209
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Bioaccessibility and Bioavailability of Soybean Isoflavones: An In Vitro Study

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Food and Agriculture Organization (FAO) Online Database, Crops and Livestock Products. Rome, Italy, 2020. (accessed July 28, 2023) https://www.fao.org/faostat/en/#data/QCL.
  • Zaheer, K.; Akhtar, M. H. An Updated Review of Dietary Isoflavones: Nutrition, Processing, Bioavailability and Impacts on Human Health. Crit. Rev. Food Sci. Nutr. 2017, 57, 1280–1293. DOI: 10.1080/10408398.2014.989958.
  • Liu, H.; Wang, Y.; Zhu, D.; Xu, J.; Xu, X.; Liu, J. Bioaccessibility and Application of Soybean Isoflavones: A Review. Food Rev. Int. in press. DOI: 10.1080/87559129.2022.2103824.
  • Andres, S.; Hansen, U.; Niemann, B.; Palavinskas, R.; Lampen, A. Determination of the Isoflavone Composition and Estrogenic Activity of Commercial Dietary Supplements Based on Soy or Red Clover. Food Funct. 2015, 6(6), 2017–2025. DOI: 10.1039/c5fo00308c.
  • Hsiao, Y.-H.; Ho, C.-T.; Pan, M.-H. Bioavailability and Health Benefits of Major Isoflavone Aglycones and Their Metabolites. J. Funct. Foods. 2020, 74, 104164. DOI: 10.1016/j.jff.2020.104164.
  • Visvanathan, R.; Williamson, G. Review of Factors Affecting Citrus Polyphenol Bioavailability and Their Importance in Designing in Vitro, Animal, and Intervention Studies. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4509–4545. DOI: 10.1111/1541-4337.13057.
  • Aboushanab, S. A.; Khedr, S. M.; Gette, I. F.; Danilova, I. G.; Kolberg, N. A.; Ravishankar, G. A.; Ambati, R. R.; Kovaleva, E. G. Isoflavones Derived from Plant Raw Materials: Bioavailability, Anti-Cancer, Anti-Aging Potentials, and Microbiome Modulation. Crit. Rev. Food Sci. Nutr. 2023, 63, 261–287. DOI: 10.1080/10408398.2021.1946006.
  • Kim, M.-S.; Jung, Y. S.; Jang, D.; Cho, C. H.; Lee, S.-H.; Han, N. S.; Kim, D.-O. Antioxidant Capacity of 12 Major Soybean Isoflavones and Their Bioavailability Under Simulated Digestion and in Human Intestinal Caco-2 Cells. Food Chem. 2022, 374, 131493. DOI: 10.1016/j.foodchem.2021.131493.
  • Nielsen, I. L. F.; Williamson, G. Review of the Factors Affecting Bioavailability of Soy Isoflavones in Humans. Nutr. Cancer. 2007, 57(1), 1–10. DOI: 10.1080/01635580701267677.
  • Larkin, T.; Price, W. E.; Astheimer, L. The Key Importance of Soy Isoflavone Bioavailability to Understanding Health Benefits. Crit. Rev. Food Sci. Nutr. 2008, 48, 538–552. DOI: 10.1080/10408390701542716.
  • Messina, M. Soybean Isoflavone Exposure Does Not Have Feminizing Effects on Men: A Critical Examination of the Clinical Evidence. Fertil. Steril. 2010, 93, 2095–2104. DOI: 10.1016/j.fertnstert.2010.03.002.
  • Xiao, Y.; Zhang, S.; Tong, H.; Shi, S. Comprehensive Evaluation of the Role of Soy and Isoflavone Supplementation in Humans and Animals Over the Past Two Decades. Phytother. Res. 2017, 32, 384–394. DOI: 10.1002/ptr.5966.
  • Hu, C.; Wong, W.-T.; Wu, R.; Lai, W.-F. Biochemistry and Use of Soybean Isoflavones in Functional Food Development. Crit. Rev. Food Sci. Nutr. 2020, 60, 2098–2112. DOI: 10.1080/10408398.2019.1630598.
  • Rizzo, G.; Feraco, A.; Storz, M. A.; Lombardo, M. The Role of Soy and Soy Isoflavones on Women’s Fertility and Related Outcomes: An Update. J. Nutri. Sci. 2022, 11, 1–17. DOI: 10.1017/jns.2022.15.
  • Shah, P.; Fritz, J. V.; Glaab, E.; Desai, M. S.; Greenhalgh, K.; Frachet, A.; Niegowska, M.; Estes, M.; Jäger, C.; Seguin-Devaux, C., et al. A Microfluidics-Based In Vitro Model of the Gastrointestinal Human–Microbe Interface. Nat. Commun. 2016, 7, 11535. DOI: 10.1038/ncomms11535.
  • Li, Y.; Kong, F. Simulating Human Gastrointestinal Motility in Dynamic In Vitro Models. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3804–3833. DOI: 10.1111/1541-4337.13007.
  • Mackie, A.; Mulet-Cabero, A.-I.; Torcello-Gómez, A. Simulating Human Digestion: Developing Our Knowledge to Create Healthier and More Sustainable Foods. Food Funct. 2020, 11, 9397. DOI: 10.1039/D0FO01981J.
  • Jung, Y. S.; Rha, C.-S.; Baik, M.-Y.; Baek, N.-I.; Kim, D.-O. A Brief History and Spectroscopic Analysis of Soy Isoflavones. Food Sci. Biotechnol. 2020, 29, 1605–1617. DOI: 10.1007/s10068-020-00815-6.
  • Cho, C.-H.; Jung, Y. S.; Nam, T. G.; Rha, C.-S.; Ko, M.-J.; Jang, D.; Kim, H.-S.; Kim, D.-O. pH-Adjusted Solvent Extraction and Reversed-Phase HPLC Quantification of Isoflavones from Soybean (Glycine Max (L.) Merr.). J. Food Sci. 2020, 85, 673–681. DOI: 10.1111/1750-3841.15051.
  • Lee, S. K.; Row, K. H. Estimation for Retention Factor of Isoflavones in Physico-Chemical Properties. Bull. Korean Chem. Soc. 2003, 24, 1265–1268. DOI: 10.5012/bkcs.2003.24.9.1265.
  • Jung, Y. S.; Kim, H.-G.; Oh, S. M.; Lee, D. Y.; Park, C.-S.; Kim, D.-O.; Baek, N.-I. Synthesis of Alpha-Linked Glucosides from Soybean Isoflavone Aglycones Using Amylosucrase from Deinococcus Geothermalis. J. Agric. Food. Chem. 2023, 71, 2430–2437. DOI: 10.1021/acs.jafc.2c07778.
  • Vacek, J.; Klejdus, B.; Lojková, L.; Kubáň, V. Current Trends in Isolation, Separation, Determination and Identification of Isoflavones: A Review. J. Sep. Sci. 2008, 31, 2051–2067. DOI: 10.1002/jssc.200700569.
  • Walsh, K. R.; Zhang, Y. C.; Vodovotz, Y.; Schwartz, S. J.; Failla, M. L. Stability and Bioaccessibility of Isoflavones from Soy Bread During In Vitro Digestion. J. Agric. Food. Chem. 2003, 51, 4603–4609. DOI: 10.1021/jf0342627.
  • Fang, Y.; Cao, W.; Xia, M.; Pan, S.; Xu, X. Study of Structure and Permeability Relationship of Flavonoids in Caco-2 Cells. Nutrients. 2017, 9, 1301. DOI: 10.3390/nu9121301.
  • Murota, K.; Shimizu, S.; Miyamoto, S.; Izumi, T.; Obata, A.; Kikuchi, M.; Terao, J. Unique Uptake and Transport of Isoflavone Aglycones by Human Intestinal Caco-2 Cells: Comparison of Isoflavonoids and Flavonoids. J. Nutr. 2002, 132, 1956–1961. DOI: 10.1093/jn/132.7.1956.
  • Babić, S.; Horvat, A. J. M.; Pavlović, D. M.; Kaštelan-Macan, M. Determination of pKa Values of Active Pharmaceutical Ingredients. TrAC-Trend. Anal. Chem. 2007, 26, 1043–1061. DOI: 10.1016/j.trac.2007.09.004.
  • Rodríguez-Roque, M. J.; Rojas-Graü, M. A.; Elez-Martínez, P.; Martín-Belloso, O. Soymilk Phenolic Compounds, Isoflavones and Antioxidant Activity as Affected by In Vitro Gastrointestinal Digestion. Food Chem. 2013, 136, 206–212. DOI: 10.1016/j.foodchem.2012.07.115.
  • Ningtyas, D. W.; Hati, S.; Prakash, S. Bioconversion and Bioaccessibility of Isoflavones from Sogurt During In Vitro Digestion. Food Chem. 2021, 343, 128553. DOI: 10.1016/j.foodchem.2020.128553.
  • Chen, P.; Sun, J.; Liang, Z.; Xu, H.; Du, P.; Li, A.; Meng, Y.; Reshetnik, E. I.; Liu, L.; Li, C. The Bioavailability of Soy Isoflavones In Vitro. Food. Res. Int. 2022, 152, 110868. DOI: 10.1016/j.foodres.2021.110868.
  • Almeida, I.; Rodrigues, F.; Sarmento, B.; Alves, R. C.; Oliveira, M. Isoflavones in Food Supplements: Chemical Profile, Label Accordance and Permeability Study in Caco-2 Cells. Food Funct. 2015, 6, 938–946. DOI: 10.1039/C4FO01144A.
  • de Pascual-Teresa, S.; Hallund, J.; Talbot, D.; Schroot, J.; Williams, C. M.; Bugel, S.; Cassidy, A. Absorption of Isoflavones in Humans: Effects of Food Matrix and Processing. J. NUTR BIOCHEM. 2006, 17, 257–264. DOI: 10.1016/j.jnutbio.2005.04.008.
  • Ji, H.; Hu, J.; Zuo, S.; Zhang, S.; Li, M.; Nie, S. In Vitro Gastrointestinal Digestion and Fermentation Models and Their Applications in Food Carbohydrates. Crit. Rev. Food Sci. Nutr. 2022, 62, 5349–5371. DOI: 10.1080/10408398.2021.1884841.
  • Miller, D. D.; Schricker, B. R.; Rasmussen, R. R.; Campen, D. V. An In Vitro Method for Estimation of Iron Availability from Meals. Am. J. Clin. Nutr. 1981, 34, 2248–2256. DOI: 10.1093/ajcn/34.10.2248.
  • Santana, M. G.; Freitas-Silva, O.; Mariutti, L. R. B.; Teodoro, A. J. A Review of In Vitro Methods to Evaluate the Bioaccessibility of Phenolic Compounds in Tropical Fruits. Crit. Rev. Food Sci. Nutr. in press. DOI: 10.1080/10408398.2022.2119203.
  • Minekus, M.; Marie, A.; Alvito, P. C.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D., et al. A Standardised Static In Vitro Digestion Method Suitable for Food–An International Consensus. Food Funct. 2014, 5, 1113–1124. DOI: 10.1039/C3FO60702J.
  • Sabet, S.; Kirjoranta, S. J.; Lampi, A.-M.; Lehtonen, M.; Pulkkinen, E.; Valoppi, F. Addressing Criticalities in the INFOGEST Static In Vitro Digestion Protocol for Oleogel Analysis. Food. Res. Int. 2022, 160, 111633. DOI: 10.1016/j.foodres.2022.111633.
  • Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F., et al. INFOGEST Static In Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. DOI: 10.1038/s41596-018-0119-1.
