61
Views
44
CrossRef citations to date
0
Altmetric
Article

Cyclin-Dependent Kinase 12 Increases 3′ End Processing of Growth Factor-Induced c-FOS Transcripts

, , , , , , , & show all
Pages 468-478 | Received 14 Sep 2014, Accepted 01 Nov 2014, Published online: 20 Mar 2023

REFERENCES

  • Adelman K, Lis JT. 2012. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13:720–731. http://dx.doi.org/10.1038/nrg3293.
  • Liu X, Bushnell DA, Kornberg RD. 2013. RNA polymerase II transcription: structure and mechanism. Biochim Biophys Acta 1829:2–8. http://dx.doi.org/10.1016/j.bbagrm.2012.09.003.
  • Proudfoot NJ. 2011. Ending the message: poly(A) signals then and now. Genes Dev 25:1770–1782. http://dx.doi.org/10.1101/gad.17268411.
  • Zorio DA, Bentley DL. 2004. The link between mRNA processing and transcription: communication works both ways. Exp Cell Res 296:91–97. http://dx.doi.org/10.1016/j.yexcr.2004.03.019.
  • Chen M, Manley JL. 2009. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 10:741–754. http://dx.doi.org/10.1038/nrm2777.
  • Bentley DL. 2014. Coupling mRNA processing with transcription in time and space. Nat Rev Genet 15:163–175. http://dx.doi.org/10.1038/nrg3662.
  • Lee KM, Tarn WY. 2013. Coupling pre-mRNA processing to transcription on the RNA factory assembly line. RNA Biol 10:380–390. http://dx.doi.org/10.4161/rna.23697.
  • Loyer P, Trembley JH, Katona R, Kidd VJ, Lahti JM. 2005. Role of CDK/cyclin complexes in transcription and RNA splicing. Cell Signal 17:1033–1051. http://dx.doi.org/10.1016/j.cellsig.2005.02.005.
  • Sanso M, Fisher RP. 2013. Pause, play, repeat: CDKs push RNAP II's buttons. Transcription 4:146–152. http://dx.doi.org/10.4161/trns.25146.
  • Poss ZC, Ebmeier CC, Taatjes DJ. 2013. The Mediator complex and transcription regulation. Crit Rev Biochem Mol 48:575–608. http://dx.doi.org/10.3109/10409238.2013.840259.
  • Chymkowitch P, Enserink JM. 2013. The cell cycle rallies the transcription cycle: Cdc28/Cdk1 is a cell cycle-regulated transcriptional CDK. Transcription 4:3–6. http://dx.doi.org/10.4161/trns.22456.
  • Heidemann M, Hintermair C, Voss K, Eick D. 2013. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Biochim Biophys Acta 1829:55–62. http://dx.doi.org/10.1016/j.bbagrm.2012.08.013.
  • Galbraith MD, Donner AJ, Espinosa JM. 2010. CDK8: a positive regulator of transcription. Transcription 1:4–12. http://dx.doi.org/10.4161/trns.1.1.12373.
  • Ho CK, Shuman S. 1999. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol Cell 3:405–411. http://dx.doi.org/10.1016/S1097-2765(00)80468-2.
  • Cho EJ, Takagi T, Moore CR, Buratowski S. 1997. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev 11:3319–3326. http://dx.doi.org/10.1101/gad.11.24.3319.
  • Fisher RP. 2012. The CDK network: linking cycles of cell division and gene expression. Genes Cancer 3:731–738. http://dx.doi.org/10.1177/1947601912473308.
  • Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S, Hasegawa J, Handa H. 1999. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97:41–51. http://dx.doi.org/10.1016/S0092-8674(00)80713-8.
  • Wada T, Takagi T, Yamaguchi Y, Ferdous A, Imai T, Hirose S, Sugimoto S, Yano K, Hartzog GA, Winston F, Buratowski S, Handa H. 1998. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev 12:343–356. http://dx.doi.org/10.1101/gad.12.3.343.
