68
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Multiplication of Ribosomal P-Stalk Proteins Contributes to the Fidelity of Translation

, , , , , , , & show all
Article: e00060-17 | Received 11 Feb 2017, Accepted 06 Jun 2017, Published online: 17 Mar 2023

REFERENCES

  • Maracci C, Rodnina MV. 2016. Review: translational GTPases. Biopolymers 105:463–475. https://doi.org/10.1002/bip.22832.
  • Liljas A, Ehrenberg M. 2013. Structural aspects of protein synthesis, 2nd ed. World Scientific, Singapore.
  • Diaconu M, Kothe U, Schlunzen F, Fischer N, Harms JM, Tonevitsky AG, Stark H, Rodnina MV, Wahl MC. 2005. Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 121:991–1004. https://doi.org/10.1016/j.cell.2005.04.015.
  • Wahl MC, Moller W. 2002. Structure and function of the acidic ribosomal stalk proteins. Curr Protein Pept Sci 3:93–106. https://doi.org/10.2174/1389203023380756.
  • Gonzalo P, Reboud JP. 2003. The puzzling lateral flexible stalk of the ribosome. Biol Cell 95:179–193. https://doi.org/10.1016/S0248-4900(03)00034-0.
  • Ballesta JP, Remacha M. 1996. The large ribosomal subunit stalk as a regulatory element of the eukaryotic translational machinery. Prog Nucleic Acid Res Mol Biol 55:157–193. https://doi.org/10.1016/S0079-6603(08)60193-2.
  • Tchorzewski M. 2002. The acidic ribosomal P proteins. Int J Biochem Cell Biol 34:911–915. https://doi.org/10.1016/S1357-2725(02)00012-2.
  • Grela P, Bernado P, Svergun D, Kwiatowski J, Abramczyk D, Grankowski N, Tchorzewski M. 2008. Structural relationships among the ribosomal stalk proteins from the three domains of life. J Mol Evol 67:154–167. https://doi.org/10.1007/s00239-008-9132-2.
  • Helgstrand M, Mandava CS, Mulder FA, Liljas A, Sanyal S, Akke M. 2007. The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12 C-terminal domain. J Mol Biol 365:468–479. https://doi.org/10.1016/j.jmb.2006.10.025.
  • Nomura N, Honda T, Baba K, Naganuma T, Tanzawa T, Arisaka F, Noda M, Uchiyama S, Tanaka I, Yao M, Uchiumi T. 2012. Archaeal ribosomal stalk protein interacts with translation factors in a nucleotide-independent manner via its conserved C terminus. Proc Natl Acad Sci U S A 109:3748–3753. https://doi.org/10.1073/pnas.1112934109.
  • Leijonmarck M, Liljas A. 1987. Structure of the C-terminal domain of the ribosomal protein L7/L12 from Escherichia coli at 1.7 A. J Mol Biol 195:555–579. https://doi.org/10.1016/0022-2836(87)90183-5.
  • Bocharov EV, Sobol AG, Pavlov KV, Korzhnev DM, Jaravine VA, Gudkov AT, Arseniev AS. 2004. From structure and dynamics of protein L7/L12 to molecular switching in ribosome. J Biol Chem 279:17697–17706. https://doi.org/10.1074/jbc.M313384200.
  • Grela P, Helgstrand M, Krokowski D, Boguszewska A, Svergun D, Liljas A, Bernado P, Grankowski N, Akke M, Tchorzewski M. 2007. Structural characterization of the ribosomal P1A-P2B protein dimer by small-angle X-ray scattering and NMR spectroscopy. Biochemistry 46:1988–1998. https://doi.org/10.1021/bi0616450.
  • Lee KM, Yu CW, Chiu TY, Sze KH, Shaw PC, Wong KB. 2012. Solution structure of the dimerization domain of the eukaryotic stalk P1/P2 complex reveals the structural organization of eukaryotic stalk complex. Nucleic Acids Res 40:3172–3182. https://doi.org/10.1093/nar/gkr1143.
