8
Views
46
CrossRef citations to date
0
Altmetric
Research Article

Illegitimate Recombination Leading to Allelic Loss and Unbalanced Translocation in p53-Mutated Human Lymphoblastoid Cells

, , , , , & show all
Pages 4774-4781 | Received 13 Feb 1997, Accepted 29 Apr 1997, Published online: 29 Mar 2023

REFERENCES

  • Agapova, L., G. V. Ilyinskaya, N. A. Turovets, A. V. Ivanov, P. M. Chumakov, and B. P. Kopnin. 1996. Chromosome changes caused by alteration of p53 expression. Mutat. Res. 354:129–138.
  • Amundson, S. A., F. Xia, K. Wolfson, and H. L. Liber. 1993. Different cytotoxic and mutagenic responses induced by X-rays in two human lympho-blastoid cell lines derived from a single donor. Mutat. Res. 286:233–241.
  • Bakalkin, G., T. Yakovleva, G. Selivanova, K. Magnusson, L. Szekely, E. Kiseleva, G. Klein, L. Terenius, and K. G. Wiman. 1994. p53 binds singlestranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc. Natl. Acad. Sci. USA 91:413–417.
  • Baumann, P., F. E. Benson, and S. C. West. 1996. Human Rad51 protein promotes ATP-dependent homologous paring and strand transfer reactions in vivo. Cell 87:757–766.
  • Bollag, R. J., A. S. Waldman, and R. M. Liskay. 1989. Homologous recombination in mammalian cells. Annu. Rev. Genet. 23:199–225.
  • Bouffler, S. D., C. J. Kemp, A. Balmain, and R. Cox. 1995. Spontaneous and ionizing radiation-induced chromosomal abnormalities in p53-deficient mice. Cancer Res. 55:3883–3889.
  • Chaganti, R. S. K., S. Schonberg, and J. German. 1974. A manyfold increase in sister chromatid exchanges in Bloom’s syndrome lymphocytes. Proc. Natl. Acad. Sci. USA 71:4508–4512.
  • Cross, S. M., C. A. Sanchez, C. A. Morgan, M. K. Schimke, S. Ramel, R. L. Idzerda, W. H. Raskind, and B. J. Reid. 1995. A p53-dependent mouse spindle checkpoint. Science 267:1353–1356.
  • Ellis, N. A., J. Groden, T.-Z. Ye, J. Straughen, D. J. Lennon, S. Ciocci, M. Proytcheva, and J. German. 1995. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 17:655–666.
  • Ellis, N. A., D. J. Lennon, M. Proytcheva, B. Alhadeff, E. E. Henderson, and J. German. 1995. Somatic intragenic recombination within the mutated locus BLM can correct the high SCE phenotype of Bloom syndrome cells. Am. J. Hum. Genet. 57:1019–1027.
  • Fearon, E. R., and B. Vogelstein. 1990. A genetic model for colorectal tumorigenesis. Cell 61:759–767.
  • Fukasawa, K., T. Choi, R. Kuriyama, S. Rulong, and G. F. V. Woude. 1996. Abnormal centrosome amplification in the absence of p53. Science 271:1744–1747.
  • German, J. 1993. Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine 72:393–406.
  • German, J., R. Archibald, and D. Bloom. 1965. Chromosomal breakage in a rare and probably genetically determined syndrome of man. Science 148:506–507.
  • Grosovsky, A. J., K. K. Parks, C. R. Giver, and S. L. Nelson. 1996. Clonal analysis of delayed karyotypic abnormality and gene mutations in radiation-induced genetic instability. Mol. Cell. Biol. 16:6252–6262.
  • Hartmann, A., and G. Speit. 1995. Genotoxic effects of chemicals in the single cell gel (SCG) test with human blood cells in relation to the induction of sister-chromatid exchanges. Mutat. Res. 346:49–56.
  • Honma, M., M. Hayashi, and T. Sofuni. 1997. Cytotoxic and mutagenic responses to X-ray and chemical mutagens in normal and p53-mutated human lymphoblastoid cells. Mutat. Res. 374:89–98.
  • Honma, M., and J. B. Little. 1995. Recombinagenic activity of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate in human lymphoblastoid cells. Carcinogenesis 16:1717–1722.
  • Kastan, M. B., O. Onyekwere, D. Sidransky, B. Vogelstein, and R. W. Craig. 1991. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51:6304–6311.
  • Kern, S. E., K. W. Kinzler, S. J. Baker, J. M. Nigro, V. Rotter, A. J. Levine, P. Friedman, C. Prives, and B. Vogelstein. 1991. Mutant p53 proteins bind DNA abnormally in vitro. Oncogene 6:131–136.
  • Kodama, Y., C. J. Boreiko, T. R. Skopek, and L. Recio. 1989. Cytogenetic analysis of spontaneous and 2-cyanoethylene oxide-induced tk2/2 mutants in TK6 human lymphoblastoid cultures. Environ. Mol. Mutagen. 14:149–159.
  • Kuerbitz, S. J., B. S. Plunkett, W. V. Walsh, and M. B. Kastan. 1992. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. USA 89:7491–7495.
  • Lane, D. P. 1992. p53, guardian of the genome. Nature 358:15–16.
  • Lasko, D., and W. Cavenee. 1991. Loss of constitutional heterozygosity inhuman cancer. Annu. Rev. Genet. 25:281–314.