  • Pirngruber J, Shchebet A, Johnsen SA. 2009. Insights into the function of the human P-TEFb component CDK9 in the regulation of chromatin modifications and co-transcriptional mRNA processing. Cell Cycle 8:3636–3642. http://dx.doi.org/10.4161/cc.8.22.9890.
  • Peterlin BM, Price DH. 2006. Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23:297–305. http://dx.doi.org/10.1016/j.molcel.2006.06.014.
  • Fujinaga K, Irwin D, Huang Y, Taube R, Kurosu T, Peterlin BM. 2004. Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol Cell Biol 24:787–795. http://dx.doi.org/10.1128/MCB.24.2.787-795.2004.
  • Proudfoot NJ, Furger A, Dye MJ. 2002. Integrating mRNA processing with transcription. Cell 108:501–512. http://dx.doi.org/10.1016/S0092-8674(02)00617-7.
  • Hsin JP, Manley JL. 2012. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 26:2119–2137. http://dx.doi.org/10.1101/gad.200303.112.
  • Bartkowiak B, Liu P, Phatnani HP, Fuda NJ, Cooper JJ, Price DH, Adelman K, Lis JT, Greenleaf AL. 2010. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev 24:2303–2316. http://dx.doi.org/10.1101/gad.1968210.
  • Bowman EA, Bowman CR, Ahn JH, Kelly WG. 2013. Phosphorylation of RNA polymerase II is independent of P-TEFb in the C. elegans germline. Development 140:3703–3713. http://dx.doi.org/10.1242/dev.095778.
  • Cheng SW, Kuzyk MA, Moradian A, Ichu TA, Chang VC, Tien JF, Vollett SE, Griffith M, Marra MA, Morin GB. 2012. Interaction of cyclin-dependent kinase 12/CrkRS with cyclin K1 is required for the phosphorylation of the C-terminal domain of RNA polymerase II. Mol Cell Biol 32:4691–4704. http://dx.doi.org/10.1128/MCB.06267-11.
  • Blazek D, Kohoutek J, Bartholomeeusen K, Johansen E, Hulinkova P, Luo Z, Cimermancic P, Ule J, Peterlin BM. 2011. The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev 25:2158–2172. http://dx.doi.org/10.1101/gad.16962311.
  • Davidson L, Muniz L, West S. 2014. 3′ End formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells. Genes Dev 28:342–356. http://dx.doi.org/10.1101/gad.231274.113.
  • Takagaki Y, Manley JL. 1994. A polyadenylation factor subunit is the human homolog of the Drosophila suppressor of forked protein. Nature 372:471–474. http://dx.doi.org/10.1038/372471a0.
  • Curran T, Morgan JI. 1987. Memories of Fos. Bioessays 7:255–258. http://dx.doi.org/10.1002/bies.950070606.
  • Milde-Langosch K. 2005. The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 41:2449–2461. http://dx.doi.org/10.1016/j.ejca.2005.08.008.
  • Takagaki Y, Macdonald CC, Shenk T, Manley JL. 1992. The human 64-Kda polyadenylylation factor contains a ribonucleoprotein-type RNA-binding domain and unusual auxiliary motifs. Proc Natl Acad Sci U S A 89:1403–1407. http://dx.doi.org/10.1073/pnas.89.4.1403.
  • Mandel CR, Kaneko S, Zhang HL, Gebauer D, Vethantham V, Manley JL, Tong L. 2006. Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease. Nature 444:953–956. http://dx.doi.org/10.1038/nature05363.
  • Gu B, Eick D, Bensaude O. 2013. CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo. Nucleic Acids Res 41:1591–1603. http://dx.doi.org/10.1093/nar/gks1327.
  • Nelson JD, Denisenko O, Bomsztyk K. 2006. Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1:179–185. http://dx.doi.org/10.1038/nprot.2006.27.
  • Gilbert C, Svejstrup JQ. 2006. RNA immunoprecipitation for determining RNA-protein associations in vivo. Curr Protoc Mol Biol Chapter 27:Unit 27.4. http://dx.doi.org/10.1002/0471142727.mb2704s75.
