49
Views
207
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Growth Arrest and DNA Damage-Inducible Protein GADD34 Assembles a Novel Signaling Complex Containing Protein Phosphatase 1 and Inhibitor 1

, , , &
Pages 6841-6850 | Received 05 Feb 2001, Accepted 09 Jul 2001, Published online: 27 Mar 2023

REFERENCES

  • Adler, H. T., R. Chinery, D. Y. Wu, S. J. Kussick, J. M. Payne, A. J. Fornace, and D. C. Tkachuk. 1999. Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins. Mol. Cell. Biol. 19:7050–7060.
  • Aggen, J. B., A. C. Nairn, and R. Chamberlin. 2000. Regulation of protein phosphatase-1. Chem. Biol. 7:13–23.
  • Allen, P. B., O. Hvalby, V. Jensen, M. L. Errington, M. Ramsay, F. A. Chaudhry, T. V. Bliss, J. Storm-Mathisen, R. G. Morris, P. Andersen, and P. Greengard. 2000. Protein phosphatase-1 regulation in the induction of long-term potentiation: heterogeneous molecular mechanisms. J. Neurosci. 20:3537–3543.
  • Bibb, J. A., A. Nishi, J. P. O'Callaghan, J. Ule, M. Lan, G. L. Snyder, A. Horiuchi, T. Saito, S. Hisanaga, A. J. Czernik, A. C. Nairn, and P. Greengard. 2001. Phosphorylation of protein phosphatase inhibitor-1 by Cdk5 J. Biol. Chem. 276:14490–14497.
  • Blitzer, R. D., J. H. Connor, G. P. Brown, T. Wong, S. Shenolikar, R. Iyengar, and E. M. Landau. 1998. Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 280:1940–1942.
  • Bollen, M., and W. Stalmans. 1992. The structure, role, and regulation of type 1 protein phosphatases. Crit. Rev. Biochem. Mol. Biol. 27:227–281.
  • Brady, M. J., J. A. Printen, C. C. Mastick, and A. R. Saltiel. 1997. Role of protein targeting to glycogen (PTG) in the regulation of protein phosphatase-1 activity. J. Biol. Chem. 272:20198–20204.
  • Brown, G. P., R. D. Blitzer, J. H. Connor, T. Wong, S. Shenolikar, R. Iyengar, and E. M. Landau. 2000. Long-term potentiation induced by theta frequency stimulation is regulated by a protein phosphatase-1-operated gate. J. Neurosci. 20:7880–7887.
  • Brown, S. M., A. R. MacLean, E. A. McKie, and J. Harland. 1997. The herpes simplex virus virulence factor ICP34.5 and the cellular protein MyD116 complex with proliferating cell nuclear antigen through the 63-amino-acid domain conserved in ICP34.5, MyD116, and GADD34. J. Virol. 71:9442–9449.
  • Connor, J. H., H. Quan, C. Oliver, and S. Shenolikar. 1998. Inhibitor-1, a regulator of protein phosphatase 1 function. Methods Mol. Biol. 93:41–58.
  • Connor, J. H., T. Kleeman, S. Barik, R. E. Honkanen, and S. Shenolikar. 1999. Importance of the beta12-beta13 loop in protein phosphatase-1 catalytic subunit for inhibition by toxins and mammalian protein inhibitors. J. Biol. Chem. 274:22366–22372.
  • Connor, J. H., H. N. Quan, N. T. Ramaswamy, L. Zhang, S. Barik, J. Zheng, J. F. Cannon, E. Y. Lee, and S. Shenolikar. 1998. Inhibitor-1 interaction domain that mediates the inhibition of protein phosphatase-1. J. Biol. Chem. 273:27716–27724.
  • Connor, J. H., D. Frederick, H. B. Huang, J. Yang, N. R. Helps, P. T. Cohen, A. C. Nairn, A. DePaoli-Roach, K. Tatchell, and S. Shenolikar. 2000. Cellular mechanisms regulating protein phosphatase-1. A key functional interaction between inhibitor-2 and the type 1 protein phosphatase catalytic subunit. J. Biol. Chem. 275:18670–18675.
  • Damer, C. K., J. Partridge, W. R. Pearson, and T. A. Haystead. 1998. Rapid identification of protein phosphatase 1-binding proteins by mixed peptide sequencing and data base searching. Characterization of a novel holoenzymic form of protein phosphatase 1. J. Biol. Chem. 273:24396–24405.
