Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 20, 2003 - Issue 6
1,474
Views
130
CrossRef citations to date
0
Altmetric
Review

Adaptive Significance of Circadian Clocks

Pages 901-919 | Published online: 07 Jul 2009

References

  • Alabadi D., Oyama T., Yanovsky M. J., Harmon F. G., Mas P., Kay S. A. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 2001; 293: 880–883
  • Allemand R., David J. R. The circadian rhythm of oviposition in Drosophila melanogaster: a genetic latitudinal cline in wild populations. Experientia 1976; 32: 1403–1405
  • Aschoff J. Survival value of diurnal rhythms. Symp. Zool. Soc. London 1964; 13: 79–98
  • Beaver L. M., Gvakharia B. O., Vollintine T. S., Hege D. M., Stanewsky R., Giebultowicz J. M. Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2002; 99: 2134–2139
  • Beersma D. G. M., Daan S., Hut R. A. Accuracy of circadian entrainment under fluctuating light conditions: contributions of phase and period responses. J. Biol. Rhythms 1999; 14: 320–329
  • Blau J. The Drosophila circadian clock: what we know and what we do not know. Cell Dev. Biol. 2001; 12: 287–293
  • Blume J., Bünning E., Günzler E. Zur Aktivitätsperiodik bei Höhlentieren. Naturwissenschaften 1962; 49: 525
  • Boulos Z., Rosenwasser A. M., Terman M. Feeding schedules and the circadian organization of behavior in the rat. Behav. Brain Res. 1980; 1: 39–65
  • Bünning E. Die Physiologische Uhr, Zeitmessung in Organismen Mit ungefähr tagesperiodischen Schwingungen. Springer, Berlin 1963; 153
  • Clayton D. A., Paietta J. V. Selection for circadian eclosion time in Drosophila melanogaster. Science 1972; 178: 994–995
  • Cloudsley‐Thompson J. L. Microclimates and the distribution of terrestrial arthropods. J. Exp. Biol. 1956; 33: 576–582
  • Costa R., Peixoto A. A., Barbujani G., Kyriacou C. P. A latitudinal cline in a Drosophila clock gene. Proc. R. Soc. Lond. B 1992; 250: 43–49
  • Crosthwaite S. K., Dunlap J. C., Loros J. J. Neurospora wc‐1 and wc‐2: transcription, photoresponses, and the origin of circadian rhythmicity. Science 1997; 276: 763–769
  • Cyran S. A., Buchsbaum A. M., Reddy K. L., Lin M.‐C., Glossop N. R.J., Hardin P. E., Young M. W., Storti R. V., Blau J. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 2003; 12: 329–341
  • Daan S. Adaptive daily strategies in behaviour. Handbook of Behavioural Neurobiology, J. Aschoff. Plenum, New York 1981; 275–298
  • Daan S. Colin Pittendrigh, Jürgen Aschoff, and the natural entrainment of circadian systems. J. Biol. Rhythms 2000; 15: 195–207
  • Daan S., Tinbergen J. M. Young guillemots (Uria lomvia) leaving their Arctic breeding cliffs: a daily rhythm in numbers and risk. Ardea 1980; 67: 96–100
  • DeCoursey P. J., Krulas J. R. Behaviour of SCN lesioned chipmunks in natural habitat: a pilot study. J. Biol. Rhythms 1998; 13: 229–244
  • DeCoursey P. J., Krulas J. R., Mele G., Holley D. C. Circadian performance of suprachiasmatic nuclei (SCN)‐lesioned antelope ground squirrels in a desert enclosure. Physiol. Behav. 1997; 62: 1099–1108
  • DeCoursey P. J., Walker J. K., Smith S. A. A circadian pacemaker in free‐living chipmunks: essential for survival?. J. Comp. Physiol. A 2000; 186: 169–180
  • Dvornyk V., Vinogradova O., Nevo E. Origin and evolution of circadian clock genes in prokaryotes. Proc. Natl. Acad. Sci. USA 2003; 100: 2495–2500
  • Edery I. Circadian rhythms in a nutshell. Physiol. Genomics 2002; 3: 59–74
  • Edmunds L. N., Jr. Cellular and Molecular Bases of Biological clocks. Springer‐Verlag, Berlin and New York 1988
