478
Views
5
CrossRef citations to date
0
Altmetric
Review

Review: Colostrum as an Emerging food: Nutraceutical Properties and Food Supplement

, , , , ORCID Icon &

References

  • Hurley, W. L.; Theil, P. K. Perspectives on Immunoglobulins in Colostrum and Milk. Nutrients. 2011, 3(4), 442–474. DOI: 10.3390/nu3040442.
  • Stelwagen, K.; Carpenter, E.; Haigh, B.; Hodgkinson, A.; Wheeler, T. T. Immune Components of Bovine Colostrum and Milk. J. Anim. Sci. 2009, 87(suppl_13), 3–9. DOI: 10.2527/jas.2008-1377.
  • Kessler, E. C.; Bruckmaier, R. M.; Gross, J. J. Immunoglobulin G Content and Colostrum Composition of Different Goat and Sheep Breeds in Switzerland and Germany. J. Dairy Sci. 2019, 102(6), 5542–5549. DOI: 10.3168/jds.2018-16235.
  • Rudovsky, A.; Locher, L.; Zeyner, A.; Sobiraj, A.; Wittek, T. Measurement of Immunoglobulin Concentration in Goat Colostrum. Small Rumin. Res. 2008, 74(1–3), 265–269. DOI: 10.1016/j.smallrumres.2007.06.003.
  • Godden, S. Colostrum Management for Dairy Calves. Vet. Clin. North Am. - Food Anim. Pract. 2008, 24(1), 19–39. DOI: 10.1016/j.cvfa.2007.10.005.
  • Alves, A. C.; Alves, N. G.; Ascari, I. J.; Junqueira, F. B.; Coutinho, A. S.; Lima, R. R.; Pérez, J. R. O.; De Paula, S. O.; Furusho-Garcia, I. F.; Abreu, L. R. Colostrum Composition of Santa Inês Sheep and Passive Transfer of Immunity to Lambs. J. Dairy Sci. 2015, 98(6), 3706–3716. DOI: 10.3168/jds.2014-7992.
  • Lopez, A. J.; Jones, C. M.; Geiger, A. J.; Heinrichs, A. J. Comparison of Immunoglobulin G Absorption in Calves Fed Maternal Colostrum, a Commercial Whey-based Colostrum Replacer, or Supplemented Maternal Colostrum. J. Dairy Sci. 2020, 103(5), 4838–4845. DOI: 10.3168/jds.2019-17949.
  • Marnila, P.; Korhonen, H. Milk: Colostrum. Encycl. Dairy Sci. Second Ed. 2011, 591–597. DOI: 10.1016/B978-0-12-374407-4.00322-8.
  • Kehoe, S. I.; Jayarao, B. M.; Heinrichs, A. J. A Survey of Bovine Colostrum Composition and Colostrum Management Practices on Pennsylvania Dairy Farms. J. Dairy Sci. 2007, 90(9), 4108–4116. DOI: 10.3168/jds.2007-0040.
  • Morrill, K. M.; Conrad, E.; Lago, A.; Campbell, J.; Quigley, J.; Tyler, H. Nationwide Evaluation of Quality and Composition of Colostrum on Dairy Farms in the United States. J. Dairy Sci. 2012, 95(7), 3997–4005. DOI: 10.3168/jds.2011-5174.
  • Silva, E. G. D. S. O.; Rangel, A. H. D. N.; Mürmam, L.; Bezerra, M. F.; de Oliveira, J. P. F. Bovine Colostrum: Benefits of Its Use in Human Food. Food Sci. Technol. 2019, 39(suppl 2), 355–362. DOI: 10.1590/fst.14619.
  • Borad, S. G.; Singh, A. K. Colostrum Immunoglobulins: Processing, Preservation and Application Aspects. Int. Dairy J. 2018, 85, 201–210. DOI: 10.1016/j.idairyj.2018.05.016.
  • Mickleson, K. N.; Moriarty, K. M. Immunoglobulin Levels in Human Colostrum and Milk. J. Pediatr. Gastroenterol. Nutr. 1982, 1(3), 381–384. DOI: 10.1097/00005176-198201030-00018.
  • Larson, B. L. Immunoglobulins of the Mammary Secretions. Adv. Dairy Chem proteins 1, 1992. .
  • Korhonen, H. J.; Marnila, P. Bovine Milk Immunoglobulins against Microbial Human Diseases. Dairy-Derived Ingredients Food Nutraceutical Uses. 2009, 269–289. DOI: 10.1533/9781845697198.2.269.
  • Puppel, K.; Gołębiewski, M.; Grodkowski, G.; Slósarz, J.; Kunowska-Slósarz, M.; Solarczyk, P.; Łukasiewicz, M.; Balcerak, M.; Przysucha, T. Composition and Factors Affecting Quality of Bovine Colostrum: A Review. Animals. 2019, 9(12), 1070. DOI: 10.3390/ani9121070.
  • Zou, X.; Guo, Z.; Jin, Q.; Huang, J.; Cheong, L.; Xu, X.; Wang, X. Composition and Microstructure of Colostrum and Mature Bovine Milk Fat Globule Membrane. Food Chem. 2015, 185, 362–370. DOI: 10.1016/j.foodchem.2015.03.145.
  • Madsen, B. D.; Rasmussen, M. D.; Nielsen, M. O.; Wiking, L.; Larsen, L. B. Physical Properties of Mammary Secretions in Relation to Chemical Changes during Transition from Colostrum to Milk. J. Dairy Res. 2004, 71(3), 263–272. DOI: 10.1017/S0022029904000263.
  • Marnila, P., and Korhonen, H. COLOSTRUM. Encyclopedia of Dairy Sciences 473–478 . 2002.
  • Buttar, H. S.; Bagwe, S. M.; Bhullar, S. K.; Kaur, G. Health Benefits of Bovine Colostrum in Children and Adults. Dairy Hum. Heal. Dis. Across Lifesp. 2017, 3–20. DOI: 10.1016/B978-0-12-809868-4.00001-7.
  • Giromini, C.; Cheli, F.; Rebucci, R.; Baldi, A. Invited Review: Dairy Proteins and Bioactive Peptides: Modeling Digestion and the Intestinal Barrier. J. Dairy Sci. 2019, 102(2), 929–942. DOI: 10.3168/jds.2018-15163.
  • Haschke, F.; Haiden, N.; Thakkar, S. K. Nutritive and Bioactive Proteins in Breastmilk. Ann. Nutr. Metab. 2017, 69, 17–26. DOI: 10.1159/000452820.
  • Shimizu, M.; Ok Son, D. Food-Derived Peptides and Intestinal Functions. Curr. Pharm. Des. 2007, 13(9), 885–895. DOI: 10.2174/138161207780414287.
  • Giansanti, F.; Panella, G.; Leboffe, L.; Antonini, G. Lactoferrin from Milk: Nutraceutical and Pharmacological Properties. Pharmaceuticals. 2016, 9(4), 61. DOI: 10.3390/ph9040061.
  • Sanchez, L.; Calvo, M.; Brock, J. H. Biological Role of Lactoferrin. Arch. Dis. Child. 1992, 67(5), 657–661. DOI: 10.1136/adc.67.5.657.
  • Tripathi, V.; Vashishtha, B. Bioactive Compounds of Colostrum and Its Application. Food Rev. Int. 2006, 22(3), 225–244. DOI: 10.1080/87559120600694606.
  • Steijns, J. M. Milk Ingredients as Nutraceuticals. Int. J. Dairy Technol. 2001, 54(3), 81–88. DOI: 10.1046/j.1364-727x.2001.00019.x.
