200
Views
73
CrossRef citations to date
0
Altmetric
Review

Osmolality and tear film dynamics

, PhD, , PhD & , PhD
Pages 3-11 | Received 02 Feb 2010, Accepted 01 May 2011, Published online: 15 Apr 2021

REFERENCES

  • Tomlinson A, Khanal S. Assessment of tear film dynamics: Quantification approach. Ocul Surf 2005; 3: 81–94.
  • The definition and classification of dry eye disease: Report of the definition and classification subcommittee of the international dry eye workshop (2007). Ocul Surf 2007; 5: 75–92.
  • Tiffany JM. The normal tear film. Dev Ophthalmol 2008; 41: 1–20.
  • Farris RL. Tear osmolarity—a new gold standard? Adv Exp Med Biol 1994; 350: 495–503.
  • Lemp MA. Report of the national eye institute/ industry workshop on clinical trials in dry eyes. CLAO J 1995; 21: 221–232.
  • Holly FJ, Lemp MA. Tear physiology and dry eyes. Surv Ophthalmol 1977; 22: 69–87.
  • Wolff E. The muco‐contaneous junction of the lid margin and the distribution of tear fluid. Trans Ophthalmol Soc 1946; 66: 291–308.
  • Ehlers N. The thickness of the precorneal tear film. Acta Ophthalmol 1965; 181 (Suppl): 5–136.
  • Mishima S. Some physiological aspects of the precorneal tear film. Arch Ophthalmol 1965; 73: 233–241.
  • Prydal JI, Artal P, Woon H, Campbell FW. Study of human precorneal tear film thickness and structure using laser interferometry. Invest Ophthalmol Vis Sci 1992; 33: 2006–2011.
  • Dilly PN. Structure and function of the tear film. Adv Exp Med Biol 1994; 350: 239–247.
  • King‐smith PE, Fink BA, Hill RM, Koelling KW, Tiffany JM. The thickness of the tear film. Curr Eye Res 2004; 29: 357–368.
  • Davidson HJ, Kuonen VJ. The tear film and ocular mucins. Vet Ophthalmol 2004; 7: 71–77.
  • Gipson IK, Argueso P. Role of mucins in the function of the corneal and conjunctival epithelia. Int Rev Cytol 2003; 231: 1–46.
  • Gipson IK. Distribution of mucins at the ocular surface. Exp Eye Res 2004; 78: 379–388.
  • De souza GA, Godoy LM, Mann M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol 2006; 7: R72.
  • Ohashi Y, Dogru M, Tsubota K. Laboratory findings in tear fluid analysis. Clin Chim Acta 2006; 369: 17–28.
  • Huang LC, Jean D, Proske RJ, Reins RY, Mcdermott AM. Ocular surface expression and in vitro activity of antimicrobial peptides. Curr Eye Res 2007; 32: 595–609.
  • Johnson ME, Murphy PJ. Changes in the tear film and ocular surface from dry eye syndrome. Prog Retinal Eye Res 2004; 23: 449–474.
  • Bron AJ, Tiffany JM. The meibomian glands and tear film lipids. Structure, function and control. Adv Exp Med Biol 1998; 350: 281–295.
  • Mcculley JP, Shine WE. Meibomian gland function and the tear lipid layer. Ocul Surf 2003; 1: 97–106.
  • Craig J, Tomlinson A. Importance of the lipid layer in human tear film stability and evaporation. Optom Vis Sci 1997; 74: 8–13.
  • Mishima S, Maurice DM. The oily layer of the tear film and evaporation from the corneal surface. Exp Eye Res 1961; 1: 39–45.
  • Bron A, Tiffany J, Gouveia S, Yokoi N, Voon L. Functional aspects of the tear film lipid layer. Exp Eye Res 2004; 78: 347–360.
  • Foulks GN. The correlation between the tear film lipid layer and dry eye disease. Surv Ophthalmol 2007; 52: 369–374.
  • Mcdonald JE. Surface phenomena of tear films. Trans Am Ophthalmol Soc 1968; 66: 905–939.
  • Nagyova B, Tiffany JM. Components responsible for the surface tension of human tears. Curr Eye Res 1999; 19: 4–11.
  • Stern ME, Beuerman RW, Fox RI, Gao J, Mircheff AK, Pflugfelder SC. The pathology of dry eye: The interaction between the ocular surface and lacrimal glands. Cornea 1998; 17: 584–589.
  • Stern ME, Gao J, Siemasko KF, Beuerman RW, Pflugfelder SC. The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp Eye Res 2004; 78: 409–416.