  • Emery P., So W., Kaneko M., Hall J. C., Rosbash M. CRY, a Drosophila clock and light‐regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 1998; 95: 669–679
  • Engelmann W., Mack J. Different oscillators control the circadian rhythm of eclosion and activity in Drosophila. J. Comp. Physiol. 1978; 127: 229–237
  • Enright J. T. Ecological aspects of endogenous rhythmicity. Z. Physiol. 1971; 72: 1–16
  • Erckens W., Weber F. Rudiments of an ability for time measurement in the cavernicolous fish Anoptichthys jordani hubbs and innes (Pisces Characidae). Experientia 1976; 32: 1297–1299
  • Erckens W., Martin W. Exogenous and endogenous control of swimming activity in cave‐dwelling fishes. Z. Naturforsch. C: Biosci. 1982; 37C: 1266–1273
  • Fleury F., Allemand R., Vavre F., Fouillet P., Boulétreau M. Adaptive significance of a circadian clock: temporal segregation of activities reduces intrinsic competitive inferiority in Drosophila parasitoids. Proc. R. Soc. Lond. B 2000; 267: 1005–1010
  • Glossop N. R.J., Houl J. H., Zheng H., Fanny S. Ng., Dudek S. M., Hardin P. E. VRILLE feeds back to control circadian transcription of clock in Drosophila circadian oscillators. Neuron 2003; 37: 249–261
  • Green R. M., Tingay S., Wang Z‐Y., Tobin E. M. Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol. 2002; 129: 576–584
  • Hastings J. W., Rusak B., Boulos Z. Circadian rhythms: the physiology of biological timing. Neural and Integrative Animal Physiology, C. L. Prosser. Wiley‐Liss, Inc, New York 1991; 435–546
  • Hendricks J. C., Lu S., Kume K., Yin J. C.‐P., Yang Z., Sehgal A. Gender dimorphism in the role of cycle (BMAL1) in rest, rest regulation, and longevity in Drosophila melanogaster. J. Biol. Rhythms 2003; 18: 12–25
  • Highkin H. R., Hanson J. B. Possible interaction between light‐dark cycles and endogenous daily rhythms on the growth of tomato plants. Plant. Physiol. 1954; 29: 301–302
  • Hillman W. S. Injury of tomato plants by continuous light and unfavourable photoperiodic cycles. Am. J. Botanic. 1956; 43: 89–96
  • Hoffmann K. Adaptive significance of biological rhythms corresponding to geophysical cycles. The Molecular Basis of Circadian Rhythms, J. W. Hastings, H. G. Schweiger. Abakon Verlagsgesellschaft, Berlin 1976; 63–75
  • Hurd M. W., Ralph M. R. The significance of circadian organisation for longevity in the golden hamster. J. Biol. Rhythms 1998; 13: 430–436
  • Iwasaki H., Kondo T. The current state and problems of circadian clock studies in cyanobacteria. Plant Cell Physiol. 2000; 41: 1013–1020
  • Jegla T. C., Poulson T. L. Daily patterns of activity and oxygen consumption in cave‐dwelling creyfish. J. Exp. Zool. 1968; 168: 273–282
  • Johnson C. H., Golden S. S. Circadian programs in cyanobacteria: adaptiveness and mechanism. Annu. Rev. Microbiol. 1999; 53: 389–409
  • Johnson C. H., Golden S. S., Ishiura M., Kondo T. Circadian clocks in prokaryotes. Mol. Microbiol. 1996; 21: 5–11
  • Kahn P. G.K., Pompea S. M. Nautiloid growth rhythms and dynamical evolution of the earth‐moon system. Nature 1978; 275: 606–611
  • Kennedy C. H. Evolutionary level in relation to geographic, seasonal and diurnal distribution of insects. Ecology 1928; 9: 367–379
  • Ketellapper H. J. Interaction of endogenous and environmental periods in plant growth. Plant Physiol. 1960; 35: 238–241
  • Klarsfeld A., Rouyer F. Effect of circadian mutations and LD periodicity on the life span of Drosophila melanogaster. J. Biol. Rhythms 1998; 13: 471–478
  • Klein D. C., Moore R. Y., Reppert S. M. Suprachiasmatic Nucleus: The Mind's Clock. Oxford University Press, New York 1991