  • Naganuma T, Nomura N, Yao M, Mochizuki M, Uchiumi T, Tanaka I. 2010. Structural basis for translation factor recruitment to the eukaryotic/archaeal ribosomes. J Biol Chem 285:4747–4756. https://doi.org/10.1074/jbc.M109.068098.
  • Mulder FA, Bouakaz L, Lundell A, Venkataramana M, Liljas A, Akke M, Sanyal S. 2004. Conformation and dynamics of ribosomal stalk protein L12 in solution and on the ribosome. Biochemistry 43:5930–5936. https://doi.org/10.1021/bi0495331.
  • Bernado P, Modig K, Grela P, Svergun DI, Tchorzewski M, Pons M, Akke M. 2010. Structure and dynamics of ribosomal protein L12: an ensemble model based on SAXS and NMR relaxation. Biophys J 98:2374–2382. https://doi.org/10.1016/j.bpj.2010.02.012.
  • Oleinikov AV, Jokhadze GG, Traut RR. 1998. A single-headed dimer of Escherichia coli ribosomal protein L7/L12 supports protein synthesis. Proc Natl Acad Sci U S A 95:4215–4218. https://doi.org/10.1073/pnas.95.8.4215.
  • Santos C, Ballesta JP. 1995. The highly conserved protein P0 carboxyl end is essential for ribosome activity only in the absence of proteins P1 and P2. J Biol Chem 270:20608–20614. https://doi.org/10.1074/jbc.270.35.20608.
  • Davydov II, Wohlgemuth I, Artamonova II, Urlaub H, Tonevitsky AG, Rodnina MV. 2013. Evolution of the protein stoichiometry in the L12 stalk of bacterial and organellar ribosomes. Nat Commun 4:1387. https://doi.org/10.1038/ncomms2373.
  • Gordiyenko Y, Videler H, Zhou M, McKay AR, Fucini P, Biegel E, Muller V, Robinson CV. 2010. Mass spectrometry defines the stoichiometry of ribosomal stalk complexes across the phylogenetic tree. Mol Cell Proteomics 9:1774–1783. https://doi.org/10.1074/mcp.M000072-MCP201.
  • Maki Y, Hashimoto T, Zhou M, Naganuma T, Ohta J, Nomura T, Robinson CV, Uchiumi T. 2007. Three binding sites for stalk protein dimers are generally present in ribosomes from archaeal organism. J Biol Chem 282:32827–32833. https://doi.org/10.1074/jbc.M705412200.
  • Tchorzewski M, Boldyreff B, Issinger O, Grankowski N. 2000. Analysis of the protein-protein interactions between the human acidic ribosomal P-proteins: evaluation by the two hybrid system. Int J Biochem Cell Biol 32:737–746. https://doi.org/10.1016/S1357-2725(00)00017-0.
  • Tchorzewski M, Boguszewska A, Dukowski P, Grankowski N. 2000. Oligomerization properties of the acidic ribosomal P-proteins from Saccharomyces cerevisiae: effect of P1A protein phosphorylation on the formation of the P1A-P2B hetero-complex. Biochim Biophys Acta 1499:63–73. https://doi.org/10.1016/S0167-4889(00)00108-7.
  • Krokowski D, Boguszewska A, Abramczyk D, Liljas A, Tchorzewski M, Grankowski N. 2006. Yeast ribosomal P0 protein has two separate binding sites for P1/P2 proteins. Mol Microbiol 60:386–400. https://doi.org/10.1111/j.1365-2958.2006.05117.x.
  • Hagiya A, Naganuma T, Maki Y, Ohta J, Tohkairin Y, Shimizu T, Nomura T, Hachimori A, Uchiumi T. 2005. A mode of assembly of P0, P1, and P2 proteins at the GTPase-associated center in animal ribosome: in vitro analyses with P0 truncation mutants. J Biol Chem 280:39193–39199. https://doi.org/10.1074/jbc.M506050200.