  • Borchman D, Foulks GN, Yappert MC, Mathews J, Leake K, Bell J. Factors affecting evaporation rates of tear film components measured in vitro. Eye Contact Lens 2009; 35: 32–37.
  • Mcculley JP, Aronowicz JD, Uchiyama E, Shine WE, Butovich IA. Correlations in a change in aqueous tear evaporation with a change in relative humidity and the impact. Am J Ophthalmol 2006; 141: 758–760.
  • Iwata S, Lemp MA, Holly FJ, Dohlman CH. Evaporation rate of water from the precorneal tear film and cornea in the rabbit. Invest Ophthalmol 1969; 8: 613–619.
  • Mathers W. Evaporation from the ocular surface. Exp Eye Res 2004; 78: 389–394.
  • Tomlinson A. Inputs and outputs of the lacrimal system: Review of production and evaporative loss. Ocul Surf 2009; 7: 186–198.
  • King‐smith PE, Nichols JJ, Nichols KK, Fink BA, Braun RJ. Contributions of evaporation and other mechanisms to tear film thinning and break‐up. Optom Vis Sci 2008; 85: 623–630.
  • Nichols JJ, Mitchell GL, King‐smith PE. Thinning rate of the precorneal and prelens tear films. Invest Ophthalmol Vis Sci 2005; 46: 2353–2361.
  • Liu DT, Di pascuale MA, Sawai J, Gao YY, Tseng SC. Tear film dynamics in floppy eyelid syndrome. Invest Ophthalmol Vis Sci 2005; 46: 1188–1194.
  • Milder B. The lacrimal apparatus. In: Moses R, Hart WJ, eds. Physiology of the Eye. Clinical Application. St Louis: CV Mosby Company, 1987. p 15–35.
  • Mishima S, Gasset A, Klyce SD Jr. Baum JL. Determination of tear volume and tear flow. Invest Ophthalmol Vis Sci 1966; 5: 264–276.
  • Tsubota K. Tear dynamics and dry eye. Prog Retin Eye Res 1998; 17: 565–596.
  • Craig JP. Structure and function of the preocular tear film. In: Korb D, Craig J, Houghty MJ, Guillon J‐P, Tomlinson A, eds. The Tear Film: Structure, Function and Clinical Examination. Maryland Heights: Butterworth‐Heinemann, 2002. p 18–50.
  • Lemp MA, Weiler HH. How do tears exit? Invest Ophthalmol Vis Sci 1983; 24: 619–622.
  • Murgatroyd H, Craig JP, Sloan B. Determination of relative contribution of the superior and inferior canaliculi to the lacrimal drainage system in health using the drop test. Clin Experiment Ophthalmol 2004; 32: 404–410.
  • Nagashima K, Kido R. Relative roles of upper and lower lacrimal canaliculi in normal tear drainage. Jpn J Ophthalmol 1984; 28: 259–262.
  • Ogut MS, Bavbek T, Kazokoglu H. Assessment of tear drainage by fluorescein dye disappearance test after experimental canalicular obstruction. Acta Ophthalmol (Copenh) 1993; 71: 69–72.
  • White WL, Glover AT, Buckner AB, Hartshorne MF. Relative canalicular tear flow as assessed by dacryoscintigraphy. Ophthalmology 1989; 96: 167–169.
  • Francois J, Neetens A. Tear flow in man. Am J Ophthalmol 1973; 76: 351–358.
  • Norn MS. Tear secretion in diseased eyes. Keratoconjunctivitis sicca, diseases of the lacrimal system, ectropion, lagophthalmos, conjunctivitis, etc. studied by a new method: Lacrimal streak dilution test. Acta Ophthalmol 1966; 44: 25–32.
  • Norn MS. Outflow of tears and its influence on tear secretion and break up time (B.U.T.). Acta Ophthalmol 1977; 55: 674–683.
  • Stahl U, Francis IC, Stapleton F. Prospective controlled study of vapor pressure tear osmolality and tear meniscus height in nasolacrimal duct obstruction. Am J Ophthalmol 2006; 141: 1051–1056.
  • Tomlinson A, Craig JP, Lowther GE. The biophysical role in tear regulation. Adv Exp Med Biol 1998; 438: 371–380.
  • Yen MT, Pflugfelder SC, Feuer WJ. The effect of punctal occlusion on tear production, tear clearance, and ocular surface sensation in normal subjects. Am J Ophthalmol 2001; 131: 314–323.