  • Dent, P., L. K. MacDougall, C. MacKintosh, D. G. Campbell, and P. Cohen. 1992. A myofibrillar protein phosphatase from rabbit skeletal muscle contains the beta isoform of protein phosphatase-1 complexed to a regulatory subunit which greatly enhances the dephosphorylation of myosin. Eur. J. Biochem. 210:1037–1044.
  • Egloff, M. P., D. F. Johnson, G. Moorhead, P. T. Cohen, P. Cohen, and D. Barford. 1997. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 16:1876–1887.
  • Elbrecht, A., J. DiRenzo, R. G. Smith, and S. Shenolikar. 1990. Molecular cloning of protein phosphatase inhibitor-1 and its expression in rat and rabbit tissues. J. Biol. Chem. 265:13415–13418.
  • Endo, S., S. D. Critz, J. H. Byrne, and S. Shenolikar. 1995. Protein phosphatase-1 regulates outward K+ currents in sensory neurons of Aplysia californica. J. Neurochem. 64:1833–1840.
  • Endo, S., X. Zhou, J. Connor, B. Wang, and S. Shenolikar. 1996. Multiple structural elements define the specificity of recombinant human inhibitor-1 as a protein phosphatase-1 inhibitor. Biochemistry 35:5220–5228.
  • Endo, S., J. H. Connor, B. Forney, L. Zhang, T. S. Ingebritsen, E. Y. Lee, and S. Shenolikar. 1997. Conversion of protein phosphatase 1 catalytic subunit to a Mn2+-dependent enzyme impairs its regulation by inhibitor 1. Biochemistry 36:6986–6992.
  • Ernst, V., D. H. Levin, R. S. Ranu, and I. M. London. 1976. Control of protein synthesis in reticulocyte lysates: effects of 3′:5′- cyclic AMP, ATP, and GTP on inhibitions induced by heme deficiency, double-stranded RNA, and a reticulocyte translational inhibitor. Proc. Natl. Acad. Sci. USA 73:1112–1116.
  • Ernst, V., D. H. Levin, J. G. Foulkes, and I. M. London. 1982. Effects of skeletal muscle protein phosphatase inhibitor-2 on protein synthesis and protein phosphorylation in rabbit reticulocyte lysates. Proc. Natl. Acad. Sci. USA 79:7092–7096.
  • Eto, M., A. Karginov, and D. L. Brautigan. 1999. A novel phosphoprotein inhibitor of protein type-1 phosphatase holoenzymes. Biochemistry 38:16952–16957.
  • Fienberg, A. A., N. Hiroi, P. G. Mermelstein, W. Song, G. L. Snyder, A. Nishi, A. Cheramy, J. P. O'Callaghan, D. B. Miller, D. G. Cole, R. Corbett, C. N. Haile, D. C. Cooper, S. P. Onn, A. A. Grace, C. C. Ouimet, F. J. White, S. E. Hyman, D. J. Surmeier, J. Girault, E. J. Nestler, and P. Greengard. 1998. DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 281:838–842.
  • Fienberg, A. A., and P. Greengard. 2000. The DARPP-32 knockout mouse. Brain Res. Rev. 31:313–319.
  • Florio, T., B. A. Perrino, and P. J. Stork. 1996. Cyclic 3,5 adenoise monophosphate and cyclosporin A inhibit cellular proliferation and serine/threonine protein phosphatase activity in pituitary cells. Endocrinology 137:4409–4418.
  • Fornace, A. J. Jr., D. W. Nebert, M. C. Hollander, J. D. Luethy, M. Papathanasiou, J. Fargnoli, and N. J. Holbrook. 1989. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol. Cell. Biol. 9:4196–4203.
  • Foulkes, J. G., and P. Cohen. 1979. The hormonal control of glycogen metabolism: phosphorylation of protein phosphatase inhibitor-1 in vivo in response to adrenaline. Eur. J. Biochem. 97:251–256.
  • Foulkes, J. G., P. Cohen, S. J. Strada, W. V. Everson, and L. S. Jefferson. 1982. Antagonistic effects of insulin and beta-adrenergic agonists on the activity of protein phosphatase inhibitor-1 in skeletal muscle of the perfused rat hemicorpus. J. Biol. Chem. 257:12493–12496.
  • Frerichs, K. U., C. B. Smith, M. Brenner, D. J. DeGracia, G. S. Krause, L. Marrone, T. E. Dever, and J. M. Hallenbeck. 1998. Suppression of protein synthesis in brain during hibernation involves inhibition of protein initiation and elongation. Proc. Natl. Acad. Sci. USA 95:14511–14516.