  • Jenssen, H.; Hancock, R. E. W. Antimicrobial Properties of Lactoferrin. Biochimie. 2009, 91(1), 19–29. DOI: 10.1016/j.biochi.2008.05.015.
  • Kawasaki, Y.; Sato, K.; Shinmoto, H.; Dosako, S. Role of Basic Residues of Human Lactoferrin in the Interaction with B Lymphocytes. Biosci. Biotechnol. Biochem. 2000, 64(2), 314–318. DOI: 10.1271/bbb.64.314.
  • Britigan, B. E.; Serody, J. S.; Cohen, M. S. The Role of Lactoferrin as an Anti-inflammatory Molecule. Adv. Exp. Med. Biol. 1994, 357, 143–156. DOI: 10.1007/978-1-4615-2548-6_14.
  • Ye, X. Y.; Wang, H. X.; Liu, F., and Ng, T. B. Ribonuclease, Cell-free Translation-inhibitory and Superoxide Radical Scavenging Activities of the Iron-binding Protein Lactoferrin from Bovine Milk. Int. J. Biochem. Cell Biol. 2000, 10(1016/S1357–2725(99)00131–4 235–241).
  • Demmelmair, H.; Prell, C.; Timby, N.; Lönnerdal, B. Benefits of Lactoferrin, Osteopontin and Milk Fat Globule Membranes for Infants. Nutrients. 2017, 9(8), 817. DOI: 10.3390/nu9080817.
  • Adamkin, D.; Manzoni, P.; Rinaldi, M.; Cattani, S.; Pugni, L.; Romeo, M. G.; Messner, H.; Stolfi, I.; Decembrino, L.; Laforgia, N., et al. Bovine Lactoferrin Supplementation for Prevention of Late-onset Sepsis in Very Low-birth-weight Neonates: A Randomized Trial. JAMA - J. Am. Med. Assoc 2010, 302, 173–175. DOI: 10.1001/jama.2009.1403.
  • Ochoa, T. J.; Zegarra, J.; Bellomo, S.; Carcamo, C. P.; Cam, L.; Castañeda, A.; Villavicencio, A.; Gonzales, J.; Rueda, M. S.; Turin, C. G., Zea-Vera, A., Guillen, D., Campos, M., Ewing-Cobbs, L. April , et al. . In ; 2020 Randomized Controlled Trial of Bovine Lactoferrin for Prevention of Sepsis and Neurodevelopment Impairment in Infants Weighing Less Than 2000 Grams The Journal of Pediatrics doi:10.1016/j.jpeds.2019.12.038. 118–125
  • Jiang, R.; Liu, L.; Liu, L.; Du, X.; Lönnerdal, B. Evaluation of Bioactivities of the Bovine Milk Lactoferrin-Osteopontin Complex in Infant Formulas. J. Agric. Food Chem. 2020, 68(22), 6104–6111. DOI: 10.1021/acs.jafc.9b07988.
  • Shahidi, F.; Roshanak, S.; Javadmanesh, A.; Tabatabaei Yazdi, F.; Pirkhezranian, Z.; Azghandi, M. Evaluation of Antimicrobial Properties of Bovine Lactoferrin against Foodborne Pathogenic Microorganisms in Planktonic and Biofilm Forms (In Vitro). J. Fur Verbraucherschutz Und Leb. 2020, 15(3), 277–283. DOI: 10.1007/s00003-020-01280-3.
  • de Sá Almeida, J. S.; de Oliveira Marre, A. T.; Teixeira, F. L.; Boente, R. F.; Domingues, R. M. C. P.; de Paula, G. R.; Lobo, L. A. Lactoferrin and Lactoferricin B Reduce Adhesion and Biofilm Formation in the Intestinal Symbionts Bacteroides Fragilis and Bacteroides Thetaiotaomicron. Anaerobe. 2020, 64, 102232. DOI: 10.1016/j.anaerobe.2020.102232.
  • Cutone, A.; Rosa, L.; Ianiro, G.; Lepanto, M. S.; Di Patti, M. C. B.; Valenti, P.; Musci, G. Lactoferrin’s Anti-cancer Properties: Safety, Selectivity, and Wide Range of Action. Biomolecules. 2020, 10(3), 456. DOI: 10.3390/biom10030456.
  • Sekine, K.; Ushida, Y.; Kuhara, T.; Iigo, M.; Baba-Toriyama, H.; Moore, M. A.; Murakoshi, M.; Satomi, Y.; Nishino, H., and Kakizoe, T., et al. Inhibition of Initiation and Early Stage Development of Aberrant Crypt Foci and Enhanced Natural Killer Activity in Male Rats Administered Bovine Lactoferrin Concomitantly with Azoxymethane. Cancer Lett. 1997, 10, 221-216. 1016/S0304–3835(97)00358–3.
  • Tone Eliassen, L.; Berge, G.; Sveinbjørnsson, B.; Svendsen, J. S.; Vorland, L. H., and Rekdal, Ø. Evidence for a Direct Antitumor Mechanism of Action of Bovine Lactoferricin. Anticancer Res. 2002, 2703-2710.
  • Kim, Y.; Kim, M. J.; Han, K. S.; Imm, J. Y.; Oh, S.; Kim, S. H. Anticancer Activity of Lactoferrin Isolated from Caprine Colostrum on Human Cancer Cell Lines. Int. J. Dairy Technol. 2009, 62(2), 277–281. DOI: 10.1111/j.1471-0307.2009.00466.x.
  • Tsuda, H.; Kozu, T.; Iinuma, G.; Ohashi, Y.; Saito, Y.; Saito, D.; Akasu, T.; Alexander, D. B.; Futakuchi, M., and Fukamachi, K., et al. Cancer Prevention by Bovine Lactoferrin: From Animal Studies to Human Trial. In Proceedings of the BioMetals Tucson, Arizona; 2010.
  • Cals, M. ‐. M.; Mailliart, P.; Brignon, G.; Anglade, P.; Dumas, B. R. Primary Structure of Bovine Lactoperoxidase, a Fourth Member of a Mammalian Heme Peroxidase Family. Eur. J. Biochem. 1991, 198(3), 733–739. DOI: 10.1111/j.1432-1033.1991.tb16073.x.
  • Björck, L.; Rosén, C.-G.; Marshall, V.; Reiter, B. Antibacterial Activity of the Lactoperoxidase System in Milk against Pseudomonas and Other Gram-Negative Bacteria. Appl. Microbiol. 1975, 30(2), 199–204. DOI: 10.1128/aem.30.2.199-204.1975.
  • Pollock, J. R., and Goff, H. M. Lactoperoxidase-catalyzed Oxidation of Thiocyanate Ion: A Carbon-13 Nuclear Magnetic Resonance Study of the Oxidation Products. Biochim. Biophys. Acta (BBA)/Protein Struct. Mol. 1992, 10(1016/0167–4838(92)90057–K 279–285).
  • Przybylska, J.; Albera, E.; Kankofer, M. Antioxidants in Bovine Colostrum. Reprod. Domest. Anim. 2007, 42(4), 402–409. DOI: 10.1111/j.1439-0531.2006.00799.x.
  • Seifu, E.; Buys, E. M.; Donkin, E. F. Significance of the Lactoperoxidase System in the Dairy Industry and Its Potential Applications: A Review. Trends Food Sci. Technol. 2005, 16(4), 137–154. DOI: 10.1016/j.tifs.2004.11.002.
  • Tenovuo, J. Clinical Applications of Antimicrobial Host Proteins Lactoperoxidase, Lysozyme and Lactoferrin in Xerostomia: Efficacy and Safety. Oral Dis. 2002, 8(1), 23–29. DOI: 10.1034/j.1601-0825.2002.1o781.x.
  • Albera, E. Kankofer, M. Antioxidants in Colostrum and Milk of Sows and Cows. Reprod. Domest. Anim. 2009, 44(4), 606–611. DOI: 10.1111/j.1439-0531.2007.01027.x.
  • Harjanti, D. W.; Ciptaningtyas, R.; Al-Baarri, A. N. M.; Kusumanti, E. Isolation and Identification of Lactoferrin and Lactoperoxidase from the Colostrum of Indonesian Ettawa Crossbred Goat. Adv. Sci. Lett. 2017, 23(4), 3321–3324. DOI: 10.1166/asl.2017.9114.
  • Pouliot, Y.; Gauthier, S. F. Milk Growth Factors as Health Products: Some Technological Aspects. Int. Dairy J. 2006, 16(11), 1415–1420. DOI: 10.1016/j.idairyj.2006.06.006.
  • Pandey, N. N.; Dar, A. A.; Mondal, D. B., and Nagaraja, L. Bovine Colostrum: A Veterinary Nutraceutical. J. Vet. Med. Anim. Heal 2011, 3(3), 31–35. .
  • Playford, R. J.; Macdonald, C. E.; Johnson, W. S. Colostrum and Milk-derived Peptide Growth Factors for the Treatment of Gastrointestinal Disorders. Am. J. Clin. Nutr. 2000, 72(1), 5–14. DOI: 10.1093/ajcn/72.1.5.
  • Pakkanen, R.; Aalto, J. Growth Factors and Antimicrobial Factors of Bovine Colostrum. Int. Dairy J. 1997, 7(5), 285–297. DOI: 10.1016/S0958-6946(97)00022-8.
  • Vacher, P.-Y.; Blum, J. W. Age-dependency of Insulin-like Growth Factor I, Insulin, Protein and Immunoglobulin Concentrations and γ-glutamyl-transferase Activity in First Colostrum of Dairy Cows. Milchwissenschaft. 1993, 48, 423–426.
  • Playford, R. J.; Weiser, M. J. Bovine Colostrum: Its Constituents and Uses. Nutrients. 2021, 13(1), 265. DOI: 10.3390/nu13010265.
  • Read, L. C.; Francis, G. L.; Wallace, J. C.; Ballard, F. J. Growth Factor Concentrations and Growth-promoting Activity in Human Milk following Premature Birth. J. Dev. Physiol. 1985, 7(2), 135–145.
  • Keck, P. J.; Hauser, S. D.; Krivi, G.; Sanzo, K.; Warren, T.; Feder, J.; Connolly, D. T. Vascular Permeability Factor, an Endothelial Cell Mitogen Related to PDGF. Science, 1989, 246(4935), 1309–1312. (80-.). 10.1126/science.2479987
  • D.e.w, C.; D.n, N.; S.b, B., and S, P. T. Anti-inflammatory mechanisms of Bioactive Milk Proteins in the Intestine of Newborns. Int. J. Biochem. Cell Biol. 1730–1747 2013.
  • Kovacs, D.; Cardinali, G.; Aspite, N.; Picardo, M. Bovine Colostrum Promotes Growth and Migration of the Human Keratinocyte HaCaT Cell Line. Growth Factors. 2009, 1–1. DOI: 10.1080/08977190903211077.
  • Playford, R. J.; Floyd, D. N.; Macdonald, C. E.; Calnan, D. P.; Adenekan, R. O.; Johnson, W.; Goodlad, R. A.; Marchbank, T. Bovine Colostrum Is a Health Food Supplement Which Prevents NSAID Induced Gut Damage. Gut. 1999, 44(5), 653–658. DOI: 10.1136/gut.44.5.653.
  • Quigley, J. D., and Drewry, J. J. Nutrient and Immunity Transfer from Cow to Calf Pre- and Postcalving. In doi:10.3168/jds.S0022-0302(98)75836-9; 1998.
  • Ahmadi, M.; Velciov, A.-B.; Scurtu, M.; Ahmadi, T.; Olariu, L. Benefits of Bovine Colostrum in Nutraceutical Products. J. Agroaliment. Process. Technol. 2011, 17, 42–45.
  • Abd El -Fattah, A. M.; Abd Rabo, F. H. R.; EL-Dieb, S. M.; Elkashef, H. A. S. Changes in Composition of Colostrum of Egyptian Buffaloes and Holstein Cows. BMC Vet. Res. 2012, 8(1), 19. DOI: 10.1186/1746-6148-8-19.
  • Calderón, F.; Chauveau-Duriot, B.; Pradel, P.; Martin, B.; Graulet, B.; Doreau, M.; Nozière, P. Variations in Carotenoids, Vitamins A and E, and Color in Cow’s Plasma and Milk following A Shift from Hay Diet to Diets Containing Increasing Levels of Carotenoids and Vitamin E. J. Dairy Sci. 2007, 90(12), 5651–5664. DOI: 10.3168/jds.2007-0264.
  • Hidiroglou, M.; Ivan, M.; Batra, T. R. Concentrations of Vitamin C in Plasma and Milk of Dairy Cattle. Ann. Zootech. 1995, 44(4), 399–402. DOI: 10.1016/0003-424X(96)89763-1.
  • Debier, C.; Pottier, J.; Goffe, C.; Larondelle, Y. Present Knowledge and Unexpected Behaviours of Vitamins A and E in Colostrum and Milk. Livest. Prod. Sci. 2005, 98(1–2), 135–147. DOI: 10.1016/j.livprodsci.2005.10.008.
  • Kume, S.; Toharmat, T. Effect of Colostral β-carotene and Vitamin A on Vitamin and Health Status of Newborn Calves. Livest. Prod. Sci. 2001, 68(1), 61–65. DOI: 10.1016/S0301-6226(00)00214-1.
  • Wang, L.; Xu, X.; Su, G.; Shi, B.; Shan, A. High Concentration of Vitamin E Supplementation in Sow Diet during the Last Week of Gestation and Lactation Affects the Immunological Variables and Antioxidative Parameters in Piglets. J. Dairy Res. 2017, 84(1), 8–13. DOI: 10.1017/S0022029916000650.
  • Moghimi-Kandelousi, M.; Alamouti, A. A.; Imani, M.; Zebeli, Q. A Meta-analysis and Meta-regression of the Effects of Vitamin E Supplementation on Serum Enrichment, Udder Health, Milk Yield, and Reproductive Performance of Transition Cows. J. Dairy Sci. 2020, 103(7), 6157–6166. DOI: 10.3168/jds.2019-17556.
  • Akins, M. S.; Bertics, S. J.; Socha, M. T.; Shaver, R. D. Effects of Cobalt Supplementation and Vitamin B12 Injections on Lactation Performance and Metabolism of Holstein Dairy Cows. J. Dairy Sci. 2013, 96(3), 1755–1768. DOI: 10.3168/jds.2012-5979.
  • Duplessis, M.; Girard, C. L. Effect of Maternal Biotin, Folic Acid, and Vitamin B12 Supplementation before Parturition on Colostral and Holstein Calf Plasma Concentrations in Those Vitamins. Anim. Feed Sci. Technol. 2019, 256, 114241. DOI: 10.1016/j.anifeedsci.2019.114241.
  • Taniguchi, S.; Wang, M.; Ikeda, S.; Yoshioka, H.; Nagase, H.; Kitamura, S.; Itoyama, E.; Murakami, H.; Sugimoto, M.; Kume, S. Relationships between Immunoglobulin M and Immunoglobulin G or A in Colostrum of Japanese Black Multiparous Cows. Anim. Sci. J. 2016, 87(4), 536–540. DOI: 10.1111/asj.12455.
