58
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Hypoxia Restrains Lipid Utilization via Protein Kinase A and Adipose Triglyceride Lipase Downregulation through Hypoxia-Inducible Factor

, , , , , & show all
Article: e00390-18 | Received 01 Aug 2018, Accepted 22 Oct 2018, Published online: 03 Mar 2023

REFERENCES

  • Martin S, Parton RG. 2006. Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7:373–378. https://doi.org/10.1038/nrm1912.
  • Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS. 2007. Regulation of lipolysis in adipocytes. Annu Rev Nutr 27:79–101. https://doi.org/10.1146/annurev.nutr.27.061406.093734.
  • Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, Madeo F. 2012. Fat signals—lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15:279–291. https://doi.org/10.1016/j.cmet.2011.12.018.
  • Fruhbeck G, Mendez-Gimenez L, Fernandez-Formoso JA, Fernandez S, Rodriguez A. 2014. Regulation of adipocyte lipolysis. Nutr Res Rev 27:63–93. https://doi.org/10.1017/S095442241400002X.5.5.
  • Brookheart RT, Michel CI, Schaffer JE. 2009. As a matter of fat. Cell Metab 10:9–12. https://doi.org/10.1016/j.cmet.2009.03.011.
  • Unger RH, Clark GO, Scherer PE, Orci L. 2010. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta 1801:209–214. https://doi.org/10.1016/j.bbalip.2009.10.006.
  • Blanchette-Mackie EJ, Dwyer NK, Barber T, Coxey RA, Takeda T, Rondinone CM, Theodorakis JL, Greenberg AS, Londos C. 1995. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J Lipid Res 36:1211–1226.
  • Sztalryd C, Xu G, Dorward H, Tansey JT, Contreras JA, Kimmel AR, Londos C. 2003. Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J Cell Physiol 161:1093–1103. https://doi.org/10.1083/jcb.200210169.
  • Miyoshi H, Perfield JW, II, Souza SC, Shen WJ, Zhang HH, Stancheva ZS, Kraemer FB, Obin MS, Greenberg AS. 2007. Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes. J Biol Chem 282:996–1002. https://doi.org/10.1074/jbc.M605770200.
  • Subramanian V, Rothenberg A, Gomez C, Cohen AW, Garcia A, Bhattacharyya S, Shapiro L, Dolios G, Wang R, Lisanti MP, Brasaemle DL. 2004. Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes. J Biol Chem 279:42062–42071. https://doi.org/10.1074/jbc.M407462200.
  • Yamaguchi T, Omatsu N, Matsushita S, Osumi T. 2004. CGI-58 interacts with perilipin and is localized to lipid droplets. Possible involvement of CGI-58 mislocalization in Chanarin-Dorfman syndrome. J Biol Chem 279:30490–30497. https://doi.org/10.1074/jbc.M403920200.
  • Granneman JG, Moore HP, Krishnamoorthy R, Rathod M. 2009. Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J Biol Chem 284:34538–34544. https://doi.org/10.1074/jbc.M109.068478.
  • Villena JA, Roy S, Sarkadi-Nagy E, Kim KH, Sul HS. 2004. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 279:47066–47075. https://doi.org/10.1074/jbc.M403855200.
  • Gronke S, Mildner A, Fellert S, Tennagels N, Petry S, Muller G, Jackle H, Kuhnlein RP. 2005. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab 1:323–330. https://doi.org/10.1016/j.cmet.2005.04.003.
  • Smirnova E, Goldberg EB, Makarova KS, Lin L, Brown WJ, Jackson CL. 2006. ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Rep 7:106–113. https://doi.org/10.1038/sj.embor.7400559.
  • Lee JH, Kong J, Jang JY, Han JS, Ji Y, Lee J, Kim JB. 2014. Lipid droplet protein LID-1 mediates ATGL-1-dependent lipolysis during fasting in Caenorhabditis elegans. Mol Cell Biol 34:4165–4176. https://doi.org/10.1128/MCB.00722-14.
  • Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C, Eder S, Kratky D, Wagner EF, Klingenspor M, Hoefler G, Zechner R. 2006. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312:734–737. https://doi.org/10.1126/science.1123965.
  • Villee CA. 1959. Metabolic aspects of hypoxia. Conn Med 23:700–709.
  • Van Voorhies WA, Ward S. 2000. Broad oxygen tolerance in the nematode Caenorhabditis elegans. J Exp Biol 203:2467–2478.
  • Powell-Coffman JA. 2010. Hypoxia signaling and resistance in C. elegans. Trends Endocrinol Metab 21:435–440. https://doi.org/10.1016/j.tem.2010.02.006.
  • Wang GL, Semenza GL. 1993. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268:21513–21518.
  • Wang GL, Semenza GL. 1996. Oxygen sensing and response to hypoxia by mammalian cells. Redox Rep 2:89–96. https://doi.org/10.1080/13510002.1996.11747034.