  • Deardorff DL. Osmotic strength, osmolality, and osmolarity. Am J Hosp Pharm 1980; 37: 504–509.
  • Murube J. Tear osmolarity. Ocul Surf 2006; 4: 62–73.
  • Sweeney TE, Beuchat CA. Limitations of methods of osmometry: Measuring the osmolality of biological fluids. Am J Physiol 1993; 264: R469–R480.
  • Wescor Inc. 5520 Vapro Vapor Pressure Osmometer User's Manual. Logan, UT: Wescor; 2002.
  • Mercier DE, Feld RD, Witte DL. Comparison of dewpoint and freezing point osmometry. Am J Med Technol 1978; 44: 1066–1069.
  • Ogasawara K, Mitsubayashi K, Tsuru T, Karube I. Electrical conductivity of tear fluid in healthy persons and keratoconjunctivitis sicca patients measured by a flexible conductimetric sensor. Graefes Arch Clin Exp Ophthalmol 1996; 234: 542–546.
  • Sullivan BD, Angeles R, Lemp MA, Schaumberg DA, Schanzlin D. Clinical results of a first generation lab‐on‐chip nanoliter tear film osmometer. Ocular Surf 2005; 3: S117.
  • Tomlinson A, Khanal S, Ramaesh K, Diaper C, Mcfadyen A. Tear film osmolarity: Determination of a referent for dry eye diagnostic. Invest Ophthalmol Vis Sci 2006; 47: 4309–4315.
  • Van haeringen NJ. Tränenflüssigkeit. In: Hockwin O, ed. Biochemie des Auges. Stuttgart: Verlag, 1985. p 1–11.
  • Holly FJ, Esquivel ED. Colloid osmotic pressure of artificial tears. J Ocul Pharmacol 1985; 1: 327–336.
  • Yoshimura H, Hosokawa K. Studies on the mechanism of salt and water secretion from the lacrimal gland. Jpn J Physiol 1963; 15: 303–318.
  • Bachman WG, Wilson G. Essential ions for the maintenance of the corneal epithelial surface. Invest Ophthalmol Vis Sci 1985; 26: 1484–1488.
  • Carney LG, Hill RM. Human tear pH. Diurnal variations. Arch Ophthalmol 1976; 94: 821–824.
  • Botelho SY, Fuenmayor N, Hisada M. Flow and potentials during perfusion of lacrimal gland with electrolyte solutions. Am J Physiol 1978; 235: C8–C12.
  • Mircheff AK. Lacrimal fluid and electrolyte secretion: A review. Curr Eye Res 1989; 8: 607–617.
  • Dartt DA. Regulation of tear secretion. Adv Exp Med Biol 1994; 350: 1–9.
  • Ruiz‐ederra J, Levin MH, Verkman AS. In situ fluoresence measurment of tear film [Na+], [K+], [Cl‐] and pH in mice shows marked hypertonicity in aquaporin‐5 deficiency. Invest Ophthalmol Vis Sci 2009; 50: 2132–2138.
  • Verkman AS, Ruiz‐ederra J, Levin MH. Functions of aquaporins in the eye. Prog Retin Eye Res 2008; 27: 420–433.
  • Thaysen JH, Thorn NA. Excretion of urea, sodium, potassium and chloride in human tears. Am J Physiol 1954; 178: 160–164.
  • Botelho SY, Martinez EV. Electrolytes in lacrimal gland fluid and in tears at various flow rates in the rabbit. Am J Physiol 1973; 225: 606–609.
  • Horowitz G, Lammers JW, Sussman S, Bothelo SY, Sherwin R. Calcium in tears, lacrimal gland fluid, and fluid from the other orbital glands. Invest Ophthalmol Vis Sci 1976; 15: 994–996.
  • Gilbard JP, Dartt DA. Changes in rabbit lacrimal gland fluid osmolarity with flow rate. Invest Ophthalmol Vis Sci 1982; 23: 804–806.
  • Nelson JD, Wright JC. Tear film osmolality determination: An evaluation of potential errors in measurement. Curr Eye Res 1986; 5: 677–681.
  • White KM, Benjamin WJ, Hill RM. Human basic tear fluid osmolality. Importance of sample collection strategy. Acta Ophthalmol (Copenh) 1993; 71: 524–529.
  • Benjamin WJ, Hill RM. Human tears: Osmotic characterists. Invest Ophthalmol Vis Sci 1983; 24: 1624–1626.
