. DOI:10.1016/j.foodhyd.2011.02.006.
  • Fox, P.F.; Kelly, A.L. Developments in the Chemistry and Technology of Milk Proteins 1. Overview of Major Milk Proteins. Food Aust. 2003, 55(3), 104–108.
  • Cooper, C.L.; Dubin, P.; Kayitmazer, A.B.; Turksen, S. Polyelectrolyte Protein Complexes. Curr. Opin. Colloid Interface Sci. 2005, 10(1–2), 52–78. DOI:10.1016/j.cocis.2005.05.007.
  • Santipanichwong, R.; Suphantharika, M.; Weiss, J.; McClements, D.J. Core-Shell Biopolymer Nanoparticles Produced by Electrostatic Deposition of Beet Pectin onto Heat-Denatured β-lactoglobulin Aggregates. J. Food Sci. 2008, 73(6), N23–N30. DOI:10.1111/j.1750-3841.2008.00804.x.
  • Jones, O.G.; McClements, D.J. Functional Biopolymer Particles: Design, Fabrication, and Applications. Compr. Rev. Food Sci. Food Saf. 2010a, 9(4), 374–397. DOI:10.1111/j.1541-4337.2010.00118.x.
  • Havea, P.; Singh, H.; Creamer, L.K. Characterization of Heat-Induced Aggregates of Beta- Lactoglobulin, Alpha-Lactalbumin and Bovine Serum Albumin in a Whey Protein Concentrate Environment. J. Dairy Res. Port Chest. 2001, 68, 483–497.
  • United States Dairy Export Council – USDEC. Manual De Referência Para Produtos De Soro Dos Estados Unidos; USDEC News: Arlington, 1997.
  • Purwanti, N.; Smiddy, M.; Jan Van Der Goot, A.; De Vries, R.; Alting, A.; Boom, R. Modulation of Rheological Properties by Heat-Induced Aggregation of Whey Protein Solution. Food Hydrocoll. 2011, 25(6), 1482–1489. DOI:10.1016/j.foodhyd.2011.02.027.
  • Pinheiro, M.V.S.; Pena, A.L.B. Substitutos De Gordura: Tipos E Aplicações Em Produtos Lácteos. Alimentos E Nutrição. 2004, 15(2), 175–186.
  • Tömösközi, S.; Lásztity, R.; Haraszi, R.; Baticz, O. Isolation and Study of the Functional Properties of Pea Proteins. Nahrung. 2001, 45(6), 399–401. DOI:10.1002/1521-3803(20011001)45:6<399::AID-FOOD399>3.0.CO;2-0.
  • Manion, B.; Corredig, M. Interactions between Whey Protein Isolate and Soy Protein Fractions at Oil–Water Interfaces: Effects of Heat and Concentration of Protein in the Aqueous Phase. J. Food Sci. 2006, 71(8), 343–349. DOI:10.1111/j.1750-3841.2006.00160.x.
  • Liu, K.;. Soybeans: Chemistry, Technology and Utilization; An Aspen Publication: Gaithersburg, Maryland, U.S, 1999; pp 532.
  • Singh, M.; Mohamed, A. Influence of Gluten-Soy Protein Blends on the Quality of Reduced Carbohydrates Cookies. Food Sci. Technol. 2005, 40(2), 353–360.
  • Lakemond, C.M.M.; De Joung, H.H.J.; Hessing, M.; Gruppen, H.; Voragen, A.G.J. Soy Glycinin: Influence of pH and Ionic Strength on Solubility and Molecular Structure at Ambient Temperatures. J. Agric. Food Chem. 2000, 48(6), 1985–1990. DOI:10.1021/jf9908695.
  • Renkema, J.M.S.; Gruppen, H.; Van Vliet, T. Influence of pH and Ionic Strength on Heat-Induced Formation and Rheological Properties of Soy Protein Gels in Relation to Denaturation and Their Protein Compositions. J. Agric. Food Chem. 2002, 50(21), 6064–6071. DOI:10.1021/jf020061b.
  • Betschart, K.; Sawada, K. Whipping and Emulsifying of Soybean Products. Agric. Biol. Chem. 1972, 36(5), 719–727. DOI:10.1080/00021369.1972.10860321.
  • Singh, P.; Kumar, R.; Sabapathy, S.N.; Bawa, A.S. Functional and Edible Uses of Soy Protein Products. Compr. Rev. Food Sci. Food Saf. 2008, 7(1), 14–28. DOI:10.1111/crfs.2008.7.issue-1.