  • Perez-Fernandez J, Remacha M, Ballesta JP. 2005. The acidic protein binding site is partially hidden in the free Saccharomyces cerevisiae ribosomal stalk protein P0. Biochemistry 44:5532–5540. https://doi.org/10.1021/bi047332r.
  • Grela P, Krokowski D, Gordiyenko Y, Krowarsch D, Robinson CV, Otlewski J, Grankowski N, Tchorzewski M. 2010. Biophysical properties of the eukaryotic ribosomal stalk. Biochemistry 49:924–933. https://doi.org/10.1021/bi901811s.
  • Tchorzewski M, Krokowski D, Boguszewska A, Liljas A, Grankowski N. 2003. Structural characterization of yeast acidic ribosomal P proteins forming the P1A-P2B heterocomplex. Biochemistry 42:3399–3408. https://doi.org/10.1021/bi0206006.
  • Remacha M, Jimenez-Diaz A, Bermejo B, Rodriguez-Gabriel MA, Guarinos E, Ballesta JP. 1995. Ribosomal acidic phosphoproteins P1 and P2 are not required for cell viability but regulate the pattern of protein expression in Saccharomyces cerevisiae. Mol Cell Biol 15:4754–4762. https://doi.org/10.1128/MCB.15.9.4754.
  • Martinez-Azorin F, Remacha M, Ballesta JP. 2008. Functional characterization of ribosomal P1/P2 proteins in human cells. Biochem J 413:527–534. https://doi.org/10.1042/BJ20080049.
  • Harms JM, Wilson DN, Schluenzen F, Connell SR, Stachelhaus T, Zaborowska Z, Spahn CM, Fucini P. 2008. Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. Mol Cell 30:26–38. https://doi.org/10.1016/j.molcel.2008.01.009.
  • Gao YG, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V. 2009. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326:694–699. https://doi.org/10.1126/science.1179709.
  • Datta PP, Sharma MR, Qi L, Frank J, Agrawal RK. 2005. Interaction of the G′ domain of elongation factor G and the C-terminal domain of ribosomal protein L7/L12 during translocation as revealed by cryo-EM. Mol Cell 20:723–731. https://doi.org/10.1016/j.molcel.2005.10.028.
  • Schmeing TM, Ramakrishnan V. 2009. What recent ribosome structures have revealed about the mechanism of translation. Nature 461:1234–1242. https://doi.org/10.1038/nature08403.
  • Murray J, Savva CG, Shin BS, Dever TE, Ramakrishnan V, Fernandez IS. 2016. Structural characterization of ribosome recruitment and translocation by type IV IRES. eLife 5:e13567.
  • Voorhees RM, Schmeing TM, Kelley AC, Ramakrishnan V. 2010. The mechanism for activation of GTP hydrolysis on the ribosome. Science 330:835–838. https://doi.org/10.1126/science.1194460.
  • Fischer N, Neumann P, Bock LV, Maracci C, Wang Z, Paleskava A, Konevega AL, Schroder GF, Grubmuller H, Ficner R, Rodnina MV, Stark H. 2016. The pathway to GTPase activation of elongation factor SelB on the ribosome. Nature 540:80–85. https://doi.org/10.1038/nature20560.
  • Pallesen J, Hashem Y, Korkmaz G, Koripella RK, Huang C, Ehrenberg M, Sanyal S, Frank J. 2013. Cryo-EM visualization of the ribosome in termination complex with apo-RF3 and RF1. eLife 2:e00411. https://doi.org/10.7554/eLife.00411.
  • Chen Y, Feng S, Kumar V, Ero R, Gao YG. 2013. Structure of EF-G-ribosome complex in a pretranslocation state. Nat Struct Mol Biol 20:1077–1084. https://doi.org/10.1038/nsmb.2645.
  • Mohr D, Wintermeyer W, Rodnina MV. 2002. GTPase activation of elongation factors Tu and G on the ribosome. Biochemistry 41:12520–12528. https://doi.org/10.1021/bi026301y.
