12
Views
7
CrossRef citations to date
0
Altmetric
Article

A Negative-Feedback Loop between the Detoxification/Antioxidant Response Factor SKN-1 and Its Repressor WDR-23 Matches Organism Needs with Environmental Conditions

, , , , &
Pages 3524-3537 | Received 03 Mar 2013, Accepted 26 Jun 2013, Published online: 20 Mar 2023

REFERENCES

  • Lu X. 2010. Tied up in loops: positive and negative autoregulation of p53. Cold Spring Harbor Perspect. Biol. 2:a000984. doi:10.1101/cshperspect.a000984.
  • Lee O-H, Jain AK, Papusha V, Jaiswal AK. 2007. An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance. J. Biol. Chem. 282:36412–36420.
  • Webb JD, Coleman ML, Pugh CW. 2009. Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell. Mol. Life Sci. 66:3539–3554.
  • Voellmy R, Boellmann F. 2007. Chaperone regulation of the heat shock protein response. Adv. Exp. Med. Biol. 594:89–99.
  • Ruland J. 2011. Return to homeostasis: downregulation of NF-kappaB responses. Nat. Immunol. 12:709–714.
  • Sykiotis G, Bohmann D. 2010. Stress-activated cap‘n'collar transcription factors in aging and human disease. Sci. Signal. 3:re3. doi:10.1126/scisignal.3112re3.
  • Kensler TW, Wakabayashi N, Biswal S. 2007. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47:89–116.
  • Sykiotis GP, Bohmann D. 2008. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev. Cell 14:76–85.
  • Tullet JMA, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK. 2008. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132:1025–1038.
  • An JH, Blackwell TK. 2003. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev. 17:1882–1893.
  • Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, Sabatini DM, Blackwell TK. 2012. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 15:713–724.
  • Leiser SF, Miller RA. 2010. Nrf2 signaling, a mechanism for cellular stress resistance in long-lived mice. Mol. Cell. Biol. 30:871–884.
  • Yates MS, Tran QT, Dolan PM, Osburn WO, Shin S, McCulloch CC, Silkworth JB, Taguchi K, Yamamoto M, Williams CR, Liby KT, Sporn MB, Sutter TR, Kensler TW. 2009. Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice. Carcinogenesis 30:1024–1031.
  • Kundu JK, Surh YJ. 2010. Nrf2-Keap1 signaling as a potential target for chemoprevention of inflammation-associated carcinogenesis. Pharm. Res. 27:999–1013.
  • Sun MM, Bu H, Li B, Yu JX, Guo YS, Li CY. 2009. Neuroprotective potential of phase II enzyme inducer diallyl trisulfide. Neurol. Res. 31:23–27.
  • Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. 2010. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid. Redox Signal. 13:1713–1748.
  • Giudice A, Arra C, Turco MC. 2010. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Methods Mol. Biol. 647:37–74.
  • Sporn MB, Liby KT. 2012. NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer 12:564–571.
  • Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, Imakado S, Kotsuji T, Otsuka F, Roop DR, Harada T, Engel JD, Yamamoto M. 2003. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat. Genet. 35:238–245.
  • Choe KP, Leung CK, Miyamoto MM. 2012. Unique structure and regulation of the nematode detoxification gene regulator, SKN-1: implications to understanding and controlling drug resistance. Drug Metab. Rev. 44:209–223.
  • Choe KP, Przybysz AJ, Strange K. 2009. The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans. Mol. Cell. Biol. 29:2704–2715.
  • Curran SP, Ruvkun G. 2007. Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet. 3:e56. doi:10.1371/journal.pgen.0030056.
  • Hasegawa K, Miwa J. 2010. Genetic and cellular characterization of Caenorhabditis elegans mutants abnormal in the regulation of many phase II enzymes. PLoS One 5:e11194. doi:10.1371/journal.pone.0011194.
  • Brenner S. 1974. The genetics of Caenorhabditis elegans. Genetics 77:71–94.
  • Choe KP, Strange K. 2007. Evolutionarily conserved WNK and Ste20 kinases are essential for acute volume recovery and survival after hypertonic shrinkage in Caenorhabditis elegans. Am. J. Physiol. 293:C915–C927.
  • Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J. 2001. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2:research0002.0001–0002.0010. doi:10.1186/gb-2000-2-1-research0002.
  • Leung CK, Deonarine A, Strange K, Choe KP. 2011. High-throughput screening and biosensing with fluorescent C. elegans strains. J. Vis. Exp. 2011:e2745. doi:10.3791/2745.
  • Leung CK, Empinado H, Choe KP. 2012. Depletion of a nucleolar protein activates xenobiotic detoxification genes in Caenorhabditis elegans via Nrf/SKN-1 and p53/CEP-1. Free Radic. Biol. Med. 52:937–950.
  • Dupuy D, Li Q-R, Deplancke B, Boxem M, Hao T, Lamesch P, Sequerra R, Bosak S, Doucette-Stamm L, Hope IA, Hill DE, Walhout AJM, Vidal M. 2004. A first version of the Caenorhabditis elegans promoterome. Genome Res. 14:2169–2175.