  • Chen, L.; Remondetto, G.E.; Subirade, M. Food Protein-Based Materials as Nutraceutical Delivery Systems. Trends Food Sci. Technol. 2006, 17(5), 272–283. DOI:10.1016/j.tifs.2005.12.011.
  • Ortiz, S.E.M.; Mauri, A.; Monterrey-Quintero, E.S.; Trindade, M.A.; Santana, A.S.; Favaro-Trindade, C.S. Production and Properties of Casein Hydrolysate Microencapsulated by Spray Drying with Soybean Protein Isolate. Food Sci. Technol. 2009, 42(5), 919–923.
  • Moser, P.; Souza, R.T.D.S.; Telis, V.R.N. Spray Drying of Grape Juice from Hybrid Cv. Brs Violeta: Microencapsulation of Anthocyanins Using Protein/Maltodextrin Blends as Drying Aids. J. Food Process. Preserv. 2017a, 41, e12852. DOI:10.1111/jfpp.12852.
  • Moser, P.; Telis, V.R.N.; Neves, N.D.A.; García-Romero, E.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Storage Stability of Phenolic Compounds in Powdered BRS Violeta Grape Juice Microencapsulated with Protein and Maltodextrin Blends. Food Chem. 2017b, 214, 308–318. DOI:10.1016/j.foodchem.2016.07.081.
  • Vodjani, F.;. Solubility. In Methods of Testing Protein Functionality, Hall, G.M., Ed.; Chapman e Hall: London, England, 1996; pp 11–60.
  • Pearson, A.M.;. Soy Proteins. In Developments in Food Proteins, Hudson, B.J.F., Ed.; Apllied Science Publishier Ltda.: London; 1983; pp 67–108.
  • Damodaran, S.; Paraf, A. Food Protein and Their Aplications. In Food Proteins: Properties and Characterization, Nakai, S., Modler, H.W., Eds.; VCH Publishers, Inc.: New York; 1997.
  • Kumar, R.; Choudhary, V.; Mishra, S.; Varma, I.K.; Mattiasson, B. Adhesives and Plastics Based on Soy Protein Products. Ind. Crops Prod. 2002, 16(3), 155–172. DOI:10.1016/S0926-6690(02)00007-9.
  • Kinsela, J.E.;. Functional Properties of Soy Proteins. J. Am. Oil Chem. Soc. 1979, 56(3), 242–258. DOI:10.1007/BF02671468.
  • Damodaran, S.;. Aminoácidos, Peptídeos E Proteínas. In Química De Alimentos De Fennema, Damodaran, S., Parkin, K.L., Fennema, O.R., Eds.; Artmed: Porto Alegre, Brazil, 2010; pp 179–262. 898 pp
  • Cho, S.Y.; Park, J.W.; Batt, H.P.; Thomas, R.L. Edible Films Made from Membrane Processed Soy Protein Concentrates. Lwt. 2007, 40(3), 418–423. DOI:10.1016/j.lwt.2006.02.003.
  • Chen, N.; Zhao, M.; Chassenieux, C.; Nicolai, T. Structure of Self-Assembled Native Soy Globulin in Aqueous Solution as a Function of the Concentration and the pH. Food Hydrocoll. 2016, 56, 417–424. DOI:10.1016/j.foodhyd.2015.12.028.
  • Chen, N.; Zhao, M.; Niepceron, F.; Nicolai, T.; Chassenieux, C. The Effect of the pH on Thermal Aggregation and Gelation of Soy Proteins. Food Hydrocoll. 2017a, 66, 27–36. DOI:10.1016/j.foodhyd.2016.12.006.
  • Chen, N.; Zhao, M.; Chassenieux, C.; Nicolai, T. Thermal Aggregation and Gelation of Soy Globulin at Neutral pH. Food Hydrocoll. 2016, 61, 740–746. DOI:10.1016/j.foodhyd.2016.06.028.
  • Chen, N.; Zhao, M.; Nicolai, T.; Chassenieux, C. Exploiting Salt Induced Microphase Separation to Form Soy Protein Microcapsules or Microgels in Aqueous Solution. Biomacromolecules. 2017b, 18, 2064−2072. DOI:10.1021/acs.biomac.7b00393.
  • Chen, N.; Zhao, M.; Chassenieux, C.; Nicolai, T. The Effect of Adding NaCl on Thermal Aggregation and Gelation of Soy Protein Isolate. Food Hydrocoll. 2017c, 70, 88–95. DOI:10.1016/j.foodhyd.2017.03.024.
