29
Views
129
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Induction of Distinct [URE3] Yeast Prion Strains

, &
Pages 7035-7046 | Received 07 May 2001, Accepted 18 Jul 2001, Published online: 27 Mar 2023

REFERENCES

  • Beck, T., and M. N. Hall. 1999. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692.
  • Bessen, R. A., and R. F. Marsh. 1994. Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J. Virol. 68:7859–7868.
  • Bonneaud, N., O. Ozier-Kalogeropoulos, G. Y. Li, M. Labouesse, L. Minvielle-Sebastia, and F. Lacroute. 1991. A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast 7:609–615.
  • Bruce, M. E., and A. G. Dickinson. 1987. Biological evidence that the scrapie agent has an independent genome. J. Gen. Virol. 68:79–89.
  • Cardenas, M. E., N. S. Cutler, M. C. Lorenz, C. J. Di Como, and J. Heitman. 1999. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev. 13:3271–3279.
  • Chernoff, Y. O., A. P. Galkin, E. Lewitin, T. A. Chernova, G. P. Newnam, and S. M. Belenkiy. 2000. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol. Microbiol. 35:865–876.
  • Chernoff, Y. O., S. L. Lindquist, B. Ono, S. G. Inge-Vechtomov, and S. W. Liebman. 1995. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268:880–884.
  • Chernoff, Y. O., G. P. Newnam, J. Kumar, K. Allen, and A. D. Zink. 1999. Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone Ssb in formation, stability, and toxicity of the [PSI] prion. Mol. Cell. Biol. 19:8103–8112.
  • Chesebro, B.. 1998. Prion diseases. BSE and prions: uncertainties about the agent. Science 279:42–43.
  • Chien, P., and J. S. Weissman. 2001. Conformational diversity in a yeast prion dictates its seeding specificity. Nature 410:223–227.
  • Coffman, J. A., H. M. el Berry, and T. G. Cooper. 1994. The URE2 protein regulates nitrogen catabolic gene expression through the GATAA-containing UASNTR element in Saccharomyces cerevisiae. J. Bacteriol. 176:7476–7483.
  • Coschigano, P. W., and B. Magasanik. 1991. The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione S-transferases. Mol. Cell. Biol. 11:822–832.
  • DePace, A. H., A. Santoso, P. Hillner, and J. S. Weissman. 1998. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93:1241–1252.
  • Derkatch, I. L., M. E. Bradley, P. Zhou, Y. O. Chernoff, and S. W. Liebman. 1997. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147:507–519.
  • Derkatch, I. L., M. E. Bradley, P. Zhou, and S. W. Liebman. 1999. The PNM2 mutation in the prion protein domain of SUP35 has distinct effects on different variants of the [PSI+] prion in yeast. Curr. Genet. 35:59–67.
  • Derkatch, I. L., Y. O. Chernoff, V. V. Kushnirov, S. G. Inge-Vechtomov, and S. W. Liebman. 1996. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144:1375–1386.
  • Dickinson, A. G.. 1976. Scrapie in sheep and goats. Slow virus diseases of animals and man.. R. H. Kimberlin. 209–241. North-Holland Publishing Co., Amsterdam, The Netherlands
  • Doel, S. M., S. J. McCready, C. R. Nierras, and B. S. Cox. 1994. The dominant PNM2− mutation which eliminates the ψ factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137:659–670.
  • Edskes, H. K., V. T. Gray, and R. B. Wickner. 1999. The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments. Proc. Natl. Acad. Sci. USA 96:1498–1503.
  • Edskes, H. K., and R. B. Wickner. 2000. A protein required for prion generation: [URE3] induction requires the Ras-regulated Mks1 protein. Proc. Natl. Acad. Sci. USA 97:6625–6629.
  • Fernandez-Bellot, E., E. Guillemet, and C. Cullin. 2000. The yeast prion [URE3] can be greatly induced by a functional mutated URE2 allele. EMBO J. 19:3215–3222.
  • Glover, J. R., A. S. Kowal, E. C. Schirmer, M. M. Patino, J.-J. Liu, and S. Lindquist. 1997. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89:811–819.
  • Güldener, U., S. Heck, T. Fiedler, J. Beinhauer, and J. H. Hegemann. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24:2519–2524.
  • Guthrie, C., and G. R. Fink. 1991. Methods in enzymology 194. Guide to yeast genetics and molecular biology, Academic Press, Inc., New York, N.Y
  • Hardwick, J. S., F. G. Kuruvilla, J. K. Tong, A. F. Shamji, and S. L. Schreiber. 1999. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc. Natl. Acad. Sci. USA 96:14866–14870.
  • Hill, J. E., A. M. Myers, T. J. Koerner, and A. Tzagoloff. 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167.
  • King, C.-Y., P. Tittman, H. Gross, R. Gebert, M. Aebi, and K. Wