Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 20, 2003 - Issue 4
282
Views
26
CrossRef citations to date
0
Altmetric
Original

The Circadian System and Melatonin: Lessons from Rats and Mice

, &
Pages 697-710 | Published online: 07 Jul 2009

References

  • Aggelopoulus N. C., Meissl H. Responses of neurones of the rat suprachiasmatic nucleus to retinal illumination under photopic and scototopic conditions. J. Physiol. 2000; 523: 211–222
  • Arendt J., Skene D. J., Middleton B., Lockley S. W., Deacon S. Efficacy of melatonin treatment in jet lag, shift work and blindness. J. Biol. Rhythms 1997; 12: 604–618
  • Balsalobre A. Clock genes in mammalian peripheral tissues. Cell Tissue Res. 2002; 309: 193–199
  • Bellingham J., Foster R. G. Opsins and mammalian photoentrainment. Cell Tissue Res. 2002; 309: 57–71
  • Chen D., Buchanan G. F., Ding J. M., Hannibal J., Gillette M. U. Pituitary adenylyl cyclase‐activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc. Natl. Acad. Sci. USA 1999; 96: 13468–13473
  • Drijfhout W. A., van der Linde S., Kooi C., Grol B., Westerink B. H.C. Norepinephrine release in the rat pineal gland: the input from the biological clock measured by in vivo microdialysis. J. Neurochem. 1996; 66: 748–755
  • Ebihara S., Marks T., Hudson D. J., Menaker M. Genetic control of melatonin synthesis in the pineal gland of the mouse. Science 1986; 231: 491–493
  • Ganguly S., Coon S. L., Klein D. C. Control of melatonin synthesis in the mammalian pineal gland: the critical role of serotonin acetylation. Cell Tissue Res. 2002; 309: 127–137
  • Gau D., Lemberger T., Von Gall C., Kretz O., Le Minh N., Gass P., Schmid W., Schibler U., Korf H. W., Schütz G. Phosphorylation of CREB Ser 142 regulates light‐induced phase shifts of the circadian clock. Neuron 2002; 34: 245–253
  • Gillette M. U., Mitchell J. W. Signaling in the suprachiasmatic nucleus: selectively responsive and integrative. Cell Tissue Res. 2002; 309: 99–107
  • Ginty D. D., Kornhauser J. M., Thompson M. A., Bading H., Mayo K. E., Takahashi J. S., Greenberg M. E. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 1993; 260: 238–241
  • Hannibal J. Neurotransmitters of the retinohypothalamic tract. Cell Tissue Res. 2002; 309: 73–88
  • Jin X., Von Gall C., Pieschl R. L., Gribkoff V. K., Stehle J. H., Reppert S. M., Weaver D. R. Targeted disruption of the mouse Mel1b melatonin receptor. Mol. Cell. Biol. 2003; 23: 1054–1060
  • Kalsbeek A., Buijs R. M. Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell Tissue Res. 2002; 309: 109–119
  • Klein D. C. Photoneural regulation of the mammalian pineal gland. Ciba Found Symp. 1985; 117: 38–56
  • Koch M., Mauchin V., Stehler J. H., Schomerus C., Korf H. W. Dephos‐ phorylation of pCREB by protein serine/threonine phosphates is involved in inactivation of Aanat gene transcription in rat pineal gland. J. Neurochem. 2003; 85: 170–179
  • Kopp M., Meissl H., Korf H. W. The pituitary adenylate cyclase‐activating polypeptide‐induced phosphorylation of the transcription factor CREB in the rat suprachiasmatic nucleus is inhibited by melatonin. Neurosci. Lett. 1997; 227: 145–148
  • Kopp M. D.A., Meissl H., Dehghani F., Korf H. W. The pituitary adenylate cyclase‐activating polypeptide modulates glutamatergic calcium signaling: investigations on rat suprachiasmatic nucleus neurons. J. Neurochem. 2001; 79: 161–171
  • Korf H. W., Stehle J. H. The circadian system: circuits—cells—clock genes. Cell Tissue Res. 2002; 309: 1–2
  • Liu C., Weaver D. R., Jin X., Shearman L. P., Pieschl R. L., Gribkoff V. K., Reppert S. M. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 1997; 19: 91–102
  • Maronde E., Pfeffer M., Olcese J., Molina C. M., Schlotter F., Dehghani F., Korf H. W., Stehle J. H. Transcription factors in neuroendocrine regulation: rhythmic changes in pCREB and ICER frame melatonin synthesis. J. Neurosci. 1999; 19: 3326–3336
  • Messager S., Garabette M. L., Hastings M. H., Hazlerigg D. G. Tissue‐specific abolition of Per1 expression in the pars tuberalis by pinealectomy in the Syrian hamster. Neuroreport 2001; 12: 579–582
  • Møller M., Baeres M. M. The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res. 2002; 309: 139–150