  • Renard, R.; Lefebvre, J.; Boué, F. Solution and Gelation Properties of Protein-Polysaccharide Mixtures: Signature by Small-Angle Neutron Scattering and Rheology. In Gums and Stabilisers for the Food Industry 9; Wiliams, P.A., Philips, G.O., Eds.; Royal Society of Chemistry: UK; 1998; pp 189–201. 433 pp.
  • Telis, V.R.N.;. Biopolymer Engineering in Food Processing; CRC Press: New York, US., 2012; pp 398.
  • Renard, D.; Van De Velde, F.; Visschers, R.W. The Gap between Food Gel Structure, Texture and Perception. Food Hydrocoll. 2006, 20(4), 423–431. DOI:10.1016/j.foodhyd.2005.10.014.
  • Schmitt, C.; Aberkane, L.; Sanchez, C. Protein Polysaccharide Complexes and Coacervates. In Handbook of Hydrocolloids, Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing Ltda.: Cambridge, 2009; pp 420–476.
  • Vinayahan, T.; Williams, P.A.; Phillips, G.O. The Electrostatic Interaction and Complex Formation between Gum Arabic and BSA. Biomacromolecules. 2010, 11(12), 3367–3374. DOI:10.1021/bm100486p.
  • McClements, D.J.;. Food Emulsions; CRC Press: Boca Raton, 1999a; pp 226–229.
  • Philips, G.O.; Williams, P.A. Introduction to Food Proteins. In Handbook of Food Proteins, Phillips, G.O., Williams, P.A., editors.; Woodhead Publishing Ltd: Cambridge, 2001; pp 1–12.
  • Woodward, N.C.; Gunning, A.P.; Wilde, P.J.; Chu, B.S.; Morris, V.J. Engineering Interfacial Structures to Moderate Satiety. In Gums and Stabilisers for the Food Industry, Phillips, G.O., Williams, P.A., Eds.; Royal Society of Chemistry Publishers: Cambridge, Reino Unido, 2010; pp 367–376.
  • McClements, D.J.;. Food Emulsions; CRC Press: Boca Raton, 1999b.
  • Dickinson, E.;. Hydrocolloids as Emulsifiers and Emulsion Stabilisers. Food Hydrocoll. 2009, 23(6), 1473–1482. DOI:10.1016/j.foodhyd.2008.08.005.
  • Evans, M.; Ratcliffe, I.; Williams, P.A. Emulsion Stabilisation Using Polysaccharide–Protein Complexes. Curr. Opin. Colloid Interface Sci. 2013, 18(4), 272–282. DOI:10.1016/j.cocis.2013.04.004.
  • Williams, P.A.; Sayers, C.; Viebke, C.; Senan, C.; Mazoyer, J.; Boulenger, P. Elucidation of the Emulsification Properties of Sugar Beet Pectin. J. Agric. Food Chem. 2005, 53(9), 3592–3597. DOI:10.1021/jf0404142.
  • Funami, T.; Zhang, G.M.; Hiroe, M.; Noda, S.; Nakauma, M.; Asai, I.;, et al. Effects of the Proteinaceous Moiety on the Emulsifying Properties of Sugar Beet Pectin. Food Hydrocoll. 2007, 21(8), 1319–1329. DOI:10.1016/j.foodhyd.2006.10.009.
  • Chee, K.S.; Williams, P.A. Role of Protein and Ferulic Acid in the Emulsification Properties of Sugar Beet Pectin. J. Agric. Food Chem. 2008, 56(11), 4164–4171. DOI:10.1021/jf073358o.
  • Chee, K.S.; Williams, P.A.; Cui, S.; Wang, Q. Characterization of the Surface-Active Components of Sugar Beet Pectin and the Hydrodynamic Thickness of the Adsorbed Pectin Layer. J. Agric. Food Chem. 2008, 56(17), 8111–8120. DOI:10.1021/jf801588a.
  • Bungenberg De Jong, H.G.; Kruyt, H.R. Coacervation (Partial Miscibility in Colloid Systems). Proc. Koninklijke Nederlandse Akademie Van Wetenschappen. 1929, 32, 849–856.
  • Weinbreck, F.; Minor, M.; De Kruif, C.G. Microencapsulation of Oils Using Whey Protein/Gum Arabic Coacervates. J. Microencapsul. 2004, 21(6), 667–679. DOI:10.1080/02652040400008499.
  • Jourdain, L.; Leser, M.E.; Schmitt, C.; Michel, M.; Dickinson, E. Stability of Emulsions Containing Sodium Caseinate and Dextran Sulphate: Relationship to Complexation. Food Hydrocoll. 2008, 22(4), 647–659. DOI:10.1016/j.foodhyd.2007.01.007.