  • Gilbard JP, Cohen GR, Baum J. Decreased tear osmolarity and absence of the inferior marginal tear strip after sleep. Cornea 1992; 11: 231–233.
  • Terry JE, Hill RM. Human tear osmotic pressure. Diurnal variations and the closed eye. Arch Ophthalmol 1978; 96: 120–122.
  • Uniacke NP, Hill RM. Osmotic pressure of the tears during adaptation to contact lenses. J Am Optom Assoc 1970; 41: 932–936.
  • Bron A, Tiffany J, Yokoi N, Gouveia S. Using osmolarity to diagnose dry eye: A compartmental hypothesis and review of our assumptions. Adv Exp Med Biol 2002; 506: 1087–1095.
  • Benjamin WJ, Hill RM. Tear osmotic differences across the ocular surface. Graefes Arch Clin Exp Ophthalmol 1986; 224: 583–586.
  • Benjamin WJ, Hill RM. Tonicity of human tear fluid sampled from the cul‐de‐sac. Br J Ophthalmol 1989; 73: 624–627.
  • Craig J, Tomlinson A. Effect of age on tear osmolality. Optom Vis Sci 1995; 72: 713–717.
  • Farris RL, Stuchell RN, Mandel ID. Tear osmolarity variation in the dry eye. Trans Am Ophthalmol Soc 1986; 84: 250–268.
  • Mathers WD, Lane JA, Zimmermann MB. Tear film changes associated with normal aging. Cornea 1996; 15: 229–334.
  • Mastman GJ, Baldes EJ, Henderson JW. The total osmotic pressure of tears in normal and various pathologic conditions. Arch Ophthalmol 1961; 65: 509–513.
  • Begley CG, Chalmers RL, Abetz L, Venkataraman K, Mertzanis P, Caffery BA, Snyder C et al. The relationship between habitual patient‐reported symptoms and clinical signs among patients with dry eye of varying severity. Invest Ophthalmol Vis Sci 2003; 44: 4753–4761.
  • Bjerrum KB. Test and symptoms in keratoconjunctivitis sicca and their correlation. Acta Ophthalmol Scand 1996; 74: 436–441.
  • Nichols KK. Patient‐reported symptoms in dry dye disease. Ocul Surf 2006; 4: 137–145.
  • Nichols KK, Nichols JJ, Mitchell GL. The lack of association between signs and symptoms in patients with dry eye disease. Cornea 2004; 23: 762–770.
  • Smith J, Nichols KK, Baldwin EK. Current patterns in the use of diagnostic tests in dry eye evaluation. Cornea 2008; 27: 656–662.
  • Gilbard JP, Farris RL, Santamaria II J. Osmolarity of tear microvolumes in keratoconjunctivitis sicca. Arch Ophthalmol 1978; 96: 677–681.
  • Lucca JA, Nunez JN, Farris RL. A comparison of diagnostic tests for keratoconjunctivitis sicca: Lactoplate, schirmer, and tear osmolarity. CLAO J 1990; 16: 109–112.
  • Khanal S, Tomlinson A, Mcfadyen A, Diaper C, Ramaesh K. Dry eye diagnosis. Invest Ophthalmol Vis Sci 2008; 49: 1407–1414.
  • Nichols JJ, Sinnott LT. Tear film, contact lens and patient‐related factors associated with contact lens‐related dry eye. Invest Ophthalmol Vis Sci 2006; 47: 1319–1328.
  • Harris MG, Mandell RB. Contact lens adaption: Osmotic theory. Am J Optom Arch Am Acad Optom 1969; 46: 196–202.
  • Martin DK. Osmolality of the tear fluid in the contralateral eye during monocular contact lens wear. Acta Ophthalmol 1987; 65: 551–555.
  • Martin DK, Holden BA. Variations in tear fluid osmolality, chord diameter and movement during wear of high water content hydrogel contact lenses. Int Contact Lens Clin 1983; 10: 332–342.
  • Little SA, Bruce AS. Osmotic determinants of postlens tear film morphology and hydrogel lens movement. Ophthalmic Physiol Opt 1995; 15: 117–124.
  • Benjamin WJ, Armitage BS, Woloschak MJ, Hill RM. Nanoliter tracking of the tears. J Am Optom Assoc 1983; 3: 243–244.
  • Iskeleli G, Karakoc Y, Aydin Ö, Yetik H, Uslu H, Kizilkaya M. Comparison of tear‐film osmolarity in different types of contact lenses. CLAO J 2002; 28: 174–176.