  • de Melo, E. L.; Pinto, A. M.; Baima, C. L. B.; da Silva, H. R.; da Silva, I. S.; Sanchez-Ortiz, B. L.; de Lima, A. V. T.; Pereira, A. C. M.; Barbosa, R. S.; Carvalho, H. O., et al. Evaluation of the In Vitro Release of Isoflavones from Soybean Germ Associated with Kefir Culture in the Gastrointestinal Tract and Anxiolytic and Antidepressant Actions in Zebrafish (Danio rerio). J. Funct. Foods. 2020, 70, 103986. doi: 10.1016/j.jff.2020.103986.
  • Kiers, J. L.; Nout, R. M. J.; Rombouts, F. M. In Vitro Digestibility of Processed and Fermented Soya Bean, Cowpea and Maize. J. Sci. Food Agric. 2000, 80, 1325–1331. DOI: 10.1002/1097-0010(200007)80:9<1325:AID-JSFA648>3.0.CO;2-K.
  • Seok, J. S.; Kim, J. S.; Kwak, H. S. Microencapsulation of Water-Soluble Isoflavone and Physico-Chemical Property in Milk. Arch. Pharm. Res. 2003, 26, 426–431. DOI: 10.1007/BF02976702.
  • Kim, N. C.; Jeon, B. J.; Ahn, J.; Kwak, H. S. In Vitro Study of Microencapsulated Isoflavone and β-Galactosidase. J. Agric. Food. Chem. 2006, 54, 2582–2586. DOI: 10.1021/jf052369j.
  • Sanz, T.; Luyten, H. Release, Partitioning and Stability of Isoflavones from Enriched Custards During Mouth, Stomach and Intestine In Vitro Simulations. Food Hydrocol. 2006, 20, 892–900. DOI: 10.1016/j.foodhyd.2005.09.003.
  • Islam, M. A.; Punt, A.; Spenkelink, B.; Murk, A. J.; van Leeuwen, F. X. R.; Rietjens, I. M. C. M. Conversion of Major Soy Isoflavone Glucosides and Aglycones in In Vitro Intestinal Models. Mol. Nutr Food Res. 2014, 58, 503–515. DOI: 10.1002/mnfr.201300390.
  • da Silva Fernandes, M.; Lima, F. S.; Rodrigues, D.; Handa, C.; Guelf, M.; Garcia, S.; Ida, E. I. Evaluation of the Isoflavone and Total Phenolic Contents of Kefir-Fermented Soymilk Storage and After the In Vitro Digestive System Simulation. Food Chem. 2017, 229, 373–380. DOI: 10.1016/j.foodchem.2017.02.095.
  • Wyspiańska, D.; Kucharska, A. Z.; Sokół-Łętowska, A.; Kolniak-Ostek, J. Effect of Microencapsulation on Concentration of Isoflavones During Simulated In Vitro Digestion of Isotonic Drink. Food Sci. Nutr. 2019, 7, 805–816. DOI: 10.1002/fsn3.929.
  • Rodríguez-Roque, M. J.; Ancos, B. D.; Sánchez-Vega, R.; Sánchez-Moreno, C.; Elez-Martínez, P.; Martín-Belloso, O. In Vitro Bioaccessibility of Isoflavones from a Soymilk-Based Beverage as Affected by Thermal and Non-Thermal Processing. Innov. Food Sci. Emerg. Technol. 2020, 66, 102504. DOI: 10.1016/j.ifset.2020.102504.
  • de Queirós, L. D.; Dias, F. F. G.; de Ávila, A. R. A.; Macedo, J. A.; Macedo, G. A.; de Moura, M. L. N. B. Effects of Enzyme-Assisted Extraction on the Profile and Bioaccessibility of Isoflavones from Soybean Flour. Food. Res. Int. 2021, 147, 110474. DOI: 10.1016/j.foodres.2021.110474.