  • Mahendran, T.; Williams, P.A.; Phillps, G.O.; Al-Assaf, S. Soluble polysaccharide–Protein Complexes as Novel Emulsifiers. Foods Food Ingred. J. Jpn. 2008, 213(3), 271–274.
  • Littoz, F.; Mcclements, D.J. Biomimetic Approach to Improving Emulsion Stability: Crosslinking Adsorbed Beet Pectin Layers Using Laccase. Food Hydrocoll. 2008, 22(7), 1203–1211. DOI:10.1016/j.foodhyd.2007.06.009.
  • Guzey, D.; Mcclements, D.J. Impact of Electrostatic Interactions on Formation and Stability of Emulsions Containing Oil Droplets Coated by β-lactoglobulin– Pectin Complexes. J. Agric. Food Chem. 2007, 55(2), 475–485. DOI:10.1021/jf062342f.
  • Perrechil, F.A.; Cunha, R.L. Stabilization of Multilayered Emulsions by Sodium Caseinate and - Carrageenan. Food Hydrocoll. 2013, 30(2), 606–613. DOI:10.1016/j.foodhyd.2012.08.006.
  • Doublier, J.-L.; Garnier, C.; Renard, D.; Sanchez, C. Protein-Polysaccharide Interactions. Curr. Opin. Colloid Interface Sci. 2000, 59(3–4), 202–214. DOI:10.1016/S1359-0294(00)00054-6.
  • Schmitt, C.; Sanchez, C.; Desobry-Banon, S.; Hardy, J. Structure and Techno Functional Properties of Protein-Polysaccharide Complexes: A Review. Crit. Rev. Food Sci. Nutr. 1998, 38(8), 689–753. DOI:10.1080/10408699891274354.
  • Bryant, C.M.; Mcclements, D.J. Influence of Xanthan Gum on Physical Characteristics of Heat Desnaturated Whey Protein Solutions and Gels. Food Hydrocoll. 2000, 14(4), 383–390. DOI:10.1016/S0268-005X(00)00018-7.
  • Laneuville, S.I.; Paquin, P.; Turgeon, S.L. Effect of Preparation Conditions on the Characteristics of Whey Protein-Xanthan Gum Complexes. Food Hydrocoll. 2000, 14(4), 305–314. DOI:10.1016/S0268-005X(00)00003-5.
  • Spagnuolo, P.A.; Dalgleish, D.G.; Goff, H.D.; Morris, E.R. Kapa-Carrageenan Interactions in Systems Containing Casein Micelles and Polysaccharide Stabilizers. Food Hydrocoll. 2005, 19(3), 371–377. DOI:10.1016/j.foodhyd.2004.10.003.
  • Grinberg, V.Y.; Tolstoguzov, V.B. Thermodynamic Incomatibility of Proteins and Polysaccharides in Solutions. Food Hydrocoll. 1997, 11(2), 145–158. DOI:10.1016/S0268-005X(97)80022-7.
  • De Kruif, C.G.; Tuinier, R. Polysaccharide Protein Interactions. Food Hydrocoll. 2001, 15(4–6), 555–563. DOI:10.1016/S0268-005X(01)00076-5.
  • De Jong, B.H.G.;. Morphology of Coacervates. In Colloid Science, Kruyt, H.R., Ed.; Elsevier Publishing Company: Amsterdam, Holland; 1949; pp 433–480.
  • Semenova, M.G.; Bolotina, V.S.; Dmitrochenko, A.P.; Leontiev, A.L.; Polyakov, V.I.; Braudo, E.E.; Tolstoguzov, V.B. The Factors Affecting the Compatibility of Serum Albumin and Pectinate in Aqueous Medium. Carbohydr. Polym. 1991, 15(4), 367–385. DOI:10.1016/0144-8617(91)90088-T.
  • Norton, I.T.; Frith, W.J. Microstructure Design in Mixed Biopolymer Composites. Food Hydrocoll. 2001, 15(4–6), 543–553. DOI:10.1016/S0268-005X(01)00062-5.
  • Moschakis, T.; Murray, B.S.; Dickinson, E. Microstructural Evolution of Viscoelastic Emulsions Stabilized by Sodium Caseinate and Xanthan Gum. J. Colloid Interface Sci. 2005, 284(2), 714–728. DOI:10.1016/j.jcis.2004.10.036.