  • Jaakkola P, Mole DR, Tian Y-M, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ. 2001. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472. https://doi.org/10.1126/science.1059796.
  • Yu F, White SB, Zhao Q, Lee FS. 2001. HIFα binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci U S A 98:9630–9635. https://doi.org/10.1073/pnas.181341498.
  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG, Jr. 2001. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468. https://doi.org/10.1126/science.1059817.
  • Zhang N, Fu Z, Linke S, Chicher J, Gorman JJ, Visk D, Haddad GG, Poellinger L, Peet DJ, Powell F, Johnson RS. 2010. The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism. Cell Metab 11:364–378. https://doi.org/10.1016/j.cmet.2010.03.001.
  • Kaelin WG, Jr, Ratcliffe PJ. 2008. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402. https://doi.org/10.1016/j.molcel.2008.04.009.
  • Jiang H, Guo R, Powell-Coffman JA. 2001. The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia. Proc Natl Acad Sci U S A 98:7916–7921. https://doi.org/10.1073/pnas.141234698.
  • Leiser SF, Fletcher M, Begun A, Kaeberlein M. 2013. Life-span extension from hypoxia in Caenorhabditis elegans requires both HIF-1 and DAF-16 and is antagonized by SKN-1. J Gerontol A Biol Sci Med Sci 68:1135–1144. https://doi.org/10.1093/gerona/glt016.
  • Schofield CJ, Ratcliffe PJ. 2004. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:343–354. https://doi.org/10.1038/nrm1366.
  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV. 2006. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185. https://doi.org/10.1016/j.cmet.2006.02.002.
  • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. 2006. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197. https://doi.org/10.1016/j.cmet.2006.01.012.
  • Baum D. 1969. The inhibition of norepinephrine-stimulated lipolysis by acute hypoxia. J Pharmacol Exp Ther 169:87–94.
  • Baum D, Anthony CL, Jr, Stowers C. 1971. Impairment of cold-stimulated lipolysis by acute hypoxia. Arch Pediatr Adolesc Med 121:115–119. https://doi.org/10.1001/archpedi.1971.02100130069007.
  • Witham E, Comunian C, Ratanpal H, Skora S, Zimmer M, Srinivasan S. 2016. C. elegans body cavity neurons are homeostatic sensors that integrate fluctuations in oxygen availability and internal nutrient reserves. Cell Rep 14:1641–1654. https://doi.org/10.1016/j.celrep.2016.01.052.
  • Hussey R, Littlejohn NK, Witham E, Vanstrum E, Mesgarzadeh J, Ratanpal H, Srinivasan S. 2018. Oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism via neuropeptide signaling in Caenorhabditis elegans. PLoS Genet 14:e1007305. https://doi.org/10.1371/journal.pgen.1007305.
  • Famulla S, Schlich R, Sell H, Eckel J. 2012. Differentiation of human adipocytes at physiological oxygen levels results in increased adiponectin secretion and isoproterenol-stimulated lipolysis. Adipocyte 1:132–181. https://doi.org/10.4161/adip.19962.
  • Weiszenstein M, Musutova M, Plihalova A, Westlake K, Elkalaf M, Koc M, Prochazka A, Pala J, Gulati S, Trnka J, Polak J. 2016. Adipogenesis, lipogenesis and lipolysis is stimulated by mild but not severe hypoxia in 3T3-L1 cells. Biochem Biophys Res Commun 478:727–732. https://doi.org/10.1016/j.bbrc.2016.08.015.
  • Rodriguez M, Snoek LB, De Bono M, Kammenga JE. 2013. Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends Genet 29:367–374. https://doi.org/10.1016/j.tig.2013.01.010.
  • Blackwell TK, Steinbaugh MJ, Hourihan JM, Ewald CY, Isik M. 2015. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic Biol Med 88:290–301. https://doi.org/10.1016/j.freeradbiomed.2015.06.008.
  • Wan W, Peng K, Li M, Qin L, Tong Z, Yan J, Shen B, Yu C. 2017. Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1α. Oncogene 36:3868–3877. https://doi.org/10.1038/onc.2017.13.
  • Shen C, Nettleton D, Jiang M, Kim SK, Powell-Coffman JA. 2005. Roles of the HIF-1 hypoxia-inducible factor during hypoxia response in Caenorhabditis elegans. J Biol Chem 280:20580–20588. https://doi.org/10.1074/jbc.M501894200.
  • Chang AJ, Bargmann CI. 2008. Hypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditis elegans. Proc Natl Acad Sci U S A 105:7321–7326. https://doi.org/10.1073/pnas.0802164105.
  • Zhang Y, Shao Z, Zhai Z, Shen C, Powell-Coffman JA. 2009. The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans. PLoS One 4:e6348. https://doi.org/10.1371/journal.pone.0006348.
  • Hwang AB, Ryu EA, Artan M, Chang HW, Kabir MH, Nam HJ, Lee D, Yang JS, Kim S, Mair WB, Lee C, Lee SS, Lee SJ. 2014. Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 111:E4458–E4467. https://doi.org/10.1073/pnas.1411199111.
  • Drew MC. 1992. Soil aeration and plant root metabolism. Soil Science 154:259–268. https://doi.org/10.1097/00010694-199210000-00002.
  • Baumgaertl H, Kritzler K, Zimelka W, Zinkler D. 1994. Local pO2 measurements in the environment of submerged soil microarthropods. Acta Oecologica 15:781–789.
  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA. 2005. Principles and applications of soil microbiology. Pearson Prentice Hall, Upper Saddle River, NJ.
  • Lemieux GA, Ashrafi K. 2015. Insights and challenges in using C. elegans for investigation of fat metabolism. Crit Rev Biochem Mol Biol 50:69–84. https://doi.org/10.3109/10409238.2014.959890.
  • Jo H, Shim J, Lee JH, Lee J, Kim JB. 2009. IRE-1 and HSP-4 contribute to energy homeostasis via fasting-induced lipases in C. elegans. Cell Metab 9:440–448. https://doi.org/10.1016/j.cmet.2009.04.004.
  • Lee JH, Han JS, Kong J, Ji Y, Lv X, Lee J, Li P, Kim JB. 2016. Protein kinase A subunit balance regulates lipid metabolism in Caenorhabditis elegans and mammalian adipocytes. J Biol Chem 291:20315–20328. https://doi.org/10.1074/jbc.M116.740464.
  • Baum D. 1967. Inhibition of lipolysis by hypoxia in puppies. Proc Soc Exp Biol Med 125:1190–1194. https://doi.org/10.3181/00379727-125-32310.
  • Michailidou Z, Morton NM, Moreno Navarrete JM, West CC, Stewart KJ, Fernandez-Real JM, Schofield CJ, Seckl JR, Ratcliffe PJ. 2015. Adipocyte pseudohypoxia suppresses lipolysis and facilitates benign adipose tissue expansion. Diabetes 64:733–745. https://doi.org/10.2337/db14-0233.
  • Pagnon J, Matzaris M, Stark R, Meex RC, Macaulay SL, Brown W, O'Brien PE, Tiganis T, Watt MJ. 2012. Identification and functional characterization of protein kinase A phosphorylation sites in the major lipolytic protein, adipose triglyceride lipase. Endocrinology 153:4278–4289. https://doi.org/10.1210/en.2012-1127.
  • Ghosh M, Niyogi S, Bhattacharyya M, Adak M, Nayak DK, Chakrabarti S, Chakrabarti P. 2016. Ubiquitin ligase COP1 controls hepatic fat metabolism by targeting ATGL for degradation. Diabetes 65:3561–3572. https://doi.org/10.2337/db16-0506.
  • Spurway TD, Pogson CI, Sherratt HS, Agius L. 1997. Etomoxir, sodium 2-[6-(4-chlorophenoxy)hexyl] oxirane-2-carboxylate, inhibits triacylglycerol depletion in hepatocytes and lipolysis in adipocytes. FEBS Lett 404:111–114. https://doi.org/10.1016/S0014-5793(97)00103-8.
  • McElroy GS, Chandel NS. 2017. Mitochondria control acute and chronic responses to hypoxia. Exp Cell Res 356:217–222. https://doi.org/10.1016/j.yexcr.2017.03.034.
  • Muller G, Wied S, Over S, Frick W. 2008. Inhibition of lipolysis by palmitate, H2O2 and the sulfonylurea drug, glimepiride, in rat adipocytes depends on cAMP degradation by lipid droplets. Biochemistry 47:1259–1273. https://doi.org/10.1021/bi701413t.
  • Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC. 2006. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 21:521–531. https://doi.org/10.1016/j.molcel.2006.01.010.
  • Xie M, Roy R. 2012. Increased levels of hydrogen peroxide induce a HIF-1-dependent modification of lipid metabolism in AMPK compromised C. elegans dauer larvae. Cell Metab 16:322–335. https://doi.org/10.1016/j.cmet.2012.07.016.
  • Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G. 2009. Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev 23:496–511. https://doi.org/10.1101/gad.1775409.
  • Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C. 1991. Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem 266:11341–11346.
  • Lee JH, Jeon YG, Lee KH, Lee HW, Park J, Jang H, Kang M, Lee HS, Cho HJ, Nam DH, Kwak C, Kim JB. 2017. RNF20 suppresses tumorigenesis by inhibiting SREBP1c-PTTG1 axis in kidney cancer. Mol Cell Biol https://doi.org/10.1128/MCB.00265-17.
  • Choe SS, Shin KC, Ka S, Lee YK, Chun JS, Kim JB. 2014. Macrophage HIF-2α ameliorates adipose tissue inflammation and insulin resistance in obesity. Diabetes 63:3359–3371. https://doi.org/10.2337/db13-1965.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.