  • Mosele, J. I.; Macià, A.; Romero, M.-P.; Motilva, M.-J.; Rubió, L. Application of In Vitro Gastrointestinal Digestion and Colonic Fermentation Models to Pomegranate Products (Juice, Pulp and Peel Extract) to Study the Stability and Catabolism of Phenolic Compounds. J. Funct. Foods. 2015, 14, 529–540. DOI: 10.1016/j.jff.2015.02.026.
  • Kong, F.; Singh, R. P. A Human Gastric Simulator (HGS) to Study Food Digestion in Human Stomach. J. Food Sci. 2010, 75, E627–E635. DOI: 10.1111/j.1750-3841.2010.01856.x.
  • Alminger, M.; Aura, A.-M.; Bohn, T.; Dufour, C.; El, S. N.; Gomes, A.; Karakaya, S.; Martínez-Cuesta, M. C.; Mcdougall, G. J.; Requena, T., et al. In Vitro Models for Studying Secondary Plant Metabolite Digestion and Bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2014, 13, 413–436. DOI: 10.1111/1541-4337.12081.
  • Laurent, C.; Besançon, P.; Caporiccio, B. Flavonoids from a Grape Seed Extract Interact with Digestive Secretions and Intestinal Cells as Assessed in an In Vitro Digestion/caco-2 Cell Culture Model. Food Chem. 2007, 100, 1704–1712. DOI: 10.1016/j.foodchem.2005.10.016.
  • Velickovic, T. D. C.; Stanic-Vucinic, D. J. The Role of Dietary Phenolic Compounds in Protein Digestion and Processing Technologies to Improve Their Antinutritive Properties. Compr. Rev. Food Sci. Food Saf. 2018, 17, 82–103. DOI: 10.1111/1541-4337.12320.
  • Perez-Gregorio, M. R.; Días, R.; Mateusa, N.; de Freitas, V. Identification and Characterization of Proteolytically Resistant Gluten-Derived Peptides. Food Funct. 2018, 9, 1726–1735. DOI: 10.1039/C7FO02027A.
  • Sy, C.; Gleize, B.; Dangles, O.; Landrier, J. F.; Veyrat, C. C.; Borel, P. Effects of Physicochemical Properties of Carotenoids on Their Bioaccessibility, Intestinal Cell Uptake, and Blood and Tissue Concentrations. Mol. Nutr Food Res. 2012, 56, 1385–1397. DOI: 10.1002/mnfr.201200041.
  • Kobayashi, S.; Shinohara, M.; Nagai, T.; Konishi, Y. Transport Mechanisms for Soy Isoflavones and Microbial Metabolites Dihydrogenistein and Dihydrodaidzein Across Monolayers and Membranes. Biosci. Biotechnol., Biochem. 2013, 77, 2210–2217. DOI: 10.1271/bbb.130404.
  • Osakwe, O. Social Aspects of Drug Discovery, Development and Commercialization. In Preclinical in vitro Studies: Development and Applicability, Osakwe, O. and Rizvi, S., Eds.; Academic Press:London, UK, 2016; pp. 129–148. DOI:10.1016/B978-0-12-802220-7.00006-5.
  • Rao, A. L.; Sankar, G. G. Caco-2 Cells: An Overview. Asian J. Pharmaceut. Res. Health Care. 2009, 1, 260–275.
  • Lea, T. The Impact of Food Bioactives on Gut Health. In Caco-2 Cell Line, Verhoeckx, K., Ed.; Springer International Publishing AG:Cham, Switzerland, 2015; pp. 103–111. doi:10.1007/978-3-319-16104-4_10.
  • Oitate, M.; Nakaki, R.; Koyabu, N.; Takanaga, H.; Matsuo, H.; Ohtani, H.; Sawada, Y. Transcellular Transport of Genistein, a Soybean-Derived Isoflavone, Across Human Colon Carcinoma Cell Line. Biopharm. Drug Dispos. 2001, 22, 23–29. DOI: 10.1002/bdd.253.
  • Hubatsch, I.; Ragnarsson, E. G. E.; Artursson, P. Determination of Drug Permeability and Prediction of Drug Absorption in Caco-2 Monolayers. Nat. Protoc. 2007, 2, 2111–2119. DOI: 10.1038/nprot.2007.303.
