508
Views
169
CrossRef citations to date
0
Altmetric
Research Article

THE HUMAN CYP3A SUBFAMILY: PRACTICAL CONSIDERATIONS*

, , , , &
Pages 339-361 | Published online: 10 Oct 2000

REFERENCES

  • Wrighton S. A., Stevens J. C. The human hepatic cytochromes P450 involved in drug metabolism. Crit. Rev. Toxicol. 1992; 22: 1–21
  • Guengerich F. P. Human cytochrome P450 enzymes, in Cytochrome P450. P. R. Ortiz de Montellano. 2nd ed., Plenum Press, New York 1995; 473–535
  • Li A. P., Kaminski D. L., Rasmussen A. Substrates of human hepatic cytochrome P450 3A4. Toxicology 1995; 104: 1–8
  • Parkinson A. An overview of current cytochrome P450 technology for assessing the safety and efficacy of new materials. Toxicol. Pathol. 1996; 24: 45–57
  • Benet L. Z. Pharmacokinetics, in Goodman and Gilman's: The Pharmacological Basis of Therapeutics. J. G. Hardman, L. E. Limbird, P. B. Molinoff, R. W. Ruddon, A. G. Gilman. 9th ed., McGraw-Hill, New York 1996; 14
  • Wang P. P., Beaune P, Kaminsky L. S., Dannan G. A., Kadlubar F. F., Larrey D, Guengerich F. P. Purification and characterization of six cytochrome P450 isozymes from human liver microsomes. Biochemistry 1983; 22: 5375–5383
  • Watkins P. B., Wrighton S. A., Maurel P, Schuetz E. G., Mendez-Picon G, Parker G. A., Guzelian P. S. Identification of an inducible form of cytochrome P-450 in human liver. Proc. Natl. Acad. Sci. USA 1985; 82: 6310–6314
  • Guengerich F. P., Martin M. V., Beaune P. H., Kremers P., Wolff T, Waxman D. J. Characterization of rat and human liver microsomal cytochrome P450 forms involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolism. J. Biol. Chem. 1986; 26: 5051–5060
  • Molowa D. T., Schuetz E. G., Wrighton S. A., Watkins P. B., Kremers P, Mendez-Picon G, Parker G. A., Guzelian P. S. Complete cDNA sequence of a cytochrome P-450 inducible by glucocorticoids in human liver. Proc. Natl. Acad. Sci. USA 1986; 83: 5311–5315
  • Nelson D. R., Koymans L, Kamataki T, Stegeman J. J., Feyereisen R, Waxman D. J., Waterman M. R., Gotoh O, Coon M. J., Estabrook R. W., Gunsalus I. C., Nebert D. W. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996; 6: 1–42
  • Beaune P. H., Umbenhauer D. R., Bork R. W., Lloyd R. S., Guengerich F. P. Isolation and sequence determination of a cDNA clone related to human cytochrome P-450 nifedipine oxidase. Proc. Natl. Acad. Sci. USA 1986; 83: 8064–8068
  • Kolars J. C., Lown K. S., Schmiedlin-Ren P, Ghosh M, Fang C, Wrighton S. A., Merion R. M., Watkins P. B. CYP3A gene expression in human gut epithelium. Pharmacogenetics 1994; 4: 247–259
  • Shimada T., Yamazaki H, Mimura-Ren M, Inui Y, Guengerich F. P. Interindividual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. 1994; 270: 414–423
  • Guengerich F. P. Mechanism-based inactivation of human liver cytochrome P450 IIIA4 by gestodene. Chem. Res. Toxicol. 1990; 3: 363–371
  • Schuetz E. G., Wrighton S. A., Barwick J. L., Guzelian P. S. Induction of cytochrome P-450 by glucocorticoids in rat liver. I. Evidence. J. Biol. Chem. 1984; 259: 1999–2006
  • Schuetz E. G., Guzelian P. S. Induction of cytochrome P-450 by glucocorticoids in rat liver. II. Evidence that glucocorticoids regulate induction of cytochrome P-450 by a non-classical mechanism. J. Biol. Chem. 1984; 259: 2007–2012
  • Miyata M, Nagata K, Yamazoe Y, Kato R. Transcriptional elements directing a liver-specific expression of P450/6betaA (CYP3A2) gene-encoding testosterone 6beta-hydroxylase. Arch. Biochem. Biophys. 1995; 318: 71–79