  • Schmitt, C.; Turgeon, S.L. Protein/Polysaccharide Complexes and Coacervates in Food Systems. Adv. Colloid Interface Sci. 2011, 167(1–2), 63–70. DOI:10.1016/j.cis.2010.10.001.
  • Jones, O.G.; Mcclements, D.J. Recent Progress in Biopolymer Nanoparticle and Microparticle Formation by Heat-Treating Electrostatic Protein-Polysaccharide Complexes. Adv. Colloid Interface Sci. 2011, 167(1–2), 49–62. DOI:10.1016/j.cis.2010.10.006.
  • Jaramillo, D.P.; Roberts, R.F.; Coupland, J.N. Effect of pH on the Properties of Soy Protein-Pectin Complexes. Food Res. Int. 2011, 44(4), 911–916. DOI:10.1016/j.foodres.2011.01.057.
  • Lam, M.; Shen, R.; Paulsen, P.; Corredig, M. Pectin Stabilization of Soy Protein Isolates at Low pH. Sci. Direct. 2007, 40(1), 101–110.
  • De Kruif, C.G.; Weinbreck, F.; De Vries, R. Complex Coacervation of Proteins and Anionic Polysaccharides. Curr. Opin. Colloid Interface Sci. 2004, 9(5), 340–349. DOI:10.1016/j.cocis.2004.09.006.
  • Weinbreck, F.; Nieuwenhuijse, H.; Robijn, G.W.; De Kruif, C.G. Complex Formation of Whey Proteins: Exocellular Polysaccharide EPS B40. Langmuir. 2003, 19(22), 9404–9410. DOI:10.1021/la0348214.
  • Hosseini, S.M.H.; Djomeh, Z.E.; Razavi, S.H.; Moosavi-Movahedi, A.A.; Saboury, A.A.; Atri, M.S.; Meeren, P.V. β–Lactoglobulin-sodium Alginate Interaction as Affected by Polysaccharide Depolymerization Using High Intensity ultrasound.Food. Hydrocolloids. 2013, 32(2), 235–244. DOI:10.1016/j.foodhyd.2013.01.002.
  • Kazmierski, M.; Wicker, K.; Corredig, M. Interactions of β-Lactoglobulin and High-Methoxyl Pectins in acidiWed Systems. J. Food Sci. 2003, 68(5), 1673–1679. DOI:10.1111/j.1365-2621.2003.tb12312.x.
  • Huang, G.-Q.; Sun, Y.-T.; Xiao, J.-X.; Yang, J. Complex Coacervation of Soybean Protein Isolate and Chitosan. Food Chem. 2012, 135(2), 534–539. DOI:10.1016/j.foodchem.2012.04.140.
  • Casarotti, S.N.; Jorge, N. Aspectos Tecnológicos Dos Substitutos De Gordura E Suas Aplicações Em Produtos Lácteos. Nutrire: rev.Soc. Bras. Alim. Nutr.= J. Brazilian Soc. Food Nutr. 2010, 35(3), 163–181, 2010.
  • Fioramonti, S.A.; Martinez, M.J.; Pilosof, A.M.R.; Rubiolo, A.C.; Santiago, L.G. Multilayer Emulsions as a Strategy for Linseed Oil Microencapsulation: Effect of pH and Alginate Concentration. Food Hydrocoll. 2015, 43, 8–17. DOI:10.1016/j.foodhyd.2014.04.026.
  • Mohammadi, A.; Jafaria, S.M.; Assadpourc, E.; Faridi Esfanjan, F. Nano-Encapsulation of Olive Leaf Phenolic Compounds throughWPC–Pectin Complexes and Evaluating Their Release rateAdeleh Iaa. Int. J. Biol. Macromol. 2016, 82, 816–822. DOI:10.1016/j.ijbiomac.2015.10.025.
  • Cho, Y.-H.; McClements, D.J. Theoretical Stability Maps for Guiding Preparation of Emulsions Stabilized by Protein-Polysaccharide Interfacial Complexes. Langmuir. 2009, 25(12), 6649–6657. DOI:10.1021/la8006684.
  • Shih, X.; Caruso, F. Release Behavior of Thin-Walled Microcapsules Composed of Polyelectrolyte Multilayers. Langmuir. 2001, 17(6), 2036–2042. DOI:10.1021/la001550d.
  • Nori, M.P.; Favaro-Trindade, C.S.; Alencar, S.M.; Thomazini, M.; Balieiro, J.C.C.; Castillo, C.J.C. Microencapsulation of Propolis Extract by Complex Coacervation. LWT – Food Sci. Technol. 2011, 44(2), 429–435. DOI:10.1016/j.lwt.2010.09.010.