  • Zmijewski, M. A. Vitamin D and Human Health. Int. J. Mol. Sci. 2019, 20(1), 145. DOI: 10.3390/ijms20010145.
  • Granger, M.; Eck, P.; M, G.; P, E. Dietary Vitamin C in Human Health. Adv. Food Nutr. Res. 2018, 83, 281–310. DOI: 10.1016/bs.afnr.2017.11.006.
  • Balan, P.; Sik-Han, K.; Moughan, P. J. Impact of Oral Immunoglobulins on Animal health—A Review. Anim. Sci. J. 2019, 90(9), 1099–1110. DOI: 10.1111/asj.13258.
  • Jones, A. W.; Davison, G. E. Immunity, and Illness. Muscle Exerc. Physiol. 2018, 317–344. DOI: 10.1016/B978-0-12-814593-7.00015-3.
  • G, D., and D, B. C. Bovine Colostrum Supplementation Attenuates the decrease of Salivary Lysozyme and Enhances the Recovery of Neutrophil Function after prolonged Exercise. Br. J. Nutr. 1425- 1432 2010.
  • Jones, A. W.; March, D. S.; Curtis, F.; Bridle, C. Bovine Colostrum Supplementation and Upper Respiratory Symptoms during Exercise Training: A Systematic Review and Meta-analysis of Randomised Controlled Trials. BMC Sports Sci. Med. Rehabil. 2016, 8(1). DOI: 10.1186/s13102-016-0047-8.
  • Davison, G. Bovine Colostrum and Immune Function after Exercise. Med. Sport Sci. 2013, 59, 62–69. DOI: 10.1159/000341966.
  • Ahmadi, M. Colostrum as Nutritional Supplement in Sport.
  • Duff, W. R. D.; Chilibeck, P. D.; Rooke, J. J.; Kaviani, M.; Krentz, J. R.; Haines, D. M. The Effect of Bovine Colostrum Supplementation in Older Adults during Resistance Training. Int. J. Sport Nutr. Exerc. Metab. 2014, 24(3), 276–285. DOI: 10.1123/ijsnem.2013-0182.
  • Marchbank, T.; Davison, G.; Oakes, J. R.; Ghatei, M. A.; Patterson, M.; Moyer, M. P.; Playford, R. J. The Nutriceutical Bovine Colostrum Truncates the Increase in Gut Permeability Caused by Heavy Exercise in Athletes. Am. J. Physiol. - Gastrointest. Liver Physiol. 2011, 300(3), 477–484. DOI: 10.1152/ajpgi.00281.2010.
  • He, F.; Tuomola, E.; Arvilommi, H., and Salminen, S. Modulation of Human Humoral Immune Response through Orally Administered Bovine Colostrum. FEMS Immunol. Med. Microbiol. 2001, 10(1016/S0928–8244(01)00247–4 93–96).
  • D.a.w, W.; W.m.r, V. H.-B.; M.h.g.m, L.; R.p.j, V. D. W., and R, A. Effect of A mixture of Micronutrients, but Not of Bovine Colostrum Concentrate, on Immune Function Parameters in Healthy Volunteers: A Randomized Placebo-controlled Study. Nutr. J 5–28 . 2006.
  • Sun, Q.; Chen, X.; Yu, J.; Zen, K.; Zhang, C. Y.; Li, L. Immune Modulatory Function of Abundant Immune-related microRNAs in Microvesicles from Bovine Colostrum. Protein Cell. 2013, 4(3), 197–210. DOI: 10.1007/s13238-013-2119-9.
  • Cesarone, M. R.; Belcaro, G.; Di Renzo, A.; Dugall, M.; Cacchio, M.; Ruffini, I.; Pellegrini, L.; Del Boccio, G.; Fano, F.; Ledda, A., et al. Prevention of Influenza Episodes with Colostrum Compared with Vaccination in Healthy and High-risk Cardiovascular Subjects: The Epidemiologic Study in San Valentino. Clin. Appl. Thromb.2007, 13(2), 130–136. DOI: 10.1177/1076029606295957.
  • Xu, M. L.; Kim, H. J.; Wi, G. R.; Kim, H. J. The Effect of Dietary Bovine Colostrum on Respiratory Syncytial Virus Infection and Immune Responses following the Infection in the Mouse. J. Microbiol. 2015, 53(9), 661–666. DOI: 10.1007/s12275-015-5353-4.
  • Patiroǧlu, T.; Kondolot, M. The Effect of Bovine Colostrum on Viral Upper Respiratory Tract Infections in Children with Immunoglobulin A Deficiency. Clin. Respir. J. 2013, 7(1), 21–26. DOI: 10.1111/j.1752-699X.2011.00268.x.
  • Kramski, M.; Center, R. J.; Wheatley, A. K.; Jacobson, J. C.; Alexander, M. R.; Rawlin, G.; Purcell, D. F. J. Hyperimmune Bovine Colostrum as a Low-cost, Large-scale Source of Antibodies with Broad Neutralizing Activity for HIV-1 Envelope with Potential Use in Microbicides. Antimicrob. Agents Chemother. 2012, 56(8), 4310–4319. DOI: 10.1128/AAC.00453-12.
  • Ng, W. C.; Wong, V.; Muller, B.; Rawlin, G.; Brown, L. E. Prevention and Treatment of Influenza with Hyperimmune Bovine Colostrum Antibody. PLoS One. 2010, 5(10), e13622. DOI: 10.1371/journal.pone.0013622.
  • van Hooijdonk, A. C. M.; Kussendrager, K. D.; Steijns, J. M. In Vivo Antimicrobial and Antiviral Activity of Components in Bovine Milk and Colostrum Involved in Non-specific Defence. Br. J. Nutr. 2000, 84(S1), 127–134. DOI: 10.1017/s000711450000235x.
  • Laura, M.; G, T. T.; Casagrande-Proietti, P.; Tomasello, G.; Traina, G.; Menchetti, L.; O, B.; L, L.; P, C.-P.; G, T. T., et al. Potential Benefits of Colostrum in gastrointestinal Diseases. Front. Biosci. - Sch 2016, 8, 331–351. DOI: 10.2741/s467.
  • Khan, Z.; Macdonald, C.; Wicks, A. C.; Holt, M. P.; Floyd, D.; Ghosh, S.; Wright, N. A.; Playford, R. J. Use of the “Nutriceutical”, Bovine Colostrum, for the Treatment of Distal Colitis: Results from an Initial Study. Aliment. Pharmacol. Ther. 2002, 16(11), 1917–1922. DOI: 10.1046/j.1365-2036.2002.01354.x.
  • Struff, W. G.; Sprotte, G. Bovine Colostrum as A Biologic in Clinical Medicine: A Review - Part II: Clinical Studies. Int. J. Clin. Pharmacol. Ther. 2008, 46(5), 211–225. DOI: 10.5414/CPP46211.
  • Menchetti, L.; Curone, G.; Filipescu, I. E.; Barbato, O.; Leonardi, L.; Guelfi, G.; Traina, G.; Casagrande-Proietti, P.; Riva, F.; Casano, A. B., et al. The Prophylactic Use of Bovine Colostrum in a Murine Model of TNBS-induced Colitis. Animals.2020, 10(3), 492. DOI: 10.3390/ani10030492.