  • Farris RL. Tear analysis in contact lens wearers. CLAO J 1986; 12: 106–111.
  • Miller WL, Doughty MJ, Narayanan S, Leach N, Tran A, Gaume AL, Bergmanson JPG. A comparison of tear volume (by tear meniscus height and phenol thread test) and tear fluid osmolality measurements in non‐lens wearers and in contact lens wearers. Eye Contact Lens 2004; 30: 132–137.
  • Dabney BW, Robertson DM, Tran A, Leach N, Bergmanson JPG. Tear analysis in contact lens wearers assessing osmolality and volume. Optom Vis Sci 2000; 77: 265.
  • Glasson MJ, Stapleton F, Keay L, Sweeney D, Willcox M. Differences in clinical parameters and tear film of tolerant and intolerant contact lens wearers. Invest Ophthalmol Vis Sci 2003; 44: 5116–5124.
  • Gilbard JP, Rossi SR, Gray heyda K. Tear film and ocular surface changes after closure of the meibomian gland orifices in the rabbit. Ophthalmology 1989; 96: 1180–1186.
  • Liu H, Begley CG, Chen M, Bradley A, Bonanno JA, Mcnamara N, Nelson JD et al. A link between tear instability and hyperosmolarity in dry eye. Invest Ophthalmol Vis Sci 2009; 50: 3671–3679.
  • Li DQ, Luo L, Kim H‐S, Song XJ, Pflugfelder SC. JNK and ERK MAP kinases mediate induction of IL‐1beta, TNF‐alpha and IL‐8 following hyperosmolar stress in human limbal epithelial cells. Exp Eye Res 2006; 82: 588–596.
  • Luo L, Li D‐Q, Doshi A, Farley W, Corrales RM, Pflugfelder SC. Experimental dry eye stimulates production of inflammatory cytokines and MMP‐9 and activates MAPK signaling pathways on the ocular surface. Invest Ophthalmol Vis Sci 2004; 45: 4293–4301.
  • Gilbard JP, Farris RL. Tear osmolarity and ocular surface disease in keratoconjunctivitis sicca. Arch Ophthalmol 1979; 97: 1642–1646.
  • Gilbard JP, Carter JB, Sang DN, Refojo MF, Hanninen LA, Kenyon KR. Morphologic effect of hyperosmolarity on rabbit epithelium. Ophthalmology 1984; 91: 1205–1212.
  • Gilbard JP, Rossi SR, Azar DT, Heyda KG. Effect of punctal occlusion by freeman silicone plug insertion on tear osmolarity in dry eye disorders. CLAO J 1989; 15: 216–218.
  • Mishima S. Quoted by Murubre. Tear osmolarity. Ocul Surf 2006 1971; 4: 62–73.
  • Farris RL, Stuchell RN, Mandel ID. Basal and reflex human tear analysis I. Physical measurements: osmolarity, basal volumes, and reflex flow rate. Ophthalmology 1981; 88: 852–857.
  • Farris RL, Gilbard JP, Stuchell RN, Mandel ID. Diagnostic tests in keratoconjunctivitis sicca. CLAO J 1983; 9:23–28.
  • Gilbard JP, Kenyon KR. Tear diluents in the treatment of keratoconjunctivitis sicca. Ophthalmology 1985; 92: 646–650.
  • Gilbard JP. Human tear electrolyte concentrations in health and dry‐eye disease. Int Ophthalmol Clin 1994; Winter 34: 27–35.
  • Mathers WD, Lane JA, Sutphin JE, Zimmerman MB. Model for ocular tear film function. Cornea 1996; 15: 110–119.
  • Narayanan S, Miller WL, Prager TC, Jackson JA, Leach NE, Mcdermott AM, Christensen MT, Bergmanson JP. The diagnosis and characteristics of moderate dry eye in non‐contact lens wearers. Eye Contact Lens 2005; 31: 96–104.
  • Srinivasan S, Joyce E, Jones LW. Tear osmolality and ferning patterns in postmenopausal women. Optom Vis Sci 2007; 84: 588–592.
  • Stahl U, Willcox M, Naduvilath T, Stapleton F. Influence of tear film and contact lens osmolality on comfort in CL wear. Optom Vis Sci 2009; 86: 857–867.
  • Glasson MJ, Stapleton F, Keay L, Ball M, Willcox M. Effect of contact lens wear on the pre‐corneal tear film. In: Zierhut M, Stern M, Sullivan D ed. Immunology of the eye: UK Taylor and Fancis, 2005. p 239–254.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.