  • Tran, T.; Rousseau, D. Stabilization of Acidic Soy Protein-Based Dispersions and Emulsions by Soy Soluble Polysaccharides. Food Hydrocoll. 2013, 30(1), 382–392. DOI:10.1016/j.foodhyd.2012.06.001.
  • Yin, B.; Deng, W.; Xu, K.; Huang, L.; Yao, P. Stable Nano-Sized Emulsions Produced from Soy Protein and Soy Polysaccharide Complexes. J. Colloid Interface Sci. 2012, 380(1), 51–59. DOI:10.1016/j.jcis.2012.04.075.
  • Albano, K.M.; Nicoletti, V.R. Sistemas Complexos De Baixo Teor De Lipídeos Estabilizados Pela Interação Eletrostática Entre Biopolímeros Com Aplicação De Ultrassom Ou Alta Pressão. Doctoral thesis, Universidade Estadual Paulista, São José do Rio Preto, São Paulo, Brazil, 2017, pp 214.
  • Harnsilawat, T.; Pongsawatmanit, R.; MCClements, D.J. Stabilization of Model Beverage Cloud Emulsions Using Protein-Polysaccharide Electrostatic Complexes Formed at the Oil-Water Interface. J. Agric. Food Chem. 2006b, 54(15), 5540–5547. DOI:10.1021/jf052860a.
  • Perrechil, F.A.; Cunha, R.L. Oil-In-Water Emulsions Stabilized by Sodium Caseinate: Influence of pH, High-Pressure Homogenization and Locust Bean Gum Addition. J. Food Eng. 2010, 97(4), 441–448. DOI:10.1016/j.jfoodeng.2009.10.041.
  • Singh, O.N.; Burgess, D.J. Characterization of Albumin-Alginic Acid Complex Coacervation. J. Pharm. Pharmacol. 1989, 41(10), 670–673. DOI:10.1111/jphp.1989.41.issue-10.
  • Burgess, D.J.;. Practical Analysis of Complex Coacervate Systems. J. Colloid Interface Sci. 1990, 140(1), 227–238. DOI:10.1016/0021-9797(90)90338-O.
  • Tolstoguzov, V.;. Composition and Phase Diagrams for Aqueous Systems Based on Proteins and Polysaccharides. Int. Rev. Cytol. 1999, 192, 3–31.
  • Albano, K.M.; Nicoletti, V.R. Ultrasound Impact on Whey Protein Concentrate- Pectin Complexes and in the O/W Emulsions with Low Oil Soybean Content Stabilization. Ultrason. Sonochem. 2018, 41, 562–571. DOI:10.1016/j.ultsonch.2017.10.018.
  • Benichou, A.; Aserin, A.; Lutz, R.; Gart, N. Formation and Characterization of Amphiphilic Conjugates of Whey Protein Isolate (Wpi)/Xanthan to Improve Surface Activity. Food Hydrocoll. 2007a, 21, 379–391. DOI:10.1016/j.foodhyd.2006.04.013.
  • Benichou, A.; Aserin, A.; Gart, N. O/W/O Double Emulsions Stabilized with WPI–Polysaccharide Conjugates. Colloids Surf. A. 2007b, 297, 211–220. DOI:10.1016/j.colsurfa.2006.10.048.
  • Galazka, V.B.; Smith, D.; Ledward, D.A.; Dickinson, E. Complexes of Bovine Serum Albumin with Sulfated Polysaccharides: Effects of pH, Ionic Strength and High Pressure Treatment. Food Chem. 1999, 64(3), 303–310. DOI:10.1016/S0308-8146(98)00104-6.
  • Prata, A.S.; Grosso, C.R.F. Estudo Dos Parâmetros Físico-Químicos Envolvidos Na Formação De Microcápsulas Produzidas Por Coacervação Complexa. Doctoral thesis, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil, 2006, pp 242.
  • Schmelz, T.; Lesmes, U.; Weiss, J.; McClements, D.J. Modulation of Physicochemical Properties of Lipid Droplets Using B-Lactoglobulin And/Or Lactoferrin Interfacial Coatings. Food Hydrocoll. 2011, 25(5), 1181–1188. DOI:10.1016/j.foodhyd.2010.11.005.
  • Harnsilawat, T.; Pongsawatmanit, R.; Mcclements, D.J. Characterization of β-lactoglobulin-sodium Alginate Interactions in Aqueous Solutions: A Calorimetry, Light Scattering, Electrophoretic Mobility and Solubility Study. Food Hydrocoll. 2006a, 20(5), 577–585. DOI:10.1016/j.foodhyd.2005.05.005.