  • Rathe, M.; De Pietri, S.; Wehner, P. S.; Frandsen, T. L.; Grell, K.; Schmiegelow, K.; Sangild, P. T.; Husby, S.; Müller, K. Bovine Colostrum against Chemotherapy-Induced Gastrointestinal Toxicity in Children with Acute Lymphoblastic Leukemia: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Parenter. Enter. Nutr. 2020, 44(2), 337–347. DOI: 10.1002/jpen.1528.
  • Pacyna, J.; Siwek, K.; Terry, S. J.; Roberton, E. S.; Johnson, R. B.; Davidson, G. P. Survival of Rotavirus Antibody Activity Derived from Bovine Colostrum after Passage through the Human Gastrointestinal Tract. J. Pediatr. Gastroenterol. Nutr. 2001, 32(2), 162–167. DOI: 10.1097/00005176-200102000-00013.
  • Civra, A.; Altomare, A.; Francese, R.; Donalisio, M.; Aldini, G.; Lembo, D. Colostrum from Cows Immunized with a Veterinary Vaccine against Bovine Rotavirus Displays Enhanced in Vitro Anti-human Rotavirus Activity. J. Dairy Sci. 2019, 102(6), 4857–4869. DOI: 10.3168/jds.2018-16016.
  • Barakat, S. H.; Meheissen, M. A.; Omar, O. M.; Elbana, D. A. Bovine Colostrum in the Treatment of Acute Diarrhea in Children: A Double-blinded Randomized Controlled Trial. J. Trop. Pediatr. 2019, 66, 46–55. DOI: 10.1093/tropej/fmz029.
  • Chen, K.; Chen, H.; Luo, J.; Zeng, C.; Dong, X.; Zhou, M.; Liu, C. The Prophylactic Effect of Bovine Colostrum on Respiratory Infection and Diarrhea in Formula-fed Infants: A Randomized Trial. 2020, doi:10.21203/rs.2.20117/v1.
  • Tran, C. D.; Kritas, S.; Campbell, M. A. F.; Huynh, H. Q.; Lee, S. S.; Butler, R. N. Novel Combination Therapy for the Eradication of Helicobacter Pylori Infection in a Mouse Model. Scand. J. Gastroenterol. 2010, 45(12), 1424–1430. DOI: 10.3109/00365521.2010.506245.
  • Bogstedt, A. K.; Nava, S.; Wadström, T.; Hammarström, L. Helicobacter Pylori Infections in IgA Deficiency: Lack of Role for the Secretory Immune System. Clin. Exp. Immunol. 1996, 105(2), 202–204. DOI: 10.1046/j.1365-2249.1996.d01-745.x.
  • Oona, M.; Rago, T.; Maaroos, H. I.; Mikelsaar, M.; Loivukene, K.; Salminen, S., and Korhonen, H. Helicobacter Pylori in Children with Abdominal Complaints: Has Immune Bovine Colostrum Some Influence on Gastritis? Alpe Adria Microbiol. J 6 49–57 . 1997.
  • Bitzan, M. M.; Gold, B. D.; Philpott, D. J.; Huesca, M.; Sherman, P. M.; Karch, H.; Ler, R.; Lingwood, C. A.; Karmali, M. A. Inhibition of Helicobacter Pylori and Helicobacter Mustelae Binding to Lipid Receptors by Bovine Colostrum. J. Infect. Dis. 1998, 177(4), 955–961. DOI: 10.1086/515256.
  • Sienkiewicz, M.; Szymańska, P.; Fichna, J. Supplementation of Bovine Colostrum in Inflammatory Bowel Disease: Benefits and Contraindications. Adv. Nutr. 2020. DOI: 10.1093/advances/nmaa120.
  • Bjarnason, I.; Hayllar, J.; Macpherson, A. N. D. J.; Russell, A. N. T. S. Side Effects of Nonsteroidal Anti-inflammatory Drugs on the Small and Large Intestine in Humans. Gastroenterology. 1993, 104(6), 1832–1847. DOI: 10.1016/0016-5085(93)90667-2.
  • Levi, S.; Shaw-smith, C. Non-steroidal Anti-inflammatory Drugs: How Do They Damage the Gut? Rheumatology. 1994, 33(7), 605–612. DOI: 10.1093/rheumatology/33.7.605.
  • Playford, R. J.; Macdonald, C. E.; Calnan, D. P.; Floyd, D. N.; Podas, T.; Johnson, W.; Wicks, A. C.; Bashir, O.; Marchbank, T. Co-administration of the Health Food Supplement, Bovine Colostrum, Reduces the Acute Non-steroidal Anti-inflammatory Drug-induced Increase in Intestinal Permeability. Clin. Sci. 2001, 100(6), 627. DOI: 10.1042/CS20010015.
  • Playford, R. J.; Cattell, M.; Marchbank, T. Marked Variability in Bioactivity between Commercially Available Bovine Colostrum for Human Use; Implications for Clinical Trials. PLoS One. 2020. DOI: 10.1371/journal.pone.0234719.
  • Mir, R.; Singh, N.; Vikram, G.; Kumar, R. P.; Sinha, M.; Bhushan, A.; Kaur, P.; Srinivasan, A.; Sharma, S.; Singh, T. P. The Structural Basis for the Prevention of Nonsteroidal Antiinflammatory Drug-induced Gastrointestinal Tract Damage by the C-lobe of Bovine Colostrum Lactoferrin. Biophys. J. 2009, 97(12), 3178–3186. DOI: 10.1016/j.bpj.2009.09.030.
  • Kim, J. W.; Jeon, W. K.; Kim, E. J. Combined Effects of Bovine Colostrum and Glutamine in Diclofenac-induced Bacterial Translocation in Rat. Clin. Nutr. 2005, 24(5), 785–793. DOI: 10.1016/j.clnu.2005.04.004.
  • Zarban, A.; Taheri, F.; Chahkandi, T.; Sharifzadeh, G.; Khorashadizadeh, M. Antioxidant and Radical Scavenging Activity of Human Colostrum, Transitional and Mature Milk. J. Clin. Biochem. Nutr. 2009, 45(2), 150–154. DOI: 10.3164/jcbn.08-233.
  • Gruse, J.; Kanitz, E.; Weitzel, J. M.; Tuchscherer, A.; Stefaniak, T.; Jawor, P.; Wolffram, S.; Hammon, H. M. Quercetin Feeding in Newborn Dairy Calves Cannot Compensate Colostrum Deprivation: Study on Metabolic, Antioxidative and Inflammatory Traits. PLoS One. 2016, 11(1), e0146932. DOI: 10.1371/journal.pone.0146932.
  • Appukutty, M.; Radhakrishnan, A. K.; Ramasamy, K.; Ramasamy, R.; Abdul Majeed, A. B.; Noor, M. I.; Safii, N. S.; Koon, P. B.; Chinna, K.; Haleagrahara, N. Colostrum Supplementation Protects against Exercise - Induced Oxidative Stress in Skeletal Muscle in Mice. BMC Res. Notes. 2012, 5(1). DOI: 10.1186/1756-0500-5-649.
  • Zabłocka, A.; Sokołowska, A.; Macała, J.; Bartoszewska, M.; Mitkiewicz, M.; Janusz, M.; Wilusz, T.; Polanowski, A. Colostral Proline-Rich Polypeptide Complexes. Comparative Study of the Antioxidant Properties, Cytokine-Inducing Activity, and Nitric Oxide Release of Preparations Produced by a Laboratory and a Large-Scale Method. Int. J. Pept. Res. Ther. 2020, 26(2), 685–694. DOI: 10.1007/s10989-019-09876-6.
  • Gaspar-Pintiliescu, A.; Oancea, A.; Cotarlet, M.; Vasile, A. M.; Bahrim, G. E.; Shaposhnikov, S.; Craciunescu, O.; Oprita, E. I. Angiotensin-converting Enzyme Inhibition, Antioxidant Activity and Cytotoxicity of Bioactive Peptides from Fermented Bovine Colostrum. Int. J. Dairy Technol. 2020, 73(1), 108–116. DOI: 10.1111/1471-0307.12659.
  • Kumar, P.; Bharti, V. K., and Mukesh, M. Chemometric Analysis of Antioxidant and Mineral Elements in Colostrum of Native and Non-native Goat Breeds to Hypoxic Conditions at High Altitude. Biol. Trace Elem. Res 196 (2) . 2020, 446–453 doi:10.1007/s12011-019-01940-y.
  • Gallo, S. B.; Moretti, D. B.; Oliveira, M. C.; Santos, F. F. D.; Brochine, L.; Micai, G.; da Silva, M. M.; Tedeschi, L. O. The Colostrum Composition of Sheep Fed with High-energy Diets Supplemented with Chromium. Small Rumin. Res. 2020, 191, 106177. DOI: 10.1016/j.smallrumres.2020.106177.
  • Lee, A.; Pontin, M. C. F.; Kosmerl, E.; Jimenez-Flores, R.; Moretti, D. B.; Ziouzenkova, O.; Ziouzenkova, O. Assessment of Adipogenic, Antioxidant, and Anti-inflammatory Properties of Whole and Whey Bovine Colostrum. J. Dairy Sci. 2019, 102(4), 8614–8621. DOI: 10.3168/jds.2019-16509.
  • Oussaief, O.; Jrad, Z.; Adt, I.; Dbara, M.; Khorchani, T.; El-Hatmi, H. Antioxidant Activities of Enzymatic-hydrolysed Proteins of Dromedary (Camelus Dromedarius) Colostrum. Int. J. Dairy Technol. 2020, 73(2), 333–340. DOI: 10.1111/1471-0307.12668.
  • Do Carmo França-botelho, A.; Yan, B.; Gamal Abd El-Aziz Nasr, H. Beneficial Components of Colostrum for Cancer Patients: A Mini-review Focused on Oxidative Aspects and Properties of Colostrinin. Asian Oncol. Res. J. 2019, 2, 1–6.
  • Agarwal, P.; Gupta, R. A Review on Anticancer Property of Colostrum. Res. Rev. - J. Med. Heal. Sci. 2016, 5, 1–9.
  • Uto, Y.; Kawai, T.; Sasaki, T.; Hamada, K.; Yamada, H.; Kuchiike, D.; Kubo, K.; Inui, T.; Mette, M.; Tokunaga, K. Degalactosylated/desialylated Bovine Colostrum Induces Macrophage Phagocytic Activity Independently of Inflammatory Cytokine Production. Anticancer Res. 2015, 35, 4487–4492.
  • Godhia, M. L.; Patel, N. Colostrum - Its Composition, Benefits as A Nutraceutical : A Review. Curr. Res. Nutr. Food Sci. 2013, 1(1), 37–47. DOI: 10.12944/CRNFSJ.1.1.04.
  • Rey, M.; Enjalbert, F.; Combes, S.; Cauquil, L.; Bouchez, O.; Monteils, V. Establishment of Ruminal Bacterial Community in Dairy Calves from Birth to Weaning Is Sequential. J. Appl. Microbiol. 2014, 116(2), 245–257. DOI: 10.1111/jam.12405.
  • Li, B.; Zhang, K.; Li, C.; Wang, X.; Chen, Y.; Yang, Y. Characterization and Comparison of Microbiota in the Gastrointestinal Tracts of the Goat (Capra Hircus) during Preweaning Development. Front. Microbiol. 2019, 10. DOI: 10.3389/fmicb.2019.02125.
  • Ma, T.; O’Hara, E.; Song, Y.; Fischer, A. J.; He, Z.; Steele, M. A.; Guan, L. L. Altered Mucosa-associated Microbiota in the Ileum and Colon of Neonatal Calves in Response to Delayed First Colostrum Feeding. J. Dairy Sci. 2019, 102(8), 7073–7086. DOI: 10.3168/jds.2018-16130.
  • Champagne, C. P.; Raymond, Y.; Pouliot, Y.; Gauthier, S. F.; Lessard, M. Effect of Bovine Colostrum, Cheese Whey, and Spray-dried Porcine Plasma on the in Vitro Growth of Probiotic Bacteria and Escherichia Coli. Can. J. Microbiol. 2014, 60(5), 287–295. DOI: 10.1139/cjm-2014-0130.
  • Stabel, J.; Krueger, L.; Jenvey, C.; Wherry, T.; Hostetter, J.; Beitz, D. Influence of Colostrum and vitamins A, D3, and E on Early Intestinal Colonization of Neonatal Holstein Calves Infected with Mycobacterium Avium Subsp. Paratuberculosis. Vet. Sci. 2019, 6(4), 93. DOI: 10.3390/vetsci6040093.
  • Sanctuary, M. R.; Kain, J. N.; Chen, S. Y.; Kalanetra, K.; Lemay, D. G.; Rose, D. R.; Yang, H. T.; Tancredi, D. J.; Bruce German, J.; Slupsky, C. M., et al. Pilot Study of Probiotic/colostrum Supplementation on Gut Function in Children with Autism and Gastrointestinal Symptoms. PLoS One. (1), e0210064, 2019. DOI:10.1371/journal.pone.0210064
  • Morrin, S. T.; McCarthy, G.; Kennedy, D.; Marotta, M.; Irwin, J. A.; Hickey, R. M. Immunoglobulin G from Bovine Milk Primes Intestinal Epithelial Cells for Increased Colonization of Bifidobacteria. AMB Express. 2020, 10(1). DOI: 10.1186/s13568-020-01048-w.
  • Duranti, S.; Mancabelli, L.; Mancino, W.; Anzalone, R.; Longhi, G.; Statello, R.; Carnevali, L.; Sgoifo, A.; Bernasconi, S.; Turroni, F., et al. Exploring the Effects of COLOSTRONONI on the Mammalian Gut Microbiota Composition. PLoS One. 2019, 14. DOI: 10.1371/journal.pone.0217609.
  • Tilocca, B.; Costanzo, N.; Morittu, V. M. V. M.; Spina, A. A. A. A.; Soggiu, A.; Britti, D.; Roncada, P., and Piras, C. 2020. Milk Microbiota: Characterization Methods and Role in Cheese Production, Vol. 210 103534 doi:10.1016/j.jprot.2019.103534 .
  • Tuomola, E.; Crittenden, R.; Playne, M.; Isolauri, E., and Salminen, S. Quality Assurance Criteria for Probiotic Bacteria The American Journal of Clinical Nutrition 2001, 73(2), 393s–398s. doi:10.1093/ajcn/73.2.393s
  • Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics Fao Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation. 2001, ISSN:02544725
  • Liu, W.; Chen, M.; Duo, L.; Wang, J.; Guo, S.; Sun, H.; Menghe, B.; Zhang, H. Characterization of potentially Probiotic Lactic Acid Bacteria and Bifidobacteria Isolated from Human Colostrum. J. Dairy Sci. 2020, 103(5), 4013–4025. DOI: 10.3168/jds.2019-17602.
  • Reissig Soares Vitola, H.; da Silva Dannenberg, G.; de Lima Marques, J.; Völz Lopes, G.; Padilha da Silva, W.; Fiorentini, Â. M. Probiotic Potential of Lactobacillus Casei CSL3 Isolated from Bovine Colostrum Silage and Its Viability Capacity Immobilized in Soybean. Process Biochem. 2018, 75, 22–30. DOI: 10.1016/j.procbio.2018.09.011.