  • Bartholomeeusen K, Xiang Y, Fujinaga K, Peterlin BM. 2012. Bromodomain and extra-terminal (BET) bromodomain inhibition activate transcription via transient release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein. J Biol Chem 287:36609–36616. http://dx.doi.org/10.1074/jbc.M112.410746.
  • Jager S, Gulbahce N, Cimermancic P, Kane J, He N, Chou S, D'Orso I, Fernandes J, Jang G, Frankel AD, Alber T, Zhou Q, Krogan NJ. 2011. Purification and characterization of HIV-human protein complexes. Methods 53:13–19. http://dx.doi.org/10.1016/j.ymeth.2010.08.007.
  • Clauser KR, Baker P, Burlingame AL. 1999. Role of accurate mass measurement (+/− 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem 71:2871–2882. http://dx.doi.org/10.1021/ac9810516.
  • Reichert VL, Le Hir H, Jurica MS, Moore MJ. 2002. 5′ Exon interactions within the human spliceosome establish a framework for exon Junction complex structure and assembly. Genes Dev 16:2778–2791. http://dx.doi.org/10.1101/gad.1030602.
  • Chiara MD, Gozani O, Bennett M, Champion-Arnaud P, Palandjian L, Reed R. 1996. Identification of proteins that interact with exon sequences, splice sites, and the branchpoint sequence during each stage of spliceosome assembly. Mol Cell Biol 16:3317–3326.
  • Muhlemann O. 2012. Intimate liaison with SR proteins brings exon junction complexes to unexpected places. Nat Struct Mol Biol 19:1209–1211. http://dx.doi.org/10.1038/nsmb.2454.
  • Singh G, Kucukural A, Cenik C, Leszyk JD, Shaffer SA, Weng Z, Moore MJ. 2012. The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell 151:750–764. http://dx.doi.org/10.1016/j.cell.2012.10.007.
  • Le Hir H, Andersen GR. 2008. Structural insights into the exon junction complex. Curr Opin Struc. Biol 18:112–119. http://dx.doi.org/10.1016/j.sbi.2007.11.002.
  • Ideue T, Sasaki YT, Hagiwara M, Hirose T. 2007. Introns play an essential role in splicing-dependent formation of the exon junction complex. Genes Dev 21:1993–1998. http://dx.doi.org/10.1101/gad.1557907.
  • Bono F, Gehring NH. 2011. Assembly, disassembly and recycling: the dynamics of exon junction complexes. RNA Biol 8:24–29. http://dx.doi.org/10.4161/rna.8.1.13618.
  • Kataoka N, Dreyfuss G. 2004. A simple whole cell lysate system for in vitro splicing reveals a stepwise assembly of the exon-exon junction complex. J Biol Chem 279:7009–7013.
  • Nott A, Le Hir H, Moore MJ. 2004. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev 18:210–222. http://dx.doi.org/10.1101/gad.1163204.
  • Wiegand HL, Lu S, Cullen BR. 2003. Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc Natl Acad Sci U S A 100:11327–11332. http://dx.doi.org/10.1073/pnas.1934877100.
  • Chang YF, Imam JS, Wilkinson MF. 2007. The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 76:51–74. http://dx.doi.org/10.1146/annurev.biochem.76.050106.093909.
  • Gatfield D, Izaurralde E. 2002. REF1/Aly and the additional exon junction complex proteins are dispensable for nuclear mRNA export. J Cell Biol 159:579–588. http://dx.doi.org/10.1083/jcb.200207128.
  • Zhou Z, Fu XD. 2013. Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 122:191–207. http://dx.doi.org/10.1007/s00412-013-0407-z.
  • Wu JY, Maniatis T. 1993. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75:1061–1070. http://dx.doi.org/10.1016/0092-8674(93)90316-I.
  • Donner AJ, Ebmeier CC, Taatjes DJ, Espinosa JM. 2010. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat Struct Mol Biol 17:194–201. http://dx.doi.org/10.1038/nsmb.1752.
  • Larochelle S, Amat R, Glover-Cutter K, Sanso M, Zhang C, Allen JJ, Shokat KM, Bentley DL, Fisher RP. 2012. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat Struct Mol Biol 19:1108–1115. http://dx.doi.org/10.1038/nsmb.2399.