  • Sessler, T.; Weiss, J.; Vodovotz, Y. Influence of pH and Soy Protein Isolate Addition on the Physicochemical Properties of Functional Grape Pectin Confections. Food Hydrocoll. 2013, 32(2), 294–302. DOI:10.1016/j.foodhyd.2013.01.013.
  • Cheftel, J.C.; Cuq, J.L.; Lorient, D. Aminoacidos, Peptidos Y Proteinas. In Química De Los Alimentos, Fennema, O.R., Ed.; Editorial Acribia: Zaragoza, 1996; pp 275–414.
  • Tolstoguzov, V.;. Some Thermodynamic Considerations in Food Formulation. Food Hydrocoll. 2003, 17(1), 1–23. DOI:10.1016/S0268-005X(01)00111-4.
  • Einhorn-Stoll, U.; Ulbrich, M.; Sever, S.; Kunzek, H. Formation of Milk protein–Pectin Conjugates with Improved Emulsifying Properties by Controlled Dry Heating. Food Hydrocoll. 2005, 19(2), 329–340. DOI:10.1016/j.foodhyd.2004.07.005.
  • Girard, M.; Turgeon, S.L.; Gauthier, S.F. Interbiopolymer Complexing between β-lactoglobulin and Low and High Methylated Pectin Measured by Potentiometric Titration and Ultrafiltration. Food Hydrocoll. 2002, 16(6), 585–591. DOI:10.1016/S0268-005X(02)00020-6.
  • Lamprecht, A.; Schäfer, U.F.; Lehr, C.M. Influences of Process Parameters on Preparation of Microparticle Used as a Carrier System for Ù – 3 Unsaturated Fatty Acid Ethyl Esters Used in Supplementary Nutrition. J. Microencapsul. 2001, 18(3), 347–357. DOI:10.1080/02652040010000433.
  • Tonon, R.V.; Grosso, C.R.F.; Hubinger, M.D. Influence of Emulsion Composition and Inlet Air Temperature on the Microencapsulation of Flaxseed Oil by Spray Drying. Food Res. Int. 2011, 44(1), 282–289. DOI:10.1016/j.foodres.2010.10.018.
  • Kelly, R.; Gudo, E.S.; Mitchell, J.R.; Harding, S.E. Some Observations on the Nature of Heated Mixtures of Bovine Serum Albumin with Alginate and a Pectin. Carbohydr. Polymer. 1994, 23(2), 115–120. DOI:10.1016/0144-8617(94)90035-3.
  • Stainsby, G.;. Proteinaceous Gelling Systems and Their Complexes with Polysaccharides. Food Chem. 1980, 6(1), 3–14. DOI:10.1016/0308-8146(80)90003-5.
  • Dickinson, E.; Pawlowsky, K. Effect of I-Carrageenan on Flocculation, Creaming, and Rheology of a Protein-Stabilized Emulsion. J. Agric. Food Chem. 1997, 45(10), 3799–3806. DOI:10.1021/jf970304d.
  • Le Hénaff, S. Microparticules De Complexes De Protéines De Lactosérum Et De Xanthane Comme Substitut De Matière Grasse. Master’s dissertation, Université Laval, Quebec, Canada, 1996.
  • Kuhn, K.R.; Cunha, R.L. Flaxseed Oil – Whey Protein Isolate Emulsions: Effect of High Pressure Homogenization. J. Food Eng. 2012b, 111(2), 449–457. DOI:10.1016/j.jfoodeng.2012.01.016.
  • Hu, H.; Wu, J.; Li-Chan, E.C.Y.; Zhu, L.; Zhang, F.; Xu, X.; Fan, G.; Wang, L.; Huang, X.; Pan, S. Effects of Ultrasound on Structural and Physical Properties of Soy Protein Isolate (SPI) Dispersions. Food Hydrocoll. 2013, 30(2), 647–655. DOI:10.1016/j.foodhyd.2012.08.001.
  • Hu, H.; Cheung, I.W.Y.; Pan, S.; Li-Chan, E.C.Y. Effect of High Intensity Ultrasound on Physicochemical and Functional Properties of Aggregated Soybean B-Conglycinin and Glycinin. Food Hydrocoll. 2015, 45, 102–110. DOI:10.1016/j.foodhyd.2014.11.004.
  • Jambrak, A.R.; Lelas, V.; Mason, T.J.; Krešic´, G.; Badanjak, M. Physical Properties of Ultrasound Treated Soy Proteins. J. Food Eng. 2009, 93(4), 386–393. DOI:10.1016/j.jfoodeng.2009.02.001.