  • Hagiwara, M., A. Alberts, P. Brindle, J. Meinkoth, J. Feramisco, T. Deng, M. Karin, S. Shenolikar, and M. Montminy. 1992. Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB. Cell 70:105–113.
  • Hasegawa, T., H. Xiao, and K. Isobe. 1999. Cloning of a GADD34-like gene that interacts with the zinc-finger transcription factor which binds to the p21(WAF) promoter. Biochem. Biophys. Res. Commun. 256:249–254.
  • Hasegawa, T., A. Yagi, and K. Isobe. 2000. Interaction between GADD34 and kinesin superfamily, KIF3A. Biochem. Biophys. Res. Commun. 267:593–596.
  • He, B., M. Gross, and B. Roizman. 1997. The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc. Natl. Acad. Sci. USA 94:843–848.
  • He, B., M. Gross, and B. Roizman. 1998. The gamma134.5 protein of herpes simplex virus 1 has the structural and functional attributes of a protein phosphatase 1 regulatory subunit and is present in a high molecular weight complex with the enzyme in infected cells. J. Biol. Chem. 273:20737–20743.
  • Hemmings, H. C., J. A. Girault, A. C. Nairn, G. Bertuzzi, and P. Greengard. 1992. Distribution of protein phosphatase inhibitor-1 in brain and peripheral tissues of various species: comparison with DARPP-32. J. Neurochem. 59:1053–1061.
  • Higuchi, E., A. Nishi, H. Higashi, Y. Ito, and H. Kato. 2000. Phosphorylation of protein phosphatase-1 inhibitors, inhibitor-1 and DARPP-32, in renal medulla. Eur. J. Pharmacol. 408:107–116.
  • Hiraga, A., and P. Cohen. 1986. Phosphorylation of the glycogen-binding subunit of protein phosphatase-1G by cyclic-AMP-dependent protein kinase promotes translocation of the phosphatase from glycogen to cytosol in rabbit skeletal muscle. Eur. J. Biochem. 161:763–769.
  • Huang, F. L., and W. H. Glinsmann. 1975. Inactivation of rabbit muscle phosphorylase phosphatase by cyclic AMP-dependent kinase. Proc. Natl. Acad. Sci. USA 72:3004–3008.
  • Huang, K. X., and H. K. Paudel. 2000. Ser67-phosphorylated inhibitor 1 is a potent protein phosphatase 1 inhibitor. Proc. Natl. Acad. Sci. USA 97:5824–5829.
  • Hubbard, M. J., and P. Cohen. 1989. Regulation of protein phosphatase-1G from rabbit skeletal muscle. 2. Catalytic subunit translocation is a mechanism for reversible inhibition of activity toward glycogen-bound substrates. Eur. J. Biochem. 186:711–716.
  • Hubbard, M. J., and P. Cohen. 1993. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem. Sci. 18:172–177.
  • Jackman, J., I. Alamo Jr., and A. J. Fornace. 1994. Genotoxic stress confers preferential and coordinate messenger RNA stability on the five GADD genes. Cancer Res. 54:5656–5662.
  • James, P., J. Halladay, and E. A. Craig. 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436.
  • Khatra, B. S., J. L. Chiasson, H. Shikama, J. H. Exton, and T. R. Soderling. 1980. Effect of epinephrine and insulin on the phosphorylation of phosphorylase phosphatase inhibitor 1 in perfused rat skeletal muscle. FEBS Lett. 114:253–256.
  • Kimball, S. R., R. L. Horetsky, R. Jagus, and L. S. Jefferson. 1998. Expression and purification of the alpha-subunit of eukaryotic initiation factor eIF-2: use as a kinase substrate. Protein Expr. Purif. 12:415–419.
  • Levin, D., V. Ernst, and I. M. London. 1979. Effects of the catalytic subunit of cAMP-dependent protein kinase (type II) from reticulocytes and bovine heart muscle on protein phosphorylation and protein synthesis in reticulocyte lysates. J. Biol. Chem. 254:7935–7941.
  • Li, L., M. Eto, M. R. Lee, F. Morita, M. Yazawa, and T. Kitazawa. 1998. Possible involvement of the novel CPI-17 protein in protein kinase C signal transduction of rabbit arterial smooth muscle. J. Physiol. (London) 508:871–881.
  • Lord, K. A., B. Hoffman-Liebermann, and D. A. Liebermann. 1990. Complexity of the immediate early response of myeloid cells to terminal differentiation and growth arrest includes ICAM-1, Jun-B and histone variants. Oncogene 5:387–396.