  • Chen DB, Davis JS. 2003. Epidermal growth factor induces c-fos and c-jun mRNA via Raf-1/MEK1/ERK-dependent and -independent pathways in bovine luteal cells. Mol Cell Endocrinol 200:141–154. http://dx.doi.org/10.1016/S0303-7207(02)00379-9.
  • Sapra AK, Anko ML, Grishina I, Lorenz M, Pabis M, Poser I, Rollins J, Weiland EM, Neugebauer KM. 2009. SR protein family members display diverse activities in the formation of nascent and mature mRNPs in vivo. Mol Cell 34:179–190. http://dx.doi.org/10.1016/j.molcel.2009.02.031.
  • Gehring NH, Lamprinaki S, Hentze MW, Kulozik AE. 2009. The hierarchy of exon-junction complex assembly by the spliceosome explains key features of mammalian nonsense-mediated mRNA decay. PLoS Biol 7:e1000120. http://dx.doi.org/10.1371/journal.pbio.1000120.
  • Le Hir H, Seraphin B. 2008. EJCs at the heart of translational control. Cell 133:213–216. http://dx.doi.org/10.1016/j.cell.2008.04.002.
  • Chan CC, Dostie J, Diem MD, Feng W, Mann M, Rappsilber J, Dreyfuss G. 2004. eIF4A3 is a novel component of the exon junction complex. RNA 10:200–209. http://dx.doi.org/10.1261/rna.5230104.
  • Takagaki Y, Manley JL, MacDonald CC, Wilusz J, Shenk T. 1990. A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev 4:2112–2120. http://dx.doi.org/10.1101/gad.4.12a.2112.
  • Colgan DF, Manley JL. 1997. Mechanism and regulation of mRNA polyadenylation. Genes Dev 11:2755–2766. http://dx.doi.org/10.1101/gad.11.21.2755.
  • Yao C, Biesinger J, Wan J, Weng L, Xing Y, Xie X, Shi Y. 2012. Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation. Proc Natl Acad Sci U S A 109:18773–18778. http://dx.doi.org/10.1073/pnas.1211101109.
  • Bresson SM, Conrad NK. 2013. The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay. PLoS Genet 9:e1003893. http://dx.doi.org/10.1371/journal.pgen.1003893.
  • Houseley J, Tollervey D. 2009. The many pathways of RNA degradation. Cell 136:763–776. http://dx.doi.org/10.1016/j.cell.2009.01.019.
  • Jacobson A, Peltz SW. 1996. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem 65:693–739. http://dx.doi.org/10.1146/annurev.bi.65.070196.003401.
  • Fong N, Bentley DL. 2001. Capping, splicing, and 3′ processing are independently stimulated by RNA polymerase II: different functions for different segments of the CTD. Genes Dev 15:1783–1795. http://dx.doi.org/10.1101/gad.889101.
  • Ji Z, Luo W, Li W, Hoque M, Pan Z, Zhao Y, Tian B. 2011. Transcriptional activity regulates alternative cleavage and polyadenylation. Mol Syst Biol 7:534. http://dx.doi.org/10.1038/msb.2011.69.
  • Bjork P, Jin S, Zhao J, Singh OP, Persson JO, Hellman U, Wieslander L. 2009. Specific combinations of SR proteins associate with single pre-messenger RNAs in vivo and contribute different functions. J Cell Biol 184:555–568. http://dx.doi.org/10.1083/jcb.200806156.
  • Hsin JP, Xiang K, Manley JL. 2014. Function and control of RNA polymerase II C-terminal domain phosphorylation in vertebrate transcription and RNA processing. Mol Cell Biol 34:2488–2498. http://dx.doi.org/10.1128/MCB.00181-14.
  • Zhou M, Halanski MA, Radonovich MF, Kashanchi F, Peng J, Price DH, Brady JN. 2000. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol Cell Biol 20:5077–5086. http://dx.doi.org/10.1128/MCB.20.14.5077-5086.2000.
