125
Views
62
CrossRef citations to date
0
Altmetric
Original Article

Visual segmentation by contextual influences via intra-cortical interactions in the primary visual cortex

Pages 187-212 | Received 21 Jul 1998, Published online: 09 Jul 2009

References

  • Allman J, Miezin F, McGuinness E. Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Ann. Rev. Neurosci. 1985; 8: 407–30
  • Bergen J R. Theories of visual texture perception. Vision and Visual Dysfunction, D Regan. Macmillan, New York 1991; 10B: 114–34
  • Bergen J R, Adelson E H. Early vision and texture perception. Nature 1988; 333: 363–4
  • Blum H. Biological shape and visual science. J. Theor. Biol. 1973; 38: 205–87
  • Carpenter G, Grossberg S. A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput. Vis. Graph. Image Process. 1987; 37: 54–115
  • Cavanaugh J R, Bair W, Movshon J A. Orientation-selective setting of contrast gain by the surrounds of macaque striate cortex neurons. Soc. Neurosci. Abstract 1997; 227: 2
  • Dayan P, Hinton G E, Neal R M, Zemel R S. The Helmholtz machine. Neural Comput. 1995; 7: 889–904
  • Douglas R J, Martin K A. Neocortex. Synaptic Organization of the Brain 3rd edn, G M Shepherd. Oxford University Press, Oxford 1990; 389–438
  • Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck H J. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analysis in the cat. Biol. Cybern. 1988; 60: 121–30
  • Field D J, Hayes A, Hess R F. Contour integration by the human visual system: evidence for a local ‘association field’. Vis. Res. 1993; 33: 173–93
  • Fitzpatrick D. The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. Cerebral Cortex 1996; 6: 329–41
  • Gallant J L, van Essen D C, Nothdurft H C. Two-dimensional and three-dimensional texture processing in visual cortex of the macaque monkey. Early Vision and Beyond, T Papathomas, C Chubb, A Gorea, E Kowler. MIT Press, Cambridge, MA 1995; 89–98
  • Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. PAMI 1984; 6: 721–41
  • Gilbert C D. Horizontal integration and cortical dynamics. Neuron 1992; 9: 1–13
  • Gilbert C D, Wiesel T N. Clustered intrinsic connections in cat visual cortex. J. Neurosci. 1983; 3: 1116–33
  • Gilbert C D, Wiesel T N. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vis. Res. 1990; 30: 1689–701
  • Gray C M, Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl Acad. Sci., USA 1989; 86: 1698–702
  • Grenander U. Lectures in Pattern Theory I, II and III: Pattern Analysis, Pattern Synthesis and Regular Structures. Springer, Berlin 1976–1981
  • Grosof D H, Shapley R M, Hawken M J. Macaque V1 neurons can signal ‘illusory’ contours. Nature 1993; 365: 550–2
  • Grossberg S, Mingolla E. Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations. Percept. Psychophys. 1985; 38: 141–71
  • Grossberg S, Mingolla E, Ross W. Visual brain and visual perception: how does the cortex do perceptual grouping?. Trends Neurosci. 1997; 20: 106–11
  • Haralick R M, Shapiro L G. Computer and Robot Vision, vol 1. Addison-Wesley, Reading, MA 1992
  • Heeger D J. Normalization of cell responses in cat striate cortex. Visual Neurosci. 1992; 9: 181–97
  • Hirsch J A, Gilbert C D. Synaptic physiology of horizontal connections in the cat's visual cortex. J. Neurosci. 1991; 11: 1800–9
  • Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 1962; 160: 106–54
  • Julesz B. Visual pattern discrimination. IRE Trans. Inform. Theory 1962; 8: 84–92
  • Julesz B. Textons, the elements of texture perception and their interactions. Nature 1981; 290: 91–7
  • Kapadia. 1998, Private communication
  • Kapadia M K, Ito M, Gilbert C D, Westheimer G. Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 1995; 15: 843–56
  • Karni A, Sagi D. Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc. Natl Acad. Sci., USA 1991; 88: 4977
  • Kasturi R, Jain R C. Computer Vision, Principles, R Kasturi, R C Jain. IEEE Press, Piscataway, NJ 1991
  • Knierim J J, van Essen D C. Neuronal responses to static texture patterns ion area V1 of the alert macaque monkeys. J. Neurophysiol. 1992; 67: 961–80
  • Kovacs I, Julesz B. A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation. Proc. Natl Acad. Sci., USA 1993; 90: 7495–7
  • Lamme V A. The neurophysiology of figure-ground segregation in primary visual cortex. J. Neurosci. 1995; 15: 1605–15
  • Lamme V A F, Zipser K, Spekreijse H. Figure-ground signals in V1 depend on consciousness and feedback from extra-striate areas. Soc. Neurosci. Abs. 1997; 603: 1
  • Lee T S. A Bayesian framework for understanding texture segmentation in the primary visual cortex. Vis. Res. 1995; 35: 2643–57
  • Lee T S, Mumford D, Romero R, Lamme V A F. The role of the primary visual cortex in higher level vision. Vis. Res. 1998; 38: 2429–54