  • Jones, O.G.; Lesmes, U.; Dubin, P.; McClements, D.J. Effect of Polysaccharide Charge on Formation and Properties of Biopolymer Nanoparticles Created by Heat Treatment of b-lactoglobulin–Pectin Complexes. Food Hydrocoll. 2010b, 24(4), 374–383. DOI:10.1016/j.foodhyd.2009.11.003.
  • Jones, O.; Decker, E.A.; McClements, D.J. Thermal Analysis of B-Lactoglobulin Complexes with Pectins or Carrageenan for Production of Stable Biopolymer Particles. Food Hydrocoll. 2010c, 24(2), 239–248. DOI:10.1016/j.foodhyd.2009.10.001.
  • Madadlou, A.; Mousavi, M.E.; Emam-Djomeh, Z.; Ehsani, M.; Sheehan, D. Comparison of pH-dependent Sonodisruption of Re-Assembled Casein Micelles by 35 and 130 kHz Ultrasounds. J. Food Eng. 2009, 95(3), 505–509. DOI:10.1016/j.jfoodeng.2009.06.008.
  • Pan, H.; Xu, X.; Tiana, Y.; Jiao, A.; Jiang, B.; Chen, J.; Jin, Z. Impact of Phase Separation of Soy Protein Isolate/Sodium Alginate Co-Blending Mixtures on Gelation Dynamics and Gels Properties. Carbohydr. Polym. 2015, 125, 169–179. DOI:10.1016/j.carbpol.2015.02.030.
  • Perez, A.A.; Carrara, C.R.; Sanches, C.C.; Rodríguez Patino, J.M.; Santiago, L.G. Interactions between Milk Whey Protein and Polysaccharide in Solution. Food Chem. 2009, 116(1), 104–113. DOI:10.1016/j.foodchem.2009.02.017.
  • Stone, A.K.; Teymurova, A.; Nickerson, M.T. Formation and Functional Attributes of Canola Protein Isolate—Gum Arabic Electrostatic Complexes. Food Biophys. 2014, 9(3), 203–212. DOI:10.1007/s11483-014-9334-7.
  • Chung, C.; Degner, B.; McClements, D.J. Rheology and Microstructure of Bimodal Particulate Dispersions: Model for Foods Containing Fat Droplets and Starch Granules. Food Res. Int. 2012, 48(2), 641–649. DOI:10.1016/j.foodres.2012.06.011.
  • Chung, C.; Degner, B.; Mcclements, D.J. Designing Reduced-Fat Food Emulsions: Locust Bean Gum-Fat Droplet Interactions. Food Hydrocoll. 2013, 32(2), 263–270. DOI:10.1016/j.foodhyd.2013.01.008.
  • Iqbal, S.; Hameed, G.; Baloch, M.K.; McClements, D.J. Structuring of Lipid Phases Using Controlled Heteroaggregation of Protein Microspheres in Water-In-Oil Emulsions. J. Food Eng. 2013, 115(3), 314–321. DOI:10.1016/j.jfoodeng.2012.10.044.
  • Mao, Y.; McClements, D.J. Fabrication of Viscous and Paste-Like Materials by Controlled Heteroaggregation of Oppositely Charged Lipid Droplets. Food Chem. 2012, 134(2), 872–879. DOI:10.1016/j.foodchem.2012.02.196.
  • Kaltsa, O.; Paximada, P.; Mandala, I.; Scholten, E. Physical Characteristics of Submicron Emulsions upon Partial Displacement of Whey Protein by a Small Molecular Weight Surfactant and Pectin Addition. Food Res. Int. 2014, 66, 401–408. DOI:10.1016/j.foodres.2014.10.005.
  • Neirinck, N.; Van Der Meeren, P.; Lukaszewicz-Lausecker, M.; Cocquyt, J.; Verbeken, D.; Dewettinck, K. Influence of pH and Biopolymer Ratio on Whey protein–Pectin Interactions in Aqueous Solutions and in O/W Emulsions. Colloids Surf. A. 2007, 298(1–2), 99–107. DOI:10.1016/j.colsurfa.2006.12.001.
  • Xiang, N.; Lyu, Y.; Narsimhan, G. Characterization of Fish Oil in Water Emulsion Produced by Layer by Layer Deposition of Soy B-Conglycinin and High Methoxyl Pectin. Food Hydrocoll. 2016, 52, 678–689. DOI:10.1016/j.foodhyd.2015.08.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.