  • Gonzales, G. B.; Smagghe, G.; Grootaert, C.; Zotti, M.; Raes, K.; van Camp, J. Flavonoid Interactions During Digestion, Absorption, Distribution and Metabolism: A Sequential Structure–Activity/property Relationship-Based Approach in the Study of Bioavailability and Bioactivity. Drug Metab. Rev. 2015, 47, 175–190. DOI: 10.3109/03602532.2014.1003649.
  • Steensma, A.; Noteborn, H. P. J. M.; Kuipera, H. A. Comparison of Caco-2, IEC-18 and HCEC Cell Lines as a Model for Intestinal Absorption of Genistein, Daidzein and Their Glycosides. Environ. Toxicol. Pharmacol. 2004, 16, 131–139. DOI: 10.1016/j.etap.2003.11.008.
  • Srinivasan, B.; Kolli, A. R.; Esch, M. B.; Abaci, H. E.; Shuler, M. L.; Hickman, J. J. TEER Measurement Techniques for In Vitro Barrier Model Systems. J. Lab. Autom. 2015, 20, 107–126. DOI: 10.1177/2211068214561025.
  • Toro-Funes, N.; Morales-Gutiérrez, F. J.; Veciana-Nogués, M. T.; Vidal-Carou, M. C.; Spencer, J. P. E.; Rodriguez-Mateos, A. The Intracellular Metabolism of Isoflavones in Endothelial Cells. Food Funct. 2015, 6, 98–108. DOI: 10.1039/c4fo00772g.
  • Fang, Y.; Liang, F.; Liu, K.; Qaiser, S.; Pan, S.; Xu, X. Structure Characteristics for Intestinal Uptake of Flavonoids in Caco-2 Cells. Food. Res. Int. 2018, 105, 335–360. DOI: 10.1016/j.foodres.2017.11.045.
  • Wang, J.; Han, C.; Ta, W.; Liu, R.; He, X.; Lu, W. Development a Multicellular Model to Investigate the Intestinal-Vascular Transport Barrier of Drug. J. Drug Deliv. Sci. Technol. 2021, 62, 102366. DOI: 10.1016/j.jddst.2021.102366.
  • Steensma, A.; Mengelers, M. J. B.; Noteborn, H. P. J. M.; Kuiper, H. A. Kinetic Models Describing In Vitro Transport and Metabolism of Isoflavones and Their Glycosides in Human Caco-2 Cells. In Dietary Anticarcinogens and Antimutagens: Chemical and Biological Aspects, Johnson, I.T. and Fenwick, G.R., Eds.; Elsevier Science:Amsterdam, Netherlands, 2000; pp. 58–63. DOI:10.1533/9781845698188.2.58.
  • Liu, Y.; Hu, M. Absorption and Metabolism of Flavonoids in the Caco-2 Cell Culture Model and a Perused Rat Intestinal Model. Drug Metab. Dispos. 2002, 30, 370–377. DOI: 10.1124/dmd.30.4.370.
  • Chen, J.; Lin, H.; Hu, M. Absorption and Metabolism of Genistein and Its Five Isoflavone Analogs in the Human Intestinal Caco-2 Model. Cancer Chemother. Pharmacol. 2005, 55, 159–169. DOI: 10.1007/s00280-004-0842-x.
  • Daruházia, Á. E.; Kiss, T.; Vecsernyés, M.; Szentec, L.; Szőkea, É.; Lemberkovics, É. Investigation of Transport of Genistein, Daidzein and Their Inclusion Complexes Prepared with Different Cyclodextrins on Caco-2 Cell Line. J. Pharm. Biomed. Anal. 2013, 84, 113–116. DOI: 10.1016/j.jpba.2013.05.012.