  • Koilraj A. J., Sharma V. K., Marimuthu G., Chandrashekaran M. K. Presence of circadian rhythms in the locomotor activity of a cave dwelling millipede Glyphiulus cavernicolus sulu (Cambalidae, Spirostreptida). Chronobiol. Int. 2000; 17: 757–765
  • Kondo T., Strayer C. A., Kulkarni R. D., Taylor W., Ishiura M., Golden S. S., Johnson C. H. Circadian rhythms in prokaryotes: luciferase as a reporter of circadian expression in cyanobacteria. Proc. Natl. Acad. Sci. USA 1993; 90: 5672–5676
  • Krishnan B., Levine J. D., Lynch M. K.S., Dowse H. B., Funes P., Hall J. C., Hardin P. E., Dryer S. E. A new role for cryptochrome in a Drosophila circadian oscillator. Nature 2001; 411: 313–317
  • Kureck A. Two circadian eclosion times in Chironomus thummi (Diptera) alternately selected with different temperatures. Oecologia 1979; 40: 395–401
  • Kurumiya S., Kawamura H. Circadian oscillation of the multiple unit activity in the guinea pig suprachiasmatic nucleus. J. Comp. Physiol. A 1988; 162: 301–308
  • Kyriakou C. P., Oldroyd M., Wood J., Sharp M., Hill M. Clock mutations alter developmental timing in Drosophila. Heridity 1990; 64: 395–401
  • Lamprecht G., Weber F. Activity patterns of cave dwelling beetles. Int. J. Spelol. 1978; 10: 351–379
  • Lankinen P. Geographical variation in circadian eclosion rhythm and photoperiodic adult diapause in Drosophila littoralis. J. Comp. Physiol. A 1986; 159: 123–142
  • Lankinen P. North‐south differences in circadian eclosion rhythm in European populations of Drosophila subobscura. Heridity 1993; 71: 210–218
  • Loros J. J., Dunlap J. C. Genetic and molecular analysis of circadian rhythms in Neurospora. Ann. Rev. Physiol. 2001; 63: 757–794
  • Majercak J., Sidote D., Hardin P. E., Edery I. How a circadian clock adapts to seasonal decreases in temperature and day length?. Neuron 1999; 24: 219–230
  • McNab B. K. The evolution of endothermy in the phylogeny of mammals. Am. Nat. 1978; 12: 1–12
  • Mead M., Gilhodes J. C. Organization temporella de l'activité locomotrice chez un animal cavernicole Blaniulus lichtensteini Bröl(Diplopoda). J. Comp. Physiol. 1974; 90: 47–72
  • Menaker M., Vogelbaum M. A. Mutant circadian period as a marker of suprachiasmatic nucleus function. J. Biol. Rhythms 1993; 8: S93–S98
  • Merrow M., Roenneberg T., Macino G., Franchi L. A fungus among us: the Neurospora crassa circadian system. Semin. Cell Dev. Biol. 2001; 12: 279–285
  • Mitsui A., Kumazawa S., Takahashi A., Ikemoto H., Cao S., Arai T. Strategy by which nitrogen‐fixing unicellular cyanobacteria grow photo‐autotrophically. Nature 1986; 323: 720–722
  • Miyatake M., Shimizu T. Genetic corrections between life‐history and behavioural traits can cause reproductive isolation. Evolution 1999; 53: 201–208
  • Moore‐Ede M. C. Physiology of the circadian timing system: predictive versus reactive homeostasis. Am. J. Physiol. 1986; 250: R737–R352
  • Moore‐Ede M. C., Sulzman F. M., Fuller C. A. The Clocks That Time Us. Harvard University Press, London 1982
  • Mori T., Johnson C. H. Circadian programming in cyanobacteria. Semin. Cell Dev. Biol. 2001; 12: 279–285
  • Neville A. C. Daily growth layers in animals and plants. Biol. Rev. Cambridge Philos. Soc. 1967; 42: 421–441
  • Nikaido S. S., Johnson C. H. Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. Photochem. Photobiol. 2000; 71: 758–765
  • Nusslein‐Volhard C., Frohnhofer H. G., Lehman R. Determination of antero‐posterior polarity in Drosophila. Science 1987; 238: 1675–1681