  • MacDougall, L. K., D. G. Campbell, M. J. Hubbard, and P. Cohen. 1989. Partial structure and hormonal regulation of rabbit liver inhibitor-1; distribution of inhibitor-1 and inhibitor-2 in rabbit and rat tissues. Biochim. Biophys. Acta 1010:218–226.
  • McAvoy, T., P. B. Allen, H. Obaishi, H. Nakanishi, Y. Takai, P. Greengard, A. C. Nairn, and H. C. Hemmings. 1999. Regulation of neurabin I interaction with protein phosphatase 1 by phosphorylation. Biochemistry 38:12943–12949.
  • Munoz, F., M. E. Martin, J. M. Tomico, J. Berlanga, M. Salinas, and J. L. Fando. 2000. Ischemia-induced phosphorylation of initiation factor 2 in differentiated PC12 cells: role for initiation factor 2 phosphatase. J. Neurochem. 75:2335–2345.
  • Nairn, A. C., H. C. Hemmings, S. I. Walaas, and P. Greengard. 1988. DARPP-32 and phosphatase inhibitor-1, two structurally related inhibitors of protein phosphatase-1, are both present in striatonigral neurons. J. Neurochem. 50:257–262.
  • Nimmo, G. A., and P. Cohen. 1978. The regulation of glycogen metabolism. Purification and characterisation of protein phosphatase inhibitor-1 from rabbit skeletal muscle. Eur. J. Biochem. 87:341–351.
  • Petryshyn, R., D. H. Levin, and I. M. London. 1982. Regulation of double-stranded RNA-activated eukaryotic initiation factor 2 alpha kinase by type 2 protein phosphatase in reticulocyte lysates. Proc. Natl. Acad. Sci. USA 79:6512–6516.
  • Schillace, R. V., J. W. Voltz, S. Shenolikar, and J. D. Scott. 2001. Multiple interactions within the AKAP220 signaling complex contribute to protein phosphatase 1 regulation. J. Biol. Chem. 276:12128–12134.
  • Scrimgeour, A. G., P. B. Allen, A. A. Fienberg, P. Greengard, and J. C. Lawrence. 1999. Inhibitor-1 is not required for the activation of glycogen synthase by insulin in skeletal muscle. J. Biol. Chem. 274:20949–20952.
  • Senba, S., M. Eto, and M. Yazawa. 1999. Identification of trimeric myosin phosphatase (PP1M) as a target for a novel PKC-potentiated protein phosphatase-1 inhibitory protein (CPI17) in porcine aorta smooth muscle. J. Biochem. 125:354–362.
  • Sheikh, M. S., and A. J. Fornace. 1999. Regulation of translation initiation following stress. Oncogene 18:6121–6128.
  • Shenolikar, S.. 1994. Protein serine/threonine phosphatases—new avenues for cell regulation. Annu. Rev. Cell Biol. 10:55–86.
  • Shenolikar, S., and T. S. Ingebritsen. 1984. Protein (serine and threonine) phosphate phosphatases. Methods Enzymol. 107:102–129.
  • Srivastava, S. P., K. U. Kumar, and R. J. Kaufman. 1998. Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase. J. Biol. Chem. 273:2416–2423.
  • Stralfors, P., A. Hiraga, and P. Cohen. 1985. The protein phosphatases involved in cellular regulation. Purification and characterisation of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle. Eur. J. Biochem. 149:295–303.
  • Su, Z. Z., Y. Shi, and P. B. Fisher. 1997. Subtraction hybridization identifies a transformation progression-associated gene PEG-3 with sequence homology to a growth arrest and DNA damage-inducible gene. Proc. Natl. Acad. Sci. USA 94:9125–9130.
  • Terry-Lorenzo, R. T., M. Inoue, J. H. Connor, T. A. Haystead, B. N. Armbruster, R. P. Gupta, C. J. Oliver, and S. Shenolikar. 2000. Neurofilament-L is a protein phosphatase-1-binding protein associated with neuronal plasma membrane and postsynaptic density. J. Biol. Chem. 275:2439–2446.
  • Wek, R. C., J. F. Cannon, T. E. Dever, and A. G. Hinnebusch. 1992. Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2α kinase GCN2. Mol. Cell. Biol. 12:5700–5710.
  • Yanagida, M., N. Kinoshita, E. M. Stone, and H. Yamano. 1992. Protein phosphatases and cell division cycle control. CIBA Found. Symp. 170:130–140.
  • Zheng, J., M. Khalil, and J. F. Cannon. 2000. Glc7p protein phosphatase inhibits expression of glutamine-fructose-6-phosphate transaminase from GFA1. J. Biol. Chem. 275:18070–18078.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.