  • Ruiz, P.; Seseña, S.; Palop, M. L. Characterization of Bacterial Populations from Murciano-Granadina Goat Colostrum. Dairy Sci. Technol. 2014, 94(6), 549–560. DOI: 10.1007/s13594-014-0179-0.
  • Ruiz, P.; Barragán, I.; Seseña, S.; Palop, M. L. Functional Properties and Safety Assessment of Lactic Acid Bacteria Isolated from Goat Colostrum for Application in Food Fermentations. Int. J. Dairy Technol. 2016, 69(4), 559–568. DOI: 10.1111/1471-0307.12293.
  • I, H.; G, K. Goat and Bovine Colostrum as a Basis for New Probiotic Functional Foods and Dietary Supplements. J. Microb. Biochem. Technol. 2016, 08(2). DOI: 10.4172/1948-5948.1000262.
  • Cotârleţ, M.; Vasile, A. M.; Gaspar-Pintiliescu, A.; Oancea, A.; Bahrim, G. E. Tribiotication Strategy for the Functionalization of bovine Colostrum through the Biochemical Activities of Artisanal and Selected Starter Cultures. CYTA - J. Food. 2020, 18(1), 274–280. DOI: 10.1080/19476337.2020.1745287.
  • Bartkiene, E.; Lele, V.; Sakiene, V.; Zavistanaviciute, P.; Ruzauskas, M.; Stankevicius, A.; Grigas, J.; Pautienius, A.; Bernatoniene, J.; Jakstas, V., et al. Fermented, Ultrasonicated, and Dehydrated Bovine Colostrum: Changes in Antimicrobial Properties and Immunoglobulin Content. J. Dairy Sci. 2020, 103(2), 1315–1323. DOI: 10.3168/jds.2019-16357.
  • Davison, G.; Jones, A. W.; Marchbank, T.; Playford, R. J. Oral Bovine Colostrum Supplementation Does Not Increase Circulating Insulin-like Growth Factor-1 Concentration in Healthy Adults: Results from Short- and Long-term Administration Studies. Eur. J. Nutr. 2020, 59(4), 1473–1479. DOI: 10.1007/s00394-019-02004-6.
  • Ahnfeldt, A. M.; Hyldig, N.; Li, Y.; Kappel, S. S.; Aunsholdt, L.; Sangild, P. T.; Zachariassen, G. FortiColos - A Multicentre Study Using Bovine Colostrum as A Fortifier to Human Milk in Very Preterm Infants: Study Protocol for A Randomised Controlled Pilot Trial. Trials. 2019, 20(1). DOI: 10.1186/s13063-019-3367-7.
  • Abdel-Ghany, A. S.; Zaki, D. A. Production of Novel Functional Yoghurt Fortified with Bovine Colostrum and Date Syrup for Children. Alexandria Sci. Exch. J. 2018. DOI: 10.21608/asejaiqjsae.2018.20475.
  • Ceniti, C.; Froiio, F.; Britti, D.; Paolino, D.; Costanzo, N. Rheological Characteristics of Bovine Colostrum and Their Correlation with Immunoglobulin G. Int. J. Dairy Technol. 2019, 72, 345–349. DOI: 10.1111/1471-0307.12593.
  • Hege, J.; Ghebremedhin, M.; Joshi, B. L.; Schreiber, C.; Vilgis, T. A. Soft Gels from Bovine Colostrum. Int. J. Gastron. Food Sci. 2021, 23, 100278. DOI: 10.1016/j.ijgfs.2020.100278.
  • Ayar, A.; Sıçramaz, H.; Çetin, İ. The Effect of Bovine Colostrum on the Lactic Flora of Yogurt and Kefir. JSM Biotechnol Bioeng. 2016, 3, 3–8.
  • Mouton, E.; Aryana, K. J. Influence of Colostrum on the Characteristics of Ice Cream. Food Nutr. Sci. 2015, 6, 480.
  • Saalfeld, M. H.;. , 2013 Silagem de colostro bovino: propriedades e potencialidades de usos . http://guaiaca.ufpel.edu.br/bitstream/123456789/1212/1/tese_Mara_Saalfeld.pdf
  • Nazir, T.; Pal, M. A.; Manzoor, A. Effect of Admixing Varying Levels of Whole Milk to the Colostrum on the Sensory Quality of Fermented Colostrum Product. Int. J. Adv. Res. Sci. Eng. Technol. 2018, 7, 156–161.
  • Dande, N. D.; Nande, P. J. Nutritional Composition of Bovine Colostrum: Palatability Evaluation of Food Products Prepared Using Bovine Colostrum. Int. J. Nutr. Pharmacol. Neurol. Dis. 2020, 10, 8.
  • Indyk, H. E.; Williams, J. W.; Patel, H. A. Analysis of Denaturation of Bovine IgG by Heat and High Pressure Using an Optical Biosensor. Int. Dairy J. 2008, 18(4), 359–366. DOI: 10.1016/j.idairyj.2007.10.004.
  • Li-Chan, E.; Kummer, A.; Losso, J. N.; Kitts, D. D., and Nakai, S. Stability of Bovine Immunoglobulins to Thermal Treatment and Processing. Food Res. Int. 1995, 10(1016/0963–9969(95)93325–O 9–16).
  • Elizondo-Salazar, J. A.; Jayarao, B. M.; Heinrichs, A. J. Effect of Heat Treatment of Bovine Colostrum on Bacterial Counts, Viscosity, and Immunoglobulin G Concentration. J. Dairy Sci. 2010, 93(3), 961–967. DOI: 10.3168/jds.2009-2388.
  • Xu, W.; Mann, S.; Curone, G.; Kenéz, Á. Heat Treatment of Bovine Colostrum: Effects on Colostrum Metabolome and Serum Metabolome of Calves. Animal. 2021, 15(4), 100180. DOI: 10.1016/j.animal.2021.100180.
  • Mann, S.; Curone, G.; Chandler, T. L.; Moroni, P.; Cha, J.; Bhawal, R.; Zhang, S. Heat Treatment of Bovine Colostrum: I. Effects on Bacterial and Somatic Cell Counts, Immunoglobulin, Insulin, and IGF-I Concentrations, as Well as the Colostrum Proteome. J. Dairy Sci. 2020, 103(10), 9368–9383. DOI: 10.3168/jds.2020-18618.
  • Chatterton, D. E. W.; Aagaard, S.; Hesselballe Hansen, T.; Nguyen, D. N.; De Gobba, C.; Lametsch, R.; Sangild, P. T. Bioactive Proteins in Bovine Colostrum and Effects of Heating, Drying and Irradiation. Food Funct. 2020, 11(3), 2309–2327. DOI: 10.1039/c9fo02998b.
  • Saldana, D. J.; Gelsinger, S. L.; Jones, C. M.; Heinrichs, A. J. Effect of Different Heating Times of High-, Medium-, and Low-quality Colostrum on Immunoglobulin G Absorption in Dairy Calves. J. Dairy Sci. 2019, 102(3), 2068–2074. DOI: 10.3168/jds.2018-15542.
  • Borad, S. G.; Singh, A. K.; Kapila, S.; Behare, P.; Arora, S.; Sabikhi, L. Influence of Unit Operations on Immunoglobulins and Thermal Stability of Colostrum Fractions. Int. Dairy J. 2019, 93, 85–91. DOI: 10.1016/j.idairyj.2019.02.007.