  • Quattrochi L. C., Mills A. S., Barwick J. L., Yockey C. B., Guzelian P. S. A novel cis-element in a liver cytochrome P450 3A gene confers synergistic induction by glucocorticoids plus antiglucocorticoids. J. Biol. Chem. 1995; 270: 28,917–28,923
  • Huss J. M., Wang S. I., Astrom A, McQuiddy P, Kasper C. B. Dexamethasone responsiveness of a major glucocorticoid-inducible CYP3A gene is mediated by elements unrelated to a glucocorticoid receptor binding motif. Proc. Natl. Acad. Sci. USA 1996; 93: 4666–4670
  • Kliewer S. A., Moore J. T., Wade L, Staudinger J. L., Watson M. A., Jones S. A., McKee D. D., Oliver B. B., Willson T. M., Zetterstrom R. H., Perlmann T, Lehmann J. M. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 1998; 92: 73–82
  • Calleja C, Pascussi J. M., Mani J. C., Maurel P, Vilaren M. J. The antibiotic rifampicin is a nonsteroidal ligand and activator of the human glucocorticoid receptor. Nature Med. 1998; 4: 92–96
  • Wrighton S. A., Ring B. J., Watkins P. B., VandenBranden M. Identification of a polymorphically expressed member of the human cytochrome P450III family. Molec. Pharmacol. 1989; 36: 97–105
  • Schuetz J. D., Molowa D. T., Guzelian P. S. Characterization of a cDNA encoding a new member of the glucocorticoid-responsive cytochromes P450 in human liver. Arch. Biochem. Biophys. 1989; 274: 355–365
  • Jounaidi Y, Hyrailles V, Gervot L, Maurel P. Detection of a CYP3A5 allelic variant: A candidate for the polymorphic expression of the protein?. Biochem. Biophys. Res. Commun. 1996; 221: 466–470
  • Schuetz J. D., Schuetz E. G., Thottassery J. V., Guzelian P. S., Strom S, Sun D. Identification of a novel dexamethasone responsive enhancer in the human CYP3A5 gene and its activation in human and rat liver cells. Molec. Pharmacol. 1996; 49: 63–72
  • Wrighton S. A., Brian W. R., Sari M. A., Iwasaki M, Guengerich F. P., Raucy J. L., Molowa D. T., VandenBranden M. Studies on the expression and metabolic capabilities of human liver cytochrome P450 IIIA. Molec. Pharmacol. 1990; 38: 207–213
  • Gorski J. C., Hall S. D., Jones D. R., VandenBranden M, Wrighton S. A. Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A subfamily. Biochem. Pharmacol. 1994; 47: 1643–1653
  • Kitada M, Kamataki T. Cytochrome P450 in human fetal liver: Significance and fetal-specific expression. Drug Metab. Rev. 1994; 26: 305–323
  • Kitada K, Kamataki T, Itahashi K, Rikihisa T, Kato R. Y. Kanakubo, Purification and properties of cytochrome P-450 from homogenates of human fetal livers. Arch. Biochem. Biophys. 1985; 241: 275–280
  • Wrighton S. A., VandenBranden M. Isolation and characterization of human fetal liver cytochrome P450HLp2: A third member of the P450III gene family. Arch. Biochem. Biophys. 1989; 268: 144–151
  • Kitada K, Taneda M, Itahashi K, Kamataki T. Four forms of cytochrome P-450 in human fetal liver: Purification and their capacity of activate promutagens. Jpn. J. Cancer Res. 1991; 82: 426–432
  • Komori M, Nishio K, Ohi H, Kitada M, Kamataki T. Molecular cloning and sequence analysis of cDNA containing the entire coding region for human fetal liver cytochrome P-450. J. Biochem. 1989; 105: 161–163
  • Wrighton S. A., Molowa D. T., Guzelian P. S. Identification of a cytochrome P-450 in human fetal liver related to glucocorticoid-inducible cytochrome P450HLp in the adult. Biochem. Pharmacol. 1988; 37: 3053–3055
  • Kitada M, Kamataki T, Itahashi K, Rikihisa T, Kanakubo Y. P-450 HFLa, a form of cytochrome P-450 purified from human fetal livers, is the 16alpha-hydroxylase of dehydroepiandrosterone 3-sulfate. J. Biol. Chem. 1987; 262: 13,534–13,537
  • Burger H-J., Schuetz J. D., Schuetz E. G., Guzelian P. S. Paradoxical transcriptional activation of rat liver cytochrome P450 3A1 by dexamethasone and the antiglucocorticoid pregnenolone 16 alpha-carbonitrile: Analysis by transient transfection into primary monolayer cultures of adult rat hepatocytes. Proc. Natl. Acad. Sci. USA 1992; 89: 2145–2149
  • Hus J. M., Wang S. I., Astrom A, McQuiddy P, Kasper C. B. Dexamethasone responsiveness of a major glucocorticoid-inducible CYP3A gene is mediated by elements unrelated to a glucocorticoid receptor binding motif. Proc. Natl. Acad. Sci. USA 1996; 93: 4666–4670
  • Lehmann J. M., McKee D. D., Watson M. A., Wilson T. M., Moore J. T., Kliewer S. A. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Invest. 1998; 102: 1–8
  • Blumberg B, Sabbagh W, Juguilon H, Bolado J, van Matel C. M. SXR, a novel steroid and xenobiotic sensing nuclear receptor. Genes Dev. 1998; 12: 3195–3205
  • Bertilsson G, Heidrich J, Svensson K. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc. Natl. Acad. Sci. USA 1998; 95: 12,208–12,213
  • Schuetz E. G., Brimer C, Schuetz J. D. Environmental xenobiotics and the antihormones cyproterone acetate and spironolactone utilize the nuclear hormone receptor PXR to activate the cytochrome P4503A23 hormone response element. Molec. Pharm. 1998; 54: 1113–1117
  • Pascussi J-M., Jounaidi Y, Drocourt L, Domergu J, Balakaud C, Maurel P, Vileram M. J. Evidence for the presence of a functional pregnane X receptor response element in the CYP3A7 promoter gene. Biochem. Biophys. Res. Commun. 1999; 260: 377–381
  • Mangelsdorf D. J., Evans R. M. The RXR heterodimers and orphan receptors. Cell 1995; 83: 841–850
  • Schmiedlin-Ren P, Thummel K. E., Fisher J. M., Paine M. F., Lown K. S., Watkins P. B. Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrix-coated permeable supports in the presence of 1,2,5-dihydroxyvitamin D3. Molec. Pharm. 1997; 51: 741–754
  • Waxman D. J. P450 gene induction by structurally diverse xenochemicals: Central role of nuclear receptors CAR, PXR, and PPAR. Arch. Biochem. Biophys. 1999; 369: 11–23
  • Savas U, Griffin K. J., Johnson E. F. Moleclar mechanisms of cytochrome P-450 induction by xenobiotics: An expanded role for nuclear hormone receptors. Molec. Pharm. 1999; 56: 851–857
  • Schuetz E. G., Schmid W, Schutz G. The glucocorticoid receptor is essential for induction of Cytochrome P4502B by steroids by not for drug or steroid induction of CYP3A or P450 reductase in mouse liver. Drug Metab., Dispos. 2000; 28: 268–278
  • Rebbeck T. R., Jaffe J. A., Walker A. H., Wein A. J., Malkowicz S. B. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J. Natl. Cancer Inst. 1998; 90: 1225–1229
  • Hashimoto H., Toide K., Kitamura R., Fugita M., Tagawa S., Itoh S., Kamataki T. Gene structure of CYP3A4, an adult-specific form of cytochrome P450 in human livers, and its transcriptional control. Eur. J. Biochem. 1993; 218: 585–595
  • Felix C. A., Walker A. H., Lange B. J. Association of CYP3A4 genotype with treatment-related leukemia. Proc. Natl. Acad. Sci. USA 1998; 95: 13, 176–13, 181
  • Westlind A., Lofberg L., Tindberg N., Andersson T. B., Ingelman-Sundberg M. Interindividual differences in hepatic expression of CYP3A4: Relationship to genetic polymorphism in the 5′-upstream regulatory region. Biochem. Biophys. Res. Commun. 1999; 259: 201–205
  • Ball S. E., Scatina J., Kao J. Population distribution and effects on drug metabolism of a genetic variant in the 5′promoter region of CYP3A4. Clin. Pharmacol. Ther. 1999; 66: 288–294
  • Kralli A., Bohen S. P., Yamamoto K. R. LEM1, an ATP-binding-cassette transporter, selectively modulates the biological potency of steroid hormones. Proc. Natl. Acad. Sci. USA 1995; 92: 4701–4705
  • Barnes K. M., Dickstein B., Cutler G. B., Fojo T., Bates S. E. Steroid transport, accumulation, and antagonism of P-glycoprotein in multidrug-resistant cells. Biochemistry 1996; 35: 4820–4827
  • Meijer O. C., de Lange E. C. M., Breimer D. D., de Boer A. G., Workel J. O., de Kloet E. R. Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdr1a P-glycoprotein knockout mice. Endocrinology 1998; 139: 1789–1793
  • Schuetz E. G., Beck W. T., Schuetz J. D. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Molec. Pharm. 1996; 49: 311–318
  • Schuetz E. G., Schinkel A. H., Relling M. V., Schuetz J. D. P-glycoprotein: A major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc. Natl. Acad. Sci. USA 1996; 93: 4001–4005
  • Thummel K. E., Wilkinson G. R. In vitro and in vivo drug interactions involving human CYP3A. Annu. Rev. Pharmacol. Toxicol. 1998; 38: 389–430
  • Korzekwa K. R., Krishnamachary N., Shou M., Ogai A, Parise R. A., Rettie A. E., Gonzalez F. J., Tracy T. S. Evaluation of atypical cytochrome P450 kinetics with two-substrate-models: Evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry 1998; 37: 4137–4147
  • Watkins P. B. Noninvasive tests of CYP3A enzymes. Pharmacogenetics 1994; 4: 171–184
  • Cheng C.-L., Smith D. E., Carver P. L., Cox S. R., Watkins P. B., Blake D. S., Kauffman C. A., Meyer K. M., Amidon G. L., Stetson P. L. Steady-state pharmacokinetics of delavirdine in HIV-positive patients: Effect on erythromycin breath test. Clin. Pharmacol. Ther. 1997; 61: 531–543
  • Jamis-Dow C. A., Pearl M. L., Watkins P. B., Blake D. S., Klecker R. W., Collins J. M. Predicting drug interactions in vivo from experiments in vitro. Hu-jyman studies with paclitaxel and ketoconazole. Am. J. Clin. Oncol. 1997; 20: 592–599
  • Paine M. F., Shen D. D., Kunze K. L., Perkins J. D., Marsh C. L., McVicar J. P., Barr D. M., Gillies B. S., Thummel K. E. First-pass metabolism of midazolam by the human intestine. Clin. Pharmacol. Ther. 1996; 60: 14–24
  • Paine M. F., Khalighi M, Fisher J. M., Shen D. D., Kunze K. L., Marsh C. L., Perkins J. D., Thummel K. E. Characterization of inter- and intra-intestinal differences in human CYP3A-dependent metabolism. J. Pharmacol. Exp. Ther. 1997; 283: 1552–1562
  • Rowland M, Matin S. B. Kinetics of drug–drug interactions. J. Pharmacokinet. Biopharm. 1973; 1: 553–567
  • Gibbs M. A., Thummel K. E., Shen D. D., Kunze K. L. Inhibition of CYP3A in human intestinal and liver microsomes: Comparison of Ki values and impact of CYP3A5 expression. Drug Metab. Dispos. 1999; 27: 180–187
  • Moltke L. L. v., Greenblatt D. J., Schmider J, Duan S. X., Wright C. E., Harmatz J. S., Shader R. I. Midazolam hydroxylation by liver microsomes in vitro: Inhibition by fluoxetine, norfluoxetine, and by azole antifungal agents. J. Clin. Pharmacol. 1996; 36: 783–791
  • Jurima-Romet M., Crawford K., Cyr T., Inaba T. Terfenadine metabolism in human liver. In vitro inhibition by macrolide antibiotics and azole antifungals. Drug Metab. Dispos. 1994; 22: 849–857
  • Iatsimirskaia E., Tulebaev S., Storozhuk E., Utkin I., Smith D., Gerber N., Koudriakova T. Metabolism of rifabutin in human enterocyte and liver microsomes: Kinetic parameters, identification of enzyme systems, and drug interactions with macrolides and antifungal agents. Clin. Pharmacol. Ther. 1997; 61: 554–562
  • Wrighton S. A., Ring B. J. Inhibition of human CYP3A catalyzed 1′-hydroxymidazolam formation by ketoconzole, nifedipine, erythromycin, cimetidine, and nizatidine. Pharm. Res. 1994; 11: 921–923