  • Frokjaer-Jensen C, Davis MW, Ailion M, Jorgensen EM. 2012. Improved MosI-mediated transgenesis in C. elegans. Nat. Methods 9:117–118.
  • Frokjaer-Jensen C, Wayne Davis M, Hopkins CE, Newman BJ, Thummel JM, Olesen S-P, Grunnet M, Jorgensen EM. 2008. Single-copy insertion of transgenes in Caenorhabditis elegans. Nat. Genet. 40:1375–1383.
  • Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30:3059–3066.
  • Blackwell TK, Bowerman B, Priess JR, Weintraub H. 1994. Formation of a monomeric DNA binding domain by SKN-1 bZIP and homeodomain elements. Science 266:621–628.
  • Lozano E, Saez AG, Flemming AJ, Cunha A, Leroi AM. 2006. Regulation of growth by ploidy in Caenorhabditis elegans. Curr. Biol. 16:493–498.
  • Morck C, Pilon M. 2006. C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev. Biol. 6:39. doi:10.1186/1471-213X-6-39.
  • Bowerman B, Eaton BA, Priess JR. 1992. skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo. Cell 68:1061–1075.
  • Contrino S, Smith RN, Butano D, Carr A, Hu F, Lyne R, Rutherford K, Kalderimis A, Sullivan J, Carbon S, Kephart ET, Lloyd P, Stinson EO, Washington NL, Perry MD, Ruzanov P, Zha Z, Lewis SE, Stein LD, Micklem G. 2012. modMine: flexible access to modENCODE data. Nucleic Acids Res. 40:D1082–D1088.
  • Przybysz AJ, Choe KP, Roberts LJ, Strange K. 2009. Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of Caenorhabditis elegans to the xenobiotic juglone. Mech. Ageing Dev. 130:357–369.
  • Rodriguez CE, Shinyashiki M, Froines J, Yu RC, Fukuto JM, Cho AK. 2004. An examination of quinone toxicity using the yeast Saccharomyces cerevisiae model system. Toxicology 201:185–196.
  • Aithal KB, Kumar S, Rao BN, Udupa N, Rao SB. 2012. Tumor growth inhibitory effect of juglone and its radiation sensitizing potential: in vivo and in vitro studies. Integr. Cancer Ther. 11:68–80.
  • Pruser KN, Flynn NE. 2011. Acrylamide in health and disease. Front. Biosci. 3:41–51.
  • LoPachin RM, Gavin T. 2012. Molecular mechanism of acrylamide neurotoxicity: lessons learned from organic chemistry. Environ. Health Perspect. 120:1650–1657.
  • Prasad SN, Muralidhara. 2013. Neuroprotective efficacy of eugenol and isoeugenol in acrylamide-induced neuropathy in rats: behavioral and biochemical evidence. Neurochem Res. 38:330–345.
  • Zhu YJ, Zeng T, Zhu YB, Yu SF, Wang QS, Zhang LP, Guo X, Xie KQ. 2008. Effects of acrylamide on the nervous tissue antioxidant system and sciatic nerve electrophysiology in the rat. Neurochem. Res. 33:2310–2317.
  • Hasegawa K, Miwa S, Isomura K, Tsutsumiuchi K, Taniguchi H, Miwa J. 2008. Acrylamide-responsive genes in the nematode Caenorhabditis elegans. Toxicol. Sci. 101:215–225.
  • Kiontke K, Fitch DHA. 2005. The phylogenetic relationships of Caenorhabditis and other rhabditids. In C. elegans Research Community (ed), WormBook. http://www.wormbook.org.
  • Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, Chinwalla A, Clarke L, Clee C, Coghlan A, Coulson A, D'Eustachio P, Fitch DHA, Fulton LA, Fulton RE, Griffiths-Jones S, Harris TW, Hillier LW, Kamath R, Kuwabara PE, Mardis ER, Marra MA, Miner TL, Minx P, Mullikin JC, Plumb RW, Rogers J, Schein JE, Sohrmann M, Spieth J, Stajich JE, Wei C, Willey D, Wilson RK, Durbin R, Waterston RH. 2003. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol. 1:e45. doi:10.1371/journal.pbio.0000045.
  • Zhao G, Ihuegbu N, Lee M, Schriefer L, Wang T, Stormo GD. 2012. Conserved motifs and prediction of regulatory modules in Caenorhabditis elegans. G3 (Bethesda) 2:469–481. doi:10.1534/g3.111.001081.
  • Ruvinsky I, Ruvkun G. 2003. Functional tests of enhancer conservation between distantly related species. Development 130:5133–5142.
  • Winston WM, Sutherlin M, Wright AJ, Feinberg EH, Hunter CP. 2007. Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc. Natl. Acad. Sci. U. S. A. 104:10565–10570.
  • Shi Y, Mosser DD, Morimoto RI. 1998. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12:654–666.