  • Pape T, Wintermeyer W, Rodnina MV. 1998. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J 17:7490–7497. https://doi.org/10.1093/emboj/17.24.7490.
  • Johansson M, Bouakaz E, Lovmar M, Ehrenberg M. 2008. The kinetics of ribosomal peptidyl transfer revisited. Mol Cell 30:589–598. https://doi.org/10.1016/j.molcel.2008.04.010.
  • Kothe U, Wieden HJ, Mohr D, Rodnina MV. 2004. Interaction of helix D of elongation factor Tu with helices 4 and 5 of protein L7/12 on the ribosome. J Mol Biol 336:1011–1021. https://doi.org/10.1016/j.jmb.2003.12.080.
  • Savelsbergh A, Mohr D, Kothe U, Wintermeyer W, Rodnina MV. 2005. Control of phosphate release from elongation factor G by ribosomal protein L7/12. EMBO J 24:4316–4323. https://doi.org/10.1038/sj.emboj.7600884.
  • Baba K, Tumuraya K, Tanaka I, Yao M, Uchiumi T. 2013. Molecular dissection of the silkworm ribosomal stalk complex: the role of multiple copies of the stalk proteins. Nucleic Acids Res 41:3635–3643. https://doi.org/10.1093/nar/gkt044.
  • Shimizu T, Nakagaki M, Nishi Y, Kobayashi Y, Hachimori A, Uchiumi T. 2002. Interaction among silkworm ribosomal proteins P1, P2 and P0 required for functional protein binding to the GTPase-associated domain of 28S rRNA. Nucleic Acids Res 30:2620–2627. https://doi.org/10.1093/nar/gkf379.
  • Uchiumi T, Honma S, Nomura T, Dabbs ER, Hachimori A. 2002. Translation elongation by a hybrid ribosome in which proteins at the GTPase center of the Escherichia coli ribosome are replaced with rat counterparts. J Biol Chem 277:3857–3862. https://doi.org/10.1074/jbc.M107730200.
  • Kryndushkin DS, Smirnov VN, Ter-Avanesyan MD, Kushnirov VV. 2002. Increased expression of Hsp40 chaperones, transcriptional factors, and ribosomal protein Rpp0 can cure yeast prions. J Biol Chem 277:23702–23708. https://doi.org/10.1074/jbc.M111547200.
  • Harger JW, Dinman JD. 2003. An in vivo dual-luciferase assay system for studying translational recoding in the yeast Saccharomyces cerevisiae. RNA 9:1019–1024. https://doi.org/10.1261/rna.5930803.
  • Kramer EB, Farabaugh PJ. 2007. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 13:87–96. https://doi.org/10.1261/rna.294907.
  • Salas-Marco J, Bedwell DM. 2005. Discrimination between defects in elongation fidelity and termination efficiency provides mechanistic insights into translational readthrough. J Mol Biol 348:801–815. https://doi.org/10.1016/j.jmb.2005.03.025.
  • Plant EP, Nguyen P, Russ JR, Pittman YR, Nguyen T, Quesinberry JT, Kinzy TG, Dinman JD. 2007. Differentiating between near- and non-cognate codons in Saccharomyces cerevisiae. PLoS One 2:e517. https://doi.org/10.1371/journal.pone.0000517.
  • Wilson DN. 2009. The A-Z of bacterial translation inhibitors. Crit Rev Biochem Mol Biol 44:393–433. https://doi.org/10.3109/10409230903307311.
  • Ito K, Honda T, Suzuki T, Miyoshi T, Murakami R, Yao M, Uchiumi T. 2014. Molecular insights into the interaction of the ribosomal stalk protein with elongation factor 1alpha. Nucleic Acids Res 42:14042–14052. https://doi.org/10.1093/nar/gku1248.