  • Luo Z, Lin C, Shilatifard A. 2012. The super elongation complex (SEC) family in transcriptional control. Nat Rev Mol Cell Biol 13:543–547. http://dx.doi.org/10.1038/nrm3417.
  • Ahn SH, Kim M, Buratowski S. 2004. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol Cell 13:67–76. http://dx.doi.org/10.1016/S1097-2765(03)00492-1.
  • Kim M, Ahn SH, Krogan NJ, Greenblatt JF, Buratowski S. 2004. Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J 23:354–364. http://dx.doi.org/10.1038/sj.emboj.7600053.
  • Martinson HG. 2011. An active role for splicing in 3′-end formation. Wiley Interdiscip Rev RNA 2:459–470. http://dx.doi.org/10.1002/wrna.68.
  • Chazal PE, Daguenet E, Wendling C, Ulryck N, Tomasetto C, Sargueil B, Le Hir H. 2013. EJC core component MLN51 interacts with eIF3 and activates translation. Proc Natl Acad Sci U S A 110:5903–5908. http://dx.doi.org/10.1073/pnas.1218732110.
  • Dai Q, Lei T, Zhao C, Zhong J, Tang YZ, Chen B, Yang J, Li C, Wang S, Song X, Li L, Li Q. 2012. Cyclin K-containing kinase complexes maintain self-renewal in murine embryonic stem cells. J Biol Chem 287:25344–25352. http://dx.doi.org/10.1074/jbc.M111.321760.
  • Edwards MC, Wong C, Elledge SJ. 1998. Human cyclin K, a novel RNA polymerase II-associated cyclin possessing both carboxy-terminal domain kinase and Cdk-activating kinase activity. Mol Cell Biol 18:4291–4300.
  • Xiang X, Deng L, Zhang J, Zhang X, Lei T, Luan G, Yang C, Xiao ZX, Li Q, Li Q. 2014. A distinct expression pattern of cyclin k in Mammalian testes suggests a functional role in spermatogenesis. PLoS One 9:e101539. http://dx.doi.org/10.1371/journal.pone.0101539.
  • Bajrami I, Frankum JR, Konde A, Miller RE, Rehman FL, Brough R, Campbell J, Sims D, Rafiq R, Hooper S, Chen L, Kozarewa I, Assiotis I, Fenwick K, Natrajan R, Lord CJ, Ashworth A. 2014. Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity. Cancer Res 74:287–297. http://dx.doi.org/10.1158/0008-5472.CAN-13-2541.
  • Gu W, Wang C, Li W, Hsu FN, Tian L, Zhou J, Yuan C, Xie XJ, Jiang T, Addya S, Tai Y, Kong B, Ji JY. 2013. Tumor-suppressive effects of CDK8 in endometrial cancer cells. Cell Cycle 12:987–999. http://dx.doi.org/10.4161/cc.24003.
  • Smith E, Lin C, Shilatifard A. 2011. The super elongation complex (SEC) and MLL in development and disease. Genes Dev 25:661–672. http://dx.doi.org/10.1101/gad.2015411.
  • Luoh SW. 2002. Amplification and expression of genes from the 17q11 approximately q12 amplicon in breast cancer cells. Cancer Genet Cytogenet 136:43–47. http://dx.doi.org/10.1016/S0165-4608(01)00657-4.
  • Bell D, Berchuck A, Birrer M, Chien J, Cramer D, Dao F, Dhir R, DiSaia P, Gabra H, Glenn P, Godwin A, Gross J, Hartmann L, Huang M, Huntsman D, Iacocca M, Imielinski M, Kalloger S, Karlan B, Levine D, Mills G, Morrison C, Mutch D, Olvera N, Orsulic S, Park K, Petrelli N, Rabeno B, Rader J, Sikic B, Smith-McCune K, Sood A, Bowtell D, Penny R, Testa J, Chang K, Dinh H, Drummond J, Fowler G, Gunaratne P, Hawes A, Kovar C, Lewis L, Morgan M, Newsham I, Santibanez J, Reid J, Trevino L, Wu Y, Wang M, et al.., Cancer Genome Atlas Research Network. 2011. Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615. http://dx.doi.org/10.1038/nature10166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.