93
Views
37
CrossRef citations to date
0
Altmetric
Original Article

A test of metabolically efficient coding in the retina

&
Pages 531-552 | Received 20 May 2002, Published online: 09 Jul 2009

References

  • Ames A. 3rd energy requirements of CNS cells as related to their function and to their vulnerability to ischemia: a commentary based on retina. Can. J. Physiol. Pharmacol. 1992; 70: S158–64
  • Ames A. 3rd CNS energy metabolism as related to function. Brain Res. Rev. 2000; 34: 42–68
  • Arimoto S. An algorithm for computing the capacity of an arbitrary discrete memoryless channel. IEEE Trans. Inf. Theory 1972; 18: 14–20
  • Atick J J. Could information theory provide an ecological theory of sensory processing?. Network: Comput. Neural Syst. 1992; 3: 213–51
  • Atwell D, Laughlin S B. An energy budget for signalling the grey matter of the brain. J. Cereb. Blood Flow Metab. 2001; 21: 1133–45
  • Baddeley R J. An efficient code in V1?. Nature 1996; 381: 560–1
  • Baddeley R, Abbott L F, Booth M C A, Sengpiel F, Freeman T, Wakeman E A, Rolls E T. Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc. R. Soc. B 1997; 264: 1775–83
  • Balasubramanian V, Kimber D, Berry M J. Metabolically efficient information processing. Neural Comput. 2001; 13: 799–816
  • Barlow H B. Possible principles underlying the transformation of sensory messages. Sensory Communication, W A Rosenblith. MIT Press, Cambridge, MA 1961; 217–34
  • Barlow H B. Redundancy reduction revisited. Network: Comput. Neural Syst. 2001; 12: 241–53
  • Berry M J, II, Warland D W, Meister M. The structure and precision of retinal spike trains. Proc. Natl Acad. Sci. USA 1997; 94: 5411–16
  • Berry M J, II, Meister M. Refractoriness and neural precision. J. Neurosci. 1998; 18: 2200–11
  • Blahut R E. Computation of channel capacity and rate distortion functions. IEEE Trans. Inf. Theory 1972; 18: 460–73
  • Blahut RE. Principles and Practice of Information Theory. Addison-Wesley, Reading, MA 1987
  • Buracas G T, Zador A M, deWeese M R, Albright T D. Efficient discrimination of temporal patterns by motion-sensitive neurons in the primate visual cortex. Neuron 1998; 20: 959–69
  • de Polavieja G G. Errors drive the evolution of biological signalling to costly codes. J. Theor. Biol. 2002; 214: 657–64
  • de Ruyter van Steveninck R R, Lewen G D, Strong S P, Koberle R, Bialek W. Reproducibility and variability in neural spike trains. Science 1997; 275: 1805–8
  • Fanselow E E, Nicolelis M A L. Behavioral modulation of tactile responses in the rat somatosensory system. J. Neurosci. 1999; 19: 7603–16
  • Fohlmeister J F, Miller R F. Impulse encoding mechanisms of ganglion cells in the tiger salamander retina. J. Neurophysiol. 1997; 78: 1935–47
  • Gillespie J H. Population Genetics: A Concise Guide. Johns Hopkins University Press, Baltimore, MD 1998
  • Kara P, Reinagel P, Reid R C. Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron 2000; 27: 635–46
  • Keat J, Reinagel P, Reid R C, Meister M. Predicting every spike: a model for the responses of visual neurons. Neuron 2001; 30: 803–17
  • Laughlin S B, de Ruyter van Steveninck R, Anderson J C. The metabolic cost of neural information. Nature Neurosci. 1998; 1: 36–41
  • Levy W B, Baxter R A. Energy-efficient neural codes. Neural Comput. 1996; 8: 531–43
  • McIlwain H, Bachelard H S. Biochemistry and the Central Nervous System5th edn. Churchill Livingstone, London 1985
  • Meister M, Berry M J, II. The neural code of the retina. Neuron 1999; 22: 435–50, (review)
  • Meister M, Pine J, Baylor D A. Multi-neuronal signals from the retina: acquisition and analysis. J. Neurosci. Methods 1994; 51: 95–106
  • Reinagel P, Reid R C. Temporal coding of visual information in the thalamus. J. Neurosci. 2000; 20: 5392–400
  • Rolf D F S, Brown G C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 1997; 77: 731–58
  • Roth G. Visual Behavior in Salamanders. Springer, Berlin 1987
  • Schoenbaum G, Chiba A A, Gallagher M. Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J. Neurosci. 1999; 19: 1876–84
  • Schreiber S, Machens C K, Herz A V M, Laughlin S B. Energy efficient coding with discrete stochstic events. Neural Comput. 2002; 14: 1323–46
  • Siesjo B. Brain Energy Metabolism. Wiley, New York 1978
  • Smirnakis S M, Berry M J, Warland D K, Bialek W, Meister M. Adaptation of retinal processing to image contrast and spatial scale. Nature 1997; 386: 79–83
  • Stanley G B, Li F F, Dan Y. Reconstruction of natural scenes from ensemble responses in the lateral geniculate nucleus. J. Neurosci. 1999; 19: 8036–42
  • Strong S P, Koberle R, de Ruyter can Steveninck R R, Bialek W. Entropy and information in neural spike trains. Phys. Rev. Lett. 1997; 80: 197–200
  • Treves A, Panzeri S, Rolls E T, Booth M, Wakeman E A. Firing rate distributions and efficiency of information transmission of inferior temporal cortex neurons to natural visual stimulation. Neural Comput. 1999; 11: 601–31
  • van der Schaaf A A, van Hateren J H. Modelling the power spectra of natural images-statistics and information. Vis. Res. 1996; 36: 2759–70
  • van Hateren J H. Real and optimal neural images in early vision. Nature 1992; 360: 68–70
  • Wong-Riley M T T. Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci. 1989; 12: 94–101

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.