  • Savelsbergh A, Mohr D, Wilden B, Wintermeyer W, Rodnina MV. 2000. Stimulation of the GTPase activity of translation elongation factor G by ribosomal protein L7/12. J Biol Chem 275:890–894. https://doi.org/10.1074/jbc.275.2.890.
  • Connell SR, Takemoto C, Wilson DN, Wang H, Murayama K, Terada T, Shirouzu M, Rost M, Schuler M, Giesebrecht J, Dabrowski M, Mielke T, Fucini P, Yokoyama S, Spahn CM. 2007. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol Cell 25:751–764. https://doi.org/10.1016/j.molcel.2007.01.027.
  • Stark H, Rodnina MV, Rinke-Appel J, Brimacombe R, Wintermeyer W, van Heel M. 1997. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389:403–406. https://doi.org/10.1038/38770.
  • Tourigny DS, Fernandez IS, Kelley AC, Ramakrishnan V. 2013. Elongation factor G bound to the ribosome in an intermediate state of translocation. Science 340:1235490. https://doi.org/10.1126/science.1235490.
  • Rodnina MV, Wintermeyer W. 2016. Protein elongation, co-translational folding and targeting. J Mol Biol 428:2165–2185. https://doi.org/10.1016/j.jmb.2016.03.022.
  • Zinker S, Warner JR. 1976. The ribosomal proteins of Saccharomyces cerevisiae. Phosphorylated and exchangeable proteins. J Biol Chem 251:1799–1807.
  • Rodnina MV, Pape T, Fricke R, Kuhn L, Wintermeyer W. 1996. Initial binding of the elongation factor Tu.GTP.aminoacyl-tRNA complex preceding codon recognition on the ribosome. J Biol Chem 271:646–652. https://doi.org/10.1074/jbc.271.2.646.
  • Blanchard SC, Gonzalez RL, Kim HD, Chu S, Puglisi JD. 2004. tRNA selection and kinetic proofreading in translation. Nat Struct Mol Biol 11:1008–1014. https://doi.org/10.1038/nsmb831.
  • Wawiorka L, Molestak E, Szajwaj M, Michalec-Wawiorka B, Boguszewska A, Borkiewicz L, Liudkovska V, Kufel J, Tchorzewski M. 2016. Functional analysis of the uL11 protein impact on translational machinery. Cell Cycle 15:1060–1072. https://doi.org/10.1080/15384101.2016.1154245.
  • Peske F, Kuhlenkoetter S, Rodnina MV, Wintermeyer W. 2014. Timing of GTP binding and hydrolysis by translation termination factor RF3. Nucleic Acids Res 42:1812–1820. https://doi.org/10.1093/nar/gkt1095.
  • Goyal A, Belardinelli R, Maracci C, Milon P, Rodnina MV. 2015. Directional transition from initiation to elongation in bacterial translation. Nucleic Acids Res 43:10700–10712. https://doi.org/10.1093/nar/gkv869.
  • Savelsbergh A, Katunin VI, Mohr D, Peske F, Rodnina MV, Wintermeyer W. 2003. An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. Mol Cell 11:1517–1523. https://doi.org/10.1016/S1097-2765(03)00230-2.
  • Harger JW, Meskauskas A, Dinman JD. 2002. An “integrated model” of programmed ribosomal frameshifting. Trends Biochem Sci 27:448–454. https://doi.org/10.1016/S0968-0004(02)02149-7.
  • Molon M, Szajwaj M, Tchorzewski M, Skoczowski A, Niewiadomska E, Zadrag-Tecza R. 2016. The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast. Age (Dordr) 38:11. https://doi.org/10.1007/s11357-015-9868-8.
  • Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, Nir T, Dor Y, Zisman P, Meyuhas O. 2005. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev 19:2199–2211. https://doi.org/10.1101/gad.351605.
  • van der Zeijst BA, Kool AJ, Bloemers HP. 1972. Isolation of active ribosomal subunits from yeast. Eur J Biochem 30:15–25. https://doi.org/10.1111/j.1432-1033.1972.tb02066.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.