  • Papaj, K.; Rusin, A.; Szeja, W.; Grynkiewicz, G. Absorption and Metabolism of Biologically Active Genistein Derivatives in Colon Carcinoma Cell Line (Caco-2). Acta. Pol. Pharm-Drug Res. 2014, 71, 1037–1044. https://pubmed.ncbi.nlm.nih.gov/25745776.
  • Papaj, K.; Kasprzycka, A.; Góra, A.; Grajoszek, A.; Rzepecka, G.; Stojko, J.; Barski, J.-J.; Szeja, W.; Rusin, A. Structure–Bioavailability Relationship Study of Genistein Derivatives with Antiproliferative Activity on Human Cancer Cell. J. Pharm. Biomed. Anal. 2020, 185, 113216. DOI: 10.1016/j.jpba.2020.113216.
  • Kawahara, I.; Nishikawa, S.; Yamamoto, A.; Kono, Y.; Fujita, T. The Impact of Breast Cancer Resistance Protein (BCRP/ABCG2) on Drug Transport Across Caco-2 Cell Monolayers. Drug Metab. Dispos. 2000, 48, 491–498. DOI: 10.1124/dmd.119.088674.
  • Rani, D.; Vimolmangkang, S. Trends in the Biotechnological Production of Isoflavonoids in Plant Cell Suspension Cultures. Phytochem Rev. 2022, 21, 1843–1862. DOI: 10.1007/s11101-022-09811-6.
  • Wells, C. L.; Jechorek, R. P.; Kinneberg, K. M.; Debol, S. M.; Erlandsen, S. L. The Isoflavone Genistein Inhibits Internalization of Enteric Bacteria by Cultured Caco-2 and HT-29 Enterocytes. J. Nutr. 1999, 129, 634–640. DOI: 10.1093/jn/129.3.634.
  • Rostagno, M. A.; Palma, M.; Barroso, C. G. Short-Term Stability of Soy Isoflavones Extracts: Sample Conservation Aspects. Food Chem. 2005, 93, 557–564. DOI: 10.1016/j.foodchem.2004.12.035.
  • Vilela, D.; González, M. C.; Escarpa, A. (Bio)-Synthesis of Au NPs from Soy Isoflavone Extracts as a Novel Assessment Tool of Their Antioxidant Capacity. R.S.C. Adv. 2014, 4, 3075–3081. DOI: 10.1039/c3ra45180a.
  • Walgren, R. A.; Lin, J.-T.; Kinne, R. K.-H.; Walle, T. Cellular Uptake of Dietary Flavonoid Quercetin 4′-β-Glucoside by Sodium-Dependent Glucose Transporter SGLT1. J. Pharmacol. Exp. Ther. 2000, 294, 837–843.
  • Ding, X.; Hu, X.; Chen, Y.; Xie, J.; Ying, M.; Wang, Y.; Yu, Q. Differentiated Caco-2 Cell Models in Food-Intestine Interaction Study: Current Applications and Future Trends. Trends Food Sci. Technol. 2021, 107, 455–465. DOI: 10.1016/j.tifs.2020.11.015.
  • Sekine, T.; Cha, S. H.; Endou, H. The Multispecific Organic Anion Transporter (OAT) Family. Pflugers Arch. 2000, 440, 337–350. DOI: 10.1007/s004240000297.
  • King, R. A.; Bursill, D. B. Plasma and Urinary Kinetics of the Isoflavones Daidzein and Genistein After a Single Soy Meal in Humans. Am. J. Clin. Nutr. 1998, 67, 867–872. DOI: 10.1093/ajcn/67.5.867.
  • Setchell, K. D. R.; Brown, N. M.; Desai, P.; Zimmer-Nechemias, L.; Wolfe, B. E.; Brashear, W. T.; Kirschner, A. S.; Cassidy, A.; Heubi, J. E. Bioavailability of Pure Isoflavones in Healthy Humans and Analysis of Commercial Soy Isoflavone Supplements. J. Nutr. 2001, 131, 1362S–1375S. DOI: 10.1093/jn/131.4.1362S.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.