17
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Influences of synaptic location on the synchronization of rhythmic bursting neurons

, &
Pages 1-12 | Received 09 Jun 2003, Accepted 20 Oct 2003, Published online: 09 Jul 2009

References

  • Aoyagi T, Kang Y, Terada N, Kaneko T, Fukai T. The role of Ca2+-dependent cationic current in generating gamma-frequency rhythmic bursts: theoretical study. Neuroscience 2002; 115: 1127–38
  • Aoyagi T, Takekawa T, Fukai T. Gamma rhythmic bursts: coherence control in networks of cortical pyramidal neurons. Neural Comput. 2003; 15: 1035–61
  • Coombes S, Lord G J. Intrinsic modulation of pulse-coupled integrate-and-fire neurons. Phys. Rev. E 1997; 56: 5809–18
  • Crook S M, Ermentrout G B, Bower J M. Dendritic and synaptic effects in systems of coupled cortical oscillators. J. Comput. Neurosci. 1998; 5: 315–29
  • Crook S M, Ermentrout G B, Vanier M C, Bower J M. The role of axonal delay in the synchronization of networks of coupled cortical oscillators. J. Comput. Neurosci. 1997; 4: 161–72
  • Doiron B, Laing C, Longtin A. Ghostbursting: a novel neuronal burst mechanism. J. Comput. Neurosci. 2002; 12: 5–25
  • Ermentrout G B. Type I membranes, phase resetting curves, and synchrony. Neural Comput. 1996; 8: 979–1001
  • Fisahn A, Yamada M, Duttary A, Gan J-W, Den C-X, McBain C J, Wess J. Muscarinic induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two mixed cation currents. Neuron 2002; 33: 615–24
  • Gray C, McCormick D. Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science 1996; 274: 109–13
  • Gray C M, Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl Acad. Sci. USA 1989; 86: 1698–702
  • Hansel D, Mato G, Meunier C. Synchrony in excitatory neural networks. Neural Comput. 1995; 7: 307–37
  • Hodgikin A, Huxley A. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952; 117: 500–44
  • Jefferys J G R, Traub R D, Whittington M A. Neuronal networks for induced ‘40 Hz’ rhythms. Trends Neurosci. 1996; 19: 202–8
  • Kang Y, Okada T, Ohmori H. A phenytoin-sensitive cationic current participates in generating the afterdepolarization and burst afterdischarge in rat neocortical pyramidal cells. Eur. J. Neurosci. 1998; 10: 1363–75
  • Kuramoto Y. Chemical Oscillations, Waves, and Turbulence. Springer, Berlin 1984
  • Neltner L, Hansel D, Mato G, Meunier C. Synchrony in heterogeneous networks of spiking neurons. Neural Comput. 2000; 12: 1607–41
  • Nomura M, Fukai T, Aoyagai T. Synchrony of fast-spiking interneurons interconnected by GABAergic and electrical synapses. Neural Comput. 2003; 15: 2179–98
  • Oprisan S A, Thirumalai V, Canavier C C. Dynamics from a time series: can we extract the phase resetting curve from a time series?. Biophys. J. 2003; 84: 2919–28
  • Rall W. Distinguishing theoretical synaptic potentials computed for different somadendritic distributions of synaptic inputs. J. Neurophysiol. 1967; 30: 1138–68
  • Steriade M, Timofeev I, Durmuller N, Grenier F. Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30–40 Hz) spike bursts. J. Neurophysiol. 1998; 79: 483–90
  • Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J. Oscillatory gamma-band (30–70 Hz) spike bursts activity induced by a visual search task in humans. J. Neurosci. 1997; 17: 722–34
  • Tiesinga P H E, Jose J V, Sejnowski T J. Comparison of current-driven and conductance-driven neocortical model neurons with Hodgkin–Huxley voltage-gated channels. Phys. Rev. E 2000; 62: 8413–9
  • Traub R D, Buhl E H, Gloveli T, Whittington M A. Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. J. Neurophysiol. 2003; 89: 909–21
  • Traub R D, Kopell N, Bibbig A, Buhl E H, LeBeau F E N, Whittington M A. Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J. Neurosci. 2001; 21: 9478–86
  • Vreeswijk C, Abbott L. When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci. 1994; 1: 313–21
  • Wang X J. Fast burst firing and short-term synaptic plasticity: a model of neocortical chattering neurons. Neuroscience 1999; 89: 347–62
  • White J A, Banks M I, Pearce R A, Kopell N J. Networks of interneurons with fast and slow γ-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. Proc. Natl Acad. Sci. USA 2000; 97: 8128–33
  • White J A, Chow C C, Ritt J, Soto-Treviño C, Kopell N. Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J. Comput. Neurosci. 1997; 5: 5–16
  • Whittington M A, Traub R D, Jefferys J G R. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 1995; 373: 612–5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.