  • Pereira, R. V.; Bicalho, M. L.; Machado, V. S.; Lima, S.; Teixeira, A. G.; Warnick, L. D.; Bicalho, R. C. Evaluation of the Effects of Ultraviolet Light on Bacterial Contaminants Inoculated into Whole Milk and Colostrum, and on Colostrum Immunoglobulin G. J. Dairy Sci. 2014, 97(5), 2866–2875. DOI: 10.3168/jds.2013-7601.
  • Argüello, A.; Castro, N.; Capote, J.; Ginés, R.; Acosta, F., and López, J. L. Effects of Refrigeration, Freezing-thawing and Pasteurization on IgG goat Colostrum Preservation. Small Rumin. Res. 2003, 10, 135-139. 1016/S0921–4488(02)00277–8.
  • Tacoma, R.; Gelsinger, S. L.; Lam, Y. W.; Scuderi, R. A.; Ebenstein, D. B.; Heinrichs, A. J.; Greenwood, S. L. Exploration of the Bovine Colostrum Proteome and Effects of Heat Treatment Time on Colostrum Protein Profile. J. Dairy Sci. 2017, 100(11), 9392–9401. DOI: 10.3168/jds.2017-13211.
  • Nguyen, D. N.; Currie, A. J.; Ren, S.; Bering, S. B.; Sangild, P. T. Heat Treatment and Irradiation Reduce Anti-bacterial and Immune-modulatory Properties of Bovine Colostrum. J. Funct. Foods. 2019, 57, 182–189. DOI: 10.1016/j.jff.2019.04.012.
  • Mann, S.; Curone, G.; Chandler, T. L.; Sipka, A.; Cha, J.; Bhawal, R.; Zhang, S. Heat Treatment of Bovine Colostrum: II. Effects on Calf Serum Immunoglobulin, Insulin, and IGF-I Concentrations, and the Serum Proteome. J. Dairy Sci. 2020. DOI: 10.3168/jds.2020-18619.
  • Collier, R. J.; Miller, M. A.; Hildebrandt, J. R.; Torkelson, A. R.; White, T. C.; Madsen, K. S.; Vicini, J. L.; Eppard, P. J., and Lanza, G. M. Factors Affecting Insulin-Like Growth Factor-I Concentration in Bovine Milk. J. Dairy Sci. 1991, 10, 2905-2911. 3168/jds.S0022–0302(91)78473–7.
  • Franco, I.; Pérez, M. D.; Conesa, C.; Calvo, M.; Sánchez, L. Effect of Technological Treatments on Bovine Lactoferrin: An Overview. Food Res. Int. 2018, 106, 173–182. DOI: 10.1016/j.foodres.2017.12.016.
  • Joubran, Y.; Mackie, A.; Lesmes, U. Impact of the Maillard Reaction on the Antioxidant Capacity of Bovine Lactoferrin. Food Chemistry. 2013, 141(4), 3796–3802. DOI: 10.1016/j.foodchem.2013.06.096.
  • Johnson, J. L.; Godden, S. M.; Molitor, T.; Ames, T.; Hagman, D. Effects of Feeding Heat-treated Colostrum on Passive Transfer of Immune and Nutritional Parameters in Neonatal Dairy Calves. J. Dairy Sci. 2007, 90(11), 5189–5198. DOI: 10.3168/jds.2007-0219.
  • Borad, S. G.; Singh, A. K.; Meena, G. S.; Raghu, H. V. Storage Related Changes in Spray Dried Colostrum Preparations. Lwt. 2020, 118, 108719. DOI: 10.1016/j.lwt.2019.108719.
  • Ruiz-Diaz, M. D.; Argüello, A.; Padilla, D.; Earley, B.; Castro, N. Influence of Treatment and Refrigeration Time on Antimicrobial Activity of Goat and Sheep Colostrum. J. Dairy Res. 2019, 86(4), 450–453. DOI: 10.1017/S0022029919000657.
  • Mancini, G.; Carbonara, A. O.; Heremans, J. F. Immunochemical Quantitation of Antigens by Single Radial Immunodiffusion. Immunochemistry. 1965, 2(3), 235–244. DOI: 10.1016/0161-5890(65)90004-0.
  • Bartier, A. L. L.; Windeyer, M. C. C.; Doepel, L. Evaluation of On-farm Tools for Colostrum Quality Measurement. J. Dairy Sci. 2015, 98(3), 1878–1884. DOI: 10.3168/jds.2014-8415.
  • Elsohaby, I.; McClure, J. T.; Hou, S.; Riley, C. B.; Shaw, R. A.; Keefe, G. P. A Novel Method for the Quantification of Bovine Colostral Immunoglobulin G Using Infrared Spectroscopy. Int. Dairy J. 2016, 52, 35–41. DOI: 10.1016/j.idairyj.2015.08.004.
  • Morittu, V. M.; Lopreiato, V.; Ceniti, C.; Spina, A. A.; Minuti, A.; Trevisi, E.; Britti, D.; Trimboli, F. Technical Note: Capillary Electrophoresis as a Rapid Test for the Quantification of Immunoglobulin G in Serum of Newborn Lambs. J. Dairy Sci. 2020, 103(7), 6583–6587. DOI: 10.3168/jds.2019-17859.
  • Lopreiato, V.; Ceniti, C.; Trimboli, F.; Fratto, E.; Marotta, M.; Britti, D.; Morittu, V. M. M. Evaluation of the Capillary Electrophoresis Method for Measurement of Immunoglobulin Concentration in Ewe Colostrum. J. Dairy Sci. 2017, 100(8), 6465–6469. DOI: 10.3168/jds.2016-12284.
  • Roncada, P.; Stipetic, L. H.; Bonizzi, L.; Burchmore, R. J. S.; Kennedy, M. W. Proteomics as a Tool to Explore Human Milk in Health and Disease. J. Proteomics. 2013, 88, 47–57. DOI: 10.1016/j.jprot.2013.04.008.
  • Hernandez-Castellano, L.; Almeida, A.; Castro, N.; Arguello, A. The Colostrum Proteome, Ruminant Nutrition and Immunity: A Review. Curr. Protein Pept. Sci. 2014, 15(1), 64–74. DOI: 10.2174/1389203715666140221124622.
  • Nissen, A.; Andersen, P. H.; Bendixen, E.; Ingvartsen, K. L.; Røntved, C. M. Colostrum and Milk Protein Rankings and Ratios of Importance to Neonatal Calf Health Using a Proteomics Approach. J. Dairy Sci. 2017, 100(4), 2711–2728. DOI: 10.3168/jds.2016-11722.
  • Brijesha, N.; Aparna, H. S. Comprehensive Characterization of Bioactive Peptides from Buffalo (Bubalus Bubalis) Colostrum and Milk Fat Globule Membrane Proteins. Food Res. Int. 2017, 97, 95–103. DOI: 10.1016/j.foodres.2017.03.037.
  • Fahey, M. J.; Fischer, A. J.; Steele, M. A.; Greenwood, S. L. Characterization of the Colostrum and Transition Milk Proteomes from Primiparous and Multiparous Holstein Dairy Cows. J. Dairy Sci. 2020, 103(2), 1993–2005. DOI: 10.3168/jds.2019-17094.
  • Piras, C.; Ceniti, C.; Hartmane, E.; Costanzo, N.; Morittu, V. M.; Roncada, P.; Britti, D.; Cramer, R. Rapid Liquid AP-MALDI MS Profiling of Lipids and Proteins from Goat and Sheep Milk for Speciation and Colostrum Analysis. Proteomes. 2020, 8(3), 20. DOI: 10.3390/proteomes8030020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.