  • Olkkola K. T., Ahonen J, Neuvonen P. J. The effect of systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesthes. Analges. 1996; 82: 511–516
  • Olkkola K. T., Backman J. T., Neuvonen P. J. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin. Pharmacol. Ther. 1994; 55: 481–485
  • Backman J. T., Olkkola K. T., Aranko K, Himberg J.-J., Neuvonen P. J. Dose of midazolam should be reduced during diltiazem and verapamil treatments. Br. J. Clin. Pharmacol. 1994; 37: 221–225
  • Olkkola K. T., Aranko K, Luuila H, Hiller A, Saarnivaara L, Himberg J.-J., Neuvonen P. J. A potentially hazardous interaction between erythromycin and midazolam. Clin. Pharmacol. Ther. 1993; 53: 298–305
  • Gorski J. C., Jones D. R., Haehner-Daniels B. D., Hamman M. A., O'Mara E. M., Hall S. D. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin. Pharmacol. Ther. 1998; 64: 133–143
  • Lindstrom T. D., Hanssen B. R., Wrighton S. A. Cytochrome P-450 complex formation by dirithromycin and other macrolides in rats and human livers. Antimicrob. Agent Chemother. 1993; 37: 265–269
  • Ohmori S, Ishii I, Kuriya S. I., Taniguchi T, Rikihisa T, Hirose S, Kanakubo Y, Kitada M. Effects of clarithromycin and its metabolites on the mixed function oxidase system in hepatic microsomes of rats. Drug Metab. Dispos. 1993; 21: 358–363
  • Bartkowski R. R., Goldberg M. E., Larijani G. E., Boerner T. Inhibition of alfentanil metabolism by erythromycin. Clin. Pharmacol. Ther. 1989; 46: 99–102
  • Kharasch E. D., Russell M., Mautz D, Thummel K. E., Kunze K. L., Bowdle A. T., Cox K. The role of cytochrome P450 3A4 in alfentanil clearance. Implications for interindividual variability in disposition and perioperative drug interactions. Anesthesiology 1997; 87: 36–50
  • Wright C. E., Lasher-Sisson T. A., Steenwyk R. C., Swanson C. N. A pharmacokinetic evaluation of the combined administration of triazolam and fluoxetine. Pharmacotherapy 1992; 12: 103–106
  • Bergstrom R. F., Goldberg M. J., Cerimele B. J., Hatcher B. L. Assessment of the potential for a pharmacokinetic interaction between fluoxetine and terfenadine. Clin. Pharmacol. Ther. 1997; 62: 643–651
  • Jones J. P., Korzekwa K. R., Rettie A. E., Trager W. F. Isotopically sensitive branching and its effect on the observed intramolecular isotope effects in cytochrome P-450 catalyzed reactions: A new method for the estimation of intrinsic isotope effects. J. Am. Chem. Soc. 1986; 108: 7074–7078
  • Korzekwa K. R., Trager W. F., Gillette J. R. Theory for the observed isotope effects from enzymatic systems that form multiple products via branched reaction pathways: Cytochrome P-450. Biochemistry 1989; 28: 9012–9018
  • Iyer K. R., Jones J. P., Darbyshire J. F., Trager W. F. Intramolecular isotope effects for benzylic hydroxylation of isomeric xylenes and 4,4′-dimethylbiphenyl by cytochrome P450: Relationship between distance of methyl groups and masking of the intrinsic isotope effect. Biochemistry 1997; 36: 7136–7143
  • Korzekwa K. R., Trager W. F., Gillette J. R. Isotope effects studies on the cytochrome P450 enzymes. Drug Metab. Rev. 1995; 27: 45–59
  • Foster A. B. Deuterium isotope effects in the metabolism of drugs and xenobiotics: Implications for drug design. Adv. Drug Res. 1985; 14: 1–40
  • Hanzlik R. P., Ling K.-H. J. Active site dynamics of toluene hydroxylation by cytochrome P450. J. Org. Chem. 1990; 55: 3392–3397
  • Korzekwa K, Nagata K, Trager W. F., Gillette J. R. Metabolism of the B-ring of testosterone by the rat cytochrome P-450 system. Drug Metab. Rev. 1989; 20: 535–539