  • Lee, J. M., and A. Bernstein. 1993. p53 mutations increase resistance to ionizing radiation. Proc. Natl. Acad. Sci. USA 90:5742–5746.
  • Lim, D.-S., and P. Hasty. 1996. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol. Cell. Biol. 16:7133–7143.
  • Little, J. B., H. Nagasawa, P. C. Keng, Y. Yu, and C.-Y. Li. 1995. Absence of radiation-induced G1 arrest in two closely related human lymphoblast cell lines that differ in p53 status. J. Biol. Chem. 270:11033–11036.
  • Livingstone, L. R., A. White, J. Sprouse, E. Livanos, T. Jacks, and T. D. Tlsty. 1992. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923–935.
  • Loeb, L. A., and F. C. Christians. 1996. Multiple mutations in human cancer. Mutat. Res. 350:279–286.
  • Lu, X., and P. Lane. 1993. Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell 93:765–778.
  • Mitelman, F. (ed.). 1995. ISCN 1995: an international system for human cytogenetic nomenclature. Karger, Basel, Switzerland.
  • Morgan, W. F., J. P. Day, M. I. Kaplan, E. M. McGhee, and C. L. Limoli. 1996. Genomic instability induced by ionizing radiation. Radiat. Res. 146:247–258.
  • Mummenbrauer, T., F. Janus, B. Muller, L. Wiesmuller, W. Deppert, and F. Grosse. 1996. p53 protein exhibits 3′-to-5′ exonuclease activity. Cell 85:1089–1099.
  • Nowell, P. 1976. The clonal evolution of tumor cell populations. Science 194:23–28.
  • Oberosler, P., P. Hloch, U. Ramsperger, and H. Stahl. 1993. p53-catalyzed annealing of complementary single-stranded nucleic acid. EMBO J. 12:2389–2396.
  • Roth, D. B., T. Lindahl, and M. Gellert. 1991. Repair and recombination: how to make ends meet. Curr. Biol. 5:496–499.
  • Sands, A. T., M. B. Surakar, A. Sanchez, J. E. Marth, L. A. Donehower, and A. Bradley. 1995. p53 deficiency does not affect the accumulation of point mutations in a transgenic target. Proc. Natl. Acad. Sci. USA 92:8517–8521.
  • Selivanova, G., and K. G. Wilman. 1995. p53: a cell cycle regulator activated by DNA damage. Adv. Cancer Res. 66:143–180.
  • Sengstag, C. 1994. The role of mitotic recombination in carcinogenesis. Crit. Rev. Toxicol. 24:323–353.
  • Shinohara, A., H. Ogawa, Y. Matsuda, N. Ushio, K. Ikeo, and T. Ogawa. 1993. Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nat. Genet. 4:239–243.
  • Stahl, F. W. 1986. Role of double-strand breaks in generalized genetic recombination. Prog. Nucleic Acid Res. 33:169–194.
  • Storer, R. D., A. R. Kraynak, T. W. McKelvey, M. C. Elia, T. L. Goodrow, and J. G. DeLuca. 1996. The mouse lymphoma L5178Y TK1/2 cell line is heterozygous for a codon 170 mutation in the p53 tumor suppressor gene. Environ. Mol. Mutagen. 27(Suppl. 27):66.
  • Sturzbecher, H.-W., B. Donzelmann, W. Henning, U. Knippschild, and S. Buchhop. 1996. p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction. EMBO J. 15:1902–2002.
  • Suwa, A., M. Hirakta, Y. Takeda, S. A. Jesch, T. Mimori, and J. A. Hardin. 1994. DNA-dependent protein kinase (Ku protein-p350 complex) assembles on double-stranded DNA. Proc. Natl. Acad. Sci. USA 91:6904–6908.
  • Symonds, H., L. Krall, L. Remington, M. Saenz-Robels, S. Lowe, T. Jacks, and T. V. Dyke. 1994. p53-dependent apotosis suppresses tumor growth and progression in vivo. Cell 78:703–711.
  • Tachibana, A., K. Tatsumi, T. Masui, and T. Kato. 1996. Large deletions at the hprt locus associated with the mutator phenotype in a Bloom’s syndrome lymphoblastoid cell line. Mol. Carcinog. 17:41–47.
  • Tlsty, T. D., A. Briot, A. Gualberto, I. Hall, S. Hess, M. Hixon, D. Kuppuswamy, S. Romanov, M. Sage, and A. White. 1995. Genomic instability and cancer. Mutat. Res. 337:1–7.
  • Xia, F., S. A. Amundson, J. A. Nicolff, and H. L. Liber. 1994. Different capacities for recombination in closely related human lymphoblastoid cell lines with different mutational responses to X irradiation. Mol. Cell. Biol. 14:5850–5857.
  • Xia, F., X. Wang, Y.-H. Wang, N.-M. Tsang, D. W. Yandell, K. T. Kelsey, and H. L. Liber. 1995. Altered p53 status correlates with differences in sensitivity to radiation-induced mutation and apoptosis in two closely related human lymphoblast lines. Cancer Res. 55:12–15.
  • Yin, Y., M. A. Tainsky, F. Z. Bischoff, L. C. Strong, and G. M. Wahl. 1992. Wild type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70:937–948.
  • Zhang, L.-S., M. Honma, A. Matsuoka, T. Suzuki, T. Sofuni, and M. Hayashi. 1996. Chromosome painting analysis of spontaneous and methyl methanesulfonate-induced trifluorothymidine-resistant L5178Y cell colonies. Mutat. Res. 370:181–190.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.