  • Oklejewicz M., Daan S. Enhanced longevity in tau mutant Syrian hamsters, Mesocricetus auratus. J. Biol. Rhythms 2002; 17: 210–216
  • Ouyang Y., Andersson C. R., Kondo T., Golden S. S., Johnson C. H. Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl. Acad. Sci. USA 1998; 95: 8660–8664
  • Paietta J. Photooxidation and the evolution of circadian rhythmicity. J. Theor. Biol. 1982; 97: 77–82
  • Pittendrigh C. S. Circadian rhythms and the circadian organization of living systems. Cold. Spr. Harb. Symp. Quant. Biol. 1960; 25: 159–184
  • Pittendrigh C. S. Circadian systems I. The driving oscillation and its assay in Drosophila pseudoobscura. Proc. Natl. Acad. Sci. USA 1967; 58: 1762–1767
  • Pittendrigh C. S. Circadian systems: entrainment. Handbook of Behavioural Neurobiology, J. Aschoff. Plenum Press, New York and London 1981; 95–124
  • Pittendrigh C. S. Temporal organization: reflections of a Darwinian clock‐watcher. Ann. Rev. Physiol. 1993; 55: 17–54
  • Pittendrigh C. S., Bruce V. Daily rhythms as coupled oscillator systems and their relation to thermoperiodism and photoperiodism. Photoperiodism and Related Phenomenon in Plants and Animals, R. B. Withrow. American Association for the Advancement of Sciences, Washington D.C. 1959; 475–505
  • Pittendrigh C. S., Minis D. H. The photoperiodic time measurement in Pectinophora gossypiella and its relation to the circadian system in that species. Biochronometry, M. Menaker. National Academy of Sciences, Washington D.C. 1971; 212–250
  • Pittendrigh C. S., Minis D. H. Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 1972; 69: 1537–1539
  • Pittendrigh C. S., Daan S. A functional analysis of circadian pacemakers in nocturnal rodents: IV. Entrainment: pacemaker as clock. J. Comp. Physiol. A 1976; 106: 291–331
  • Reppert S. M., Weaver D. R. Molecular analysis of mammalian circadian rhythms. Ann. Rev. Physiol. 2001; 63: 647–676
  • Reppert S. M., Coleman R. J., Heath H. W., Keutmann H. T. Circadian properties of vasopressin and melatonin rhythms in cat cerebrospinal fluid. Am. J. Physiol. 1982; 243: E489–E498
  • Roenneberg T., Merrow M. Life before the clock: modelling circadian evolution. J. Biol. Rhythms 2002; 17: 495–505
  • Rosato E., Kyriacou C. P. Flies, clocks and evolution. Phil. Trans. R. Soc. Lond. B 2001; 356: 1769–1778
  • Rosbash M., Hall J. C. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 1998; 95: 681–692
  • Rose M. R., Nusbaum T. J., Chippindale A. K. Laboratory evolution: the experimental wonderland and the Cheshire Cat syndrome. Adaptation, M. R. Rose, G. V. Lauder. Academic Press, New York 1996; 221–241
  • Ruby N. F., Dark J., Heller H. C., Zucker I. Suprachiasmatic nucleus: role in circannual body mass and hibernation rhythms of ground squirrels. Brain Res. 1998; 782: 63–72
  • Sato T., Kawamura H. Effects of bilateral suprachiasmatic nucleus lesions on the circadian rhythms in a diurnal rodent, the Siberian chipmunk (Eutamia sibiricus). J. Comp. Physiol. A 1984; 155: 745–752
  • Sawyer L., Hennessy M. J., Peixoto A. A., Rosato E., Parkinson H., Costa R., Kyriacou C. P. Natural variation in a Drosophila clock gene and temperature compensation. Science 1997; 278: 2117–2120
  • Schaffer R., Ramsay N., Samach A., Corden S., Putterill J., Carré I. A., Coupland G. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 1998; 93: 1219–1229
  • Schoff J. W., Packer B. M. Early Archean (3.3 billion to 3.5 billion years old) microfossils from Warrawoona Group, Australia. Science 1987; 237: 70–73