  • Korzekwa K. R., Jones J. P., Gillette J. R. Theoretical studies on cytochrome P-450 mediated hydroxylation: A predictive model for hydrogen atom abstractions. J. Am. Chem. Soc. 1990; 112: 7042–7046
  • Korzekwa K. R., Grogan J, DeVito S, Jones J. P. Electronic models for cytochrome P450 oxidations. Adv. Exp. Med. Biol. 1996; 387: 361–369
  • Shou M., Grogan J., Mancewicz J. A., Krausz K. W., Gonzalez F. J., Gelboin H. V., Korzekwa K. R. Activation of CYP3A4: Evidence for the simultaneous binding of two substrates in a cytochrome P450 active site. Biochemistry 1994; 33: 6450–6455
  • Schwab G. E., Raucy J. L., Johnson E. F. Modulation of rabbit and human hepatic cytochrome P-450-catalyzed steroid hydroxylations by alpha-naphthoflavone. Molec. Pharmacol. 1988; 33: 493–499
  • Ueng Y.-F., Kuwabara T, Chun Y.-J., Guengerich F. P. Cooperativity in oxidations catalyzed by cytochrome P450 3A4. Biochemistry 1997; 36: 370–381
  • Kenworthy K. E., Bloomer J. C., Clarke S. E., Houston J. B. CYP3A4 drug interactions: Correlation of 10 in vitro prove substrates. Br. J. Clin. Pharmacol. 1999; 48: 716–727
  • Koley A. P., Robinson R. C., Friedman F. K. Cytochrome P450 conformation and substrate interactions as probed by CO binding kinetics. Biochimie 1996; 78: 706–713
  • Milewich L, Chen G. T., MacDonald P. C., Peterson J. A. Ascorbic acid inhibition of aromatase activity in human placenta tissue. J. Steroid Biochem. 1981; 14: 185–193
  • Koley A. P., Buters J. T. M., Robinson R. C., Markowitz A, Friedman F. K. Differential mechanisms of cytochrome P450 inhibition and activation by alpha-naphthoflavone. J. Biol. Chem. 1997; 272: 3149–3152
  • Haehner B, Wrighton S. A., Janardan S. K., Watkins P. B., Hall S. A. Expression of CYP3A enzymes in human kidney. Molec. Pharmacol. 1996; 50: 52–59
  • Gosh S. S., Basu A. K., Gosh S, Hagley R, Kramer L, Schuetz J, Grogan W. M., Guzelian P. S., Watlington C. O. Renal and hepatic family 3A cytochromes P450 (CYP3A) in spontaneously hypertensive rats. Biochem. Pharmacol. 1995; 50: 49–54
  • Clore J, Schoolwerth A, Watlington C. O. When is cortisol a mineralocorticoid? [editorial]. Kidney Int. 1992; 42: 1297–1308
  • Kolars J. C., Schmiedlin-Ren P., Schuetz J. D., Fang C., Watkins P. B. Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J. Clin. Invest. 1992; 90: 1871–1878
  • Brown M. B., Guo W., Watkins P. B. Grapefruit juice increases felodipine oral availability in man by decreasing intestinal CYP3A protein expression. J. Clin. Invest. 1997; 99: 2545–2553
  • Schmiedlin-Ren P., Edwards D. J., Fitzsimmons M. E. Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents: Decreased enterocyte CYP3A4 concentration and mechanism-based inactivation by furanocoumarins. Drug Metab. Dispos. 1997; 25: 1228–1233
  • Hall S. D., Thummel K. E., Watkins P. B., Lown K. S., Benet L. Z., Paine M. F., Mayo R. R., Turgeon K., Bailey D. G., Fontana R. J., Wrighton S. A. Molecular and physical mechanisms of first-pass extraction. Drug Metab. Dispos. 1999; 27: 161–166
  • Soldner A., Christians U., Susanto M., Wacher V. J., Silverman J. A., Benet L. Z. Grapefruit juice activates p-glycoprotein-mediated drug transport. Pharm. Res. 1999; 16: 4768–4785
  • Edwards D., Fitzsimmons M. E., Schuetz E. G., Yasuda K., Ducharme M. P., Warbasse L. H., Woster P. M. J. D. Schuetz, and P. B. Watkins, 6,7-dihydroxybergamottin in grapefruit juice and Seville orange juice: Effects on cyclosporine disposition, enterocyte CYP3A4 and P-glycoprotein. Clin. Pharmacol. Ther. 1999; 65: 237–244

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.