  • Moore R. Y., Speh J. C., Leak R. K. Suprachiasmatic nucleus organization. Cell Tissue Res. 2002; 309: 89–98
  • Mutoh T., Shibata S., Korf H. W., Okamura H. Melatonin modulates the light‐induced sympathoexcitation and vagal suppression with participation of the suprachiasmatic nucleus in mice. J. Physiol. 2003; 547: 317–332
  • Okamura H., Yamaguchi S., Yagita K. Molecular machinery of the circadian clock in mammals. Cell Tissue Res. 2002; 309: 47–56
  • Pévet P., Bothorel B., Slotten H., Saboureau M. The chronobiotic properties of melatonin. Cell Tissue Res. 2002; 309: 183–192
  • Pfeffer M., Kühn R., Krug L., Korf H. W., Stehle J. H. Rhythmic variation in β1‐adrenergic receptor mRNA levels in rat pineal gland: circadian and developmental regulation. Eur. J. Neurosci. 1998; 10: 2896–2904
  • Reppert S. M., Weaver D. R. Coordination of circadian timing in mammals. Nature 2002; 418: 935–941
  • Roseboom P. H., Namboodiri M. A.A., Zimonjic D. B., Popescu N. C., Rodriguez I. R., Gastel J. A., Klein D. C. Natural melatonin “knockdown” in C57BL/6J mice: rare mechanism truncates serotonin N‐acetyltransferase. Mol. Brain Res. 1998; 63: 189–197
  • Ross A. W., Morgan P. J. The pars tuberalis as a target of the central clock. Cell Tissue Res. 2002; 309: 163–171
  • Siuciak J. A., Fang J. M., Dubocovich M. L. Autoradiographic localization of 2‐[125I]iodomelatonin binding sites in the brains of C3H/HeN and C57BL/6J strains of mice. Eur. J. Pharmacol. 1990; 180: 287–390
  • Stanewsky R. Clock mechanisms in Drosophila. Cell Tissue Res. 2002; 309: 11–26
  • Stehle J. H., Rivkees S., Lee J., Weaver D. R., Deeds J., Reppert S. M. Molecular cloning of the cDNA for an A2‐like adenosine receptor. Mol. Endocrinol. 1992; 6: 384–393
  • Stehle J. H., Foulkes N. S., Molina C. A., Simonneaux V., Pévet P., Sassone‐Corsi P. Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland. Nature 1993; 365: 314–320
  • Stehle J. H., Von Gall C., Korf H. W. Analysis of cell signaling in the rodent pineal gland deciphers regulators of dynamic transcription in neuro‐/endocrine cells. Eur. J. Neurosci. 2001; 14: 1–9
  • Stehle J. H., Von Gall C., Korf H. W. Organisation of the circadian system in melatonin‐proficient C3H and melatonin‐deficient C57BL mice: a comparative investigation. Cell Tissue Res. 2002; 309: 173–182
  • Sun Z. S., Albrecht U., Zhuchenk O. O., Bailey J., Eichele G., Lee C. C. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 1997; 90: 1003–1011
  • Von Gall C., Duffield G., Hastings M., Kopp M. D.A., Dehghani F., Korf H. W., Stehle J. H. CREB in the mouse SCN: a molecular integrator coding the phase‐adjusting stimuli of light, glutamate, PACAP and melatonin for clockwork access. J. Neurosci. 1998; 18: 10389–10397
  • Von Gall C., Weaver D. R., Kock M., Korf H. W., Stehle J. H. Melatonin limits transcriptional impact of phosphoCREB in the mouse SCN via the Mel1a receptor. Neuroreport 2000a; 11: 1803–1807
  • Von Gall C., Lewy A., Schomerus C., Vivien‐Roels B., Pévet P., Korf H. W., Stehler J. H. Transcription factor dynamics and neuroendocrine signalling in the mouse pineal gland: a comparative analysis of melatonin‐deficient C57BL mice and melatonin‐proficient C3H mice. Eur. J. Neurosci. 2000b; 12: 964–972
  • Von Gall C., Stehle J. H., Weaver D. R. Mammalian melatonin receptors: molecular biology and signal transduction. Cell Tissue Res. 2002a; 309: 151–162
  • Von Gall C., Garabette M. L., Frenzel S., Kell C. A., Dehghani F., Schumm‐Draeger P. M., Weaver D. R., Korf H. W., Hastings M. H., Stehle J. H. Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nat. Neuroscience 2002b; 5: 234–238
  • Weaver D. R. The suprachiasmatic nucleus: a 25‐year retrospective. J. Biol. Rhythms 1998; 13: 100–112
  • Welsh D. K., Logothetis D. E., Meister M., Reppert S. M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 1995; 14: 697–706
  • Yamazaki S., Numano R., Abe M., Hida A., Takahashi R., Ueda M., Block G. D., Sakaki Y., Menaker M., Tei H. Resetting central and peripheral circadian oscillators in transgenic rats. Science 2000; 288: 682–685
  • Zylka M. J., Shearman L. P., Weaver D. R., Reppert S. M. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 1998; 20: 1103–1110

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.