  • Ji RR, de Silva H, Jin Y, Bruccoleri RE, Cao J, He A, Huang W, Kayne PS, Neuhaus IM, Ott KH, Penhallow B, Cockett MI, Neubauer MG, Siemers NO, Ross-Macdonald P. 2009. Transcriptional profiling of the dose response: a more powerful approach for characterizing drug activities. PLoS Comput. Biol. 5:e1000512. doi:10.1371/journal.pcbi.1000512.
  • Kahn NW, Rea SL, Moyle S, Kell A, Johnson TE. 2008. Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans. Biochem. J. 409:205–213.
  • Park S-K, Tedesco PM, Johnson TE. 2009. Oxidative stress and longevity in Caenorhabditis elegans as mediated by SKN-1. Aging Cell 8:258–269.
  • Oliveira RP, Abate JP, Dilks K, Landis J, Ashraf J, Murphy CT, Blackwell TK. 2009. Condition-adapted stress and longevity gene regulation by Caenorhabditis elegans SKN-1/Nrf. Aging Cell 8:524–541.
  • Leung CK, Wang Y, Malany S, Deonarine A, Nguyen K, Vasile S, Choe KP. 2013. An ultra high-throughput, whole-animal screen for small molecule modulators of a specific genetic pathway in Caenorhabditis elegans. PLoS One 8:e62166. doi:10.1371/journal.pone.0062166.
  • Hasegawa K, Miwa S, Tsutsumiuchi K, Taniguchi H, Miwa J. 2004. Extremely low dose of acrylamide decreases lifespan in Caenorhabditis elegans. Toxicol. Lett. 152:183–189.
  • Flemming AJ, Shen ZZ, Cunha A, Emmons SW, Leroi AM. 2000. Somatic polyploidization and cellular proliferation drive body size evolution in nematodes. Proc. Natl. Acad. Sci. U. S. A. 97:5285–5290.
  • Williams GC. 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411.
  • Ljubuncic P, Reznick AZ. 2009. The evolutionary theories of aging revisited—a mini-review. Gerontology 55:205–216.
  • Leroi AM, Bartke A, De Benedictis G, Franceschi C, Gartner A, Gonos ES, Fedei ME, Kivisild T, Lee S, Kartaf-Ozer N, Schumacher M, Sikora E, Slagboom E, Tatar M, Yashin AI, Vijg J, Zwaan B. 2005. What evidence is there for the existence of individual genes with antagonistic pleiotropic effects? Mech. Ageing Dev. 126:421–429.
  • Blagosklonny MV. 2010. Revisiting the antagonistic pleiotropy theory of aging: TOR-driven program and quasi-program. Cell Cycle 9:3151–3156.
  • Kapahi P. 2010. Protein synthesis and the antagonistic pleiotropy hypothesis of aging. Adv. Exp. Med. Biol. 694:30–37.
  • Ungewitter E, Scrable H. 2009. Antagonistic pleiotropy and p53. Mech. Ageing Dev. 130:10–17.
  • Zhang P, Singh A, Yegnasubramanian S, Esopi D, Kombairaju P, Bodas M, Wu H, Bova SG, Biswal S. 2010. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol. Cancer Ther. 9:336–346.
  • Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R, Tsuta K, Asamura H, Yamamoto M, Hirohashi S. 2008. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl. Acad. Sci. U. S. A. 105:13568–13573.
  • Wang X-J, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y, Chen W, Yi X, Zheng W, Wondrak GT, Wong PK, Zhang DD. 2008. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29:1235–1243.
  • Tsai JJ, Dudakov JA, Takahashi K, Shieh JH, Velardi E, Holland AM, Singer NV, West ML, Smith OM, Young LF, Shono Y, Ghosh A, Hanash AM, Tran HT, Moore MA, van den Brink MR. 2013. Nrf2 regulates haematopoietic stem cell function. Nat. Cell Biol. 15:309–316.
  • Hochmuth CE, Biteau B, Bohmann D, Jasper H. 2011. Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila. Cell Stem Cell 8:188–199.
  • Hybertson BM, Gao B, Bose SK, McCord JM. 2011. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol. Aspects Med. 32:234–246.
  • Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, Alon U, Margalit H. 2004. Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc. Natl. Acad. Sci. U. S. A. 101:5934–5939.
  • Taguchi K, Motohashi H, Yamamoto M. 2011. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16:123–140.
  • An JH, Vranas K, Lucke M, Inoue H, Hisamoto N, Matsumoto K, Blackwell TK. 2005. Regulation of the Caenorhabditis elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3. Proc. Natl. Acad. Sci. U. S. A. 102:16275–16280.
  • Okuyama T, Inoue H, Ookuma S, Satoh T, Kano K, Honjoh S, Hisamoto N, Matsumoto K, Nishida E. 2010. The ERK-MAPK pathway regulates longevity through SKN-1 and insulin-like signaling in Caenorhabditis elegans. J. Biol. Chem. 285:30274–30281.
  • Inoue H, Hisamoto N, An JH, Oliveira RP, Nishida E, Blackwell TK, Matsumoto K. 2005. The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev. 19:2278–2283.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.