  • Sharma V. K. Period responses to Zeitgeber signals stabilize circadian clocks during entrainment. Chronobiol. Int. 2003; 20: 389–404
  • Sharma V. K., Chandrashekaran M. K. Precision of a mammalian circadian clock. Naturwissenschaften 1999; 86: 333–335
  • Sharma V. K., Chidambaram R. Intensity‐dependent phase‐adjustments in the locomotor activity rhythm of the nocturnal field mouse Mus booduga. J. Exp. Zool. 2002; 292: 444–459
  • Sharma V. K., Joshi A. Clocks, genes, and evolution: the evolution of circadian organisation. Biological Clocks, V. Kumar. Narosa Publishers, Springer‐Verlag, New Delhi, Berlin 2002; 5–23
  • Sheeba V., Sharma V. K., Chandrashekaran M. K., Joshi A. Persistence of eclosion rhythms in populations of Drosophila melanogaster after 600 generations in an aperiodic environment. Naturwissenschaften 1999a; 86: 448–449
  • Sheeba V., Sharma V. K., Chandrashekaran M. K., Joshi A. Effect of different light regimes on pre‐adult fitness in Drosophila melanogaster reared in constant light for over six hundred generations. Biol. Rhythms Res. 1999b; 30: 380–392
  • Sheeba V., Sharma V. K., Shubha K., Chandrashekaran M. K., Joshi A. The effect of different light regimes on adult lifespan in Drosophila melanogaster. J. Biol. Rhythms 2000; 15: 380–392
  • Sheeba V., Chandrashekaran M. K., Joshi A., Sharma V. K. A case for multiple oscillators controlling different circadian rhythms in Drosophila melanogaster. J. Insect Physiol. 2001a; 47: 1217–1225
  • Sheeba V., Chandrashekaran M. K., Joshi A., Sharma V. K. Persistence of oviposition rhythm in individuals of Drosophila melanogaster reared in an aperiodic environment for several hundred generations. J. Exp. Zool. 2001b; 290: 541–549
  • Sheeba V., Chandrashekaran M. K., Joshi A., Sharma V. K. Locomotor activity rhythm in Drosophila melanogaster after 600 generations in an aperiodic environment. Naturwissenschaften 2002; 89: 512–514
  • Sokolowski M. B. Drosophila: genetics meets behaviour. Nature Review Genet. 2001; 2: 879–890
  • Stanewsky R. Genetic analysis of the circadian system in Drosophila melanogaster and mammals. Int. J. Neurobiol. 2003; 54: 111–147
  • Stanewsky R., Kaneko M., Emery P., Beretta B., Wager‐Smith K., Kay S. A., Rosbash M., Hall J. C. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 1998; 95: 681–692
  • Trajano E., Menno‐Barreto L. Free running locomotor activity rhythms in cave‐dwelling catfishes Trichomycterus sp. from Brazil. Biol. Rhythms Res. 1996; 27: 329–335
  • Vitaterna M. H., King D. P., Chang A‐M., Kornhauser J. M., Lowrey P. L., McDonald J. D., Dove W. F., Pinto L. H., Turek F. W., Takahashi J. S. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behaviour. Science 1994; 264: 719–725
  • von Saint Paul U., Aschoff J. Longevity among blowflies Phormia terranovae R.D. kept in non‐24 hour light‐dark cycles. J. Comp. Physiol. A 1978; 127: 191–195
  • Wang Z. Y., Tobin E. M. Constitutive expression of the Circadian Clock Associated 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 1998; 93: 1207–1217
  • Wells J. W. Coral growth and geochronometry. Nature 1963; 197: 948–950
  • Went F. W. The periodic aspect of photoperiodism and thermoperiodicity. Photoperiodism and Related Phenomena in Plants and Animals, R. B. Withrow. American Association for the Advancement of Science, Washington DC 1959; 551–564
  • Wever R. A. The Circadian System of Man. Springer Verlag, Berlin and Heidelberg 1979
  • Williams J. A., Sehgal A. Molecular components of the circadian system in Drosophila. Ann. Rev. Physiol. 2001; 63: 729–755

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.