  • Levitt J B, Lund J S. Contrast dependence of contextual effects in primate visual cortex. Nature 1997; 387: 73–6
  • Li Z. Primary cortical dynamics for visual grouping. Theoretical Aspects of Neural Computation, K Y M Wong, I King, D-Y Yeung. Springer, Berlin 1998a
  • Li Z. A neural model of contour integration in the primary visual cortex. Neural Comput. 1998b; 10: 903–40
  • Li Z. A V1 model of pop out and asymmetry in visual search. Advances in Neural Information Processing Systems 11, M S Kearns, S A Solla, D A Cohn. MIT Press, Cambridge, MA 1999a, in press
  • Li Z. Pre-attentive segmentation in primary visual cortex. Spatial Vis. 1999b, in press
  • Li Z, Dayan P. Computational differences between asymmetric and symmetric networks. Network: Comput. Neural Syst. 1999; 10: 59–77
  • Li C Y, Li W. Extensive integration field beyond the classical receptive field of cat's striate cortical neurons-classification and tuning properties. Vis. Res. 1994; 34: 2337–55
  • Livingstone M S, Hubel D H. Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 1984; 4: 309–56
  • Malik J, Perona P. Preattentive texture discrimination with early vision mechanisms. J. Opt. Soc. Am. 1990; 7: 923–32
  • Marr D. A computational investigation into the human representation and processing of visual information. Vision. Freeman, San Francisco, CA 1982
  • Meinhardt H. Models of Biological Pattern Formation. Academic, New York 1982
  • Merigan W H, Mealey T A, Maunsell J H. Visual effects of lesions of cortical area V2 in macaques. J. Neurosci. 1993; 13: 3180–91
  • Nothdurft H C. Sensitivity for structure gradient in texture discrimination tasks. Vis. Res. 1985; 25: 1957–68
  • Nothdurft H C. Texture segmentation and pop-out from orientation contrast. Vis. Res. 1991; 31: 1073–78
  • Nothdurft H C. Common properties of visual segmentation. Higher-Order Processing in the Visual System, G R Bock, J A Goode. Wiley, New York 1994; 245–68
  • Polat U, Mizobe K, Pettet M, Kasamatsu T, Norcia A. Collinear stimuli regulate visual responses depending on cell's contrast threshold. Nature 1998; 391: 580–3
  • Polat U, Sagi D. Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments. Vis. Res. 1993; 33: 993–9
  • Polat U, Sagi D. Spatial interactions in human vision: from near to far via experience-dependent cascades of connections. Proc. Natl Acad. Sci., USA 1994; 91: 1206–9
  • Rockland K S, Lund J S. Intrinsic laminar lattice connections in primate visual cortex. J. Comput. Neurol. 1983; 216: 303–18
  • Scialfa C T, Joffe K M. Preferential processing of target features in texture segmentation. Percept. Psychophys. 1995; 57: 1201–8
  • Sillito A M, Grieve K L, Jones H E, Cudeiro J, Davis J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature 1995; 378: 492–6
  • Sireteanu R, Rieth C. Texture segregation in infants and children. Behav. Brain Res. 1992; 49: 133–9
  • Somers D C, Todorov E V, Siapas A G, Sur M. Vector-based integration of local and long-range information in visual cortex. AI Memo. MIT Press, Cambridge, MA 1995; 1556
  • Stemmler M, Usher M, Niebur E. Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics. Science 1995; 269: 1877–80
  • Treisman A, Gormican S. Feature analysis in early vision: evidence for search asymmetries. Psychol. Rev. 1988; 95: 15–48
  • Ts'o D, Gilbert C. The organization of chromatic and spatial interactions in the primate striate cortex. J. Neurosci. 1988; 8: 1712–27
  • Ullman S. Sequence seeking and counterstreams: a model for bidirectional information flow in the cortex. Large-Scale Theories of the Cortex, C Koch, J Davis. MIT Press, Cambridge, MA 1994; 257–70
  • Weliky M, Kandler K, Fitzpatrick D, Katz L C. Patterns of excitation and inhibition evoked by horizontal connections in visual cortex share a common relationship to orientation columns. Neurons 1995; 15: 541–52
  • von der Heydt R, Peterhans E, Baumgartner G. Illusory contours and cortical neuron responses. Science 1984; 224: 1260–2
  • White E L. Cortical Circuits. Birkhäuser, Boston, MA 1989
  • Wolfson S, Landy M S. Discrimination of orientation-defined texture edges. Vis. Res. 1995; 35: 2863–77
  • Yen S-C, Finkel L H. Salient contour extraction by temporal binding in a cortically-based network. Advances in Neural Information Processing Systems 9, M C Moser, M I Jordan, T Petsche. MIT Press, Cambridge, MA 1997
  • Zipser K. 1998, Private communication
  • Zipser K, Lamme V A, Schiller P H. Contextual modulation in primary visual cortex. J. Neurosci. 1996; 16: 7376–89
  • Zucker S W, Dobbins A, Iverson L. Two stages of curve detection suggest two styles of visual computation. Neural Comput. 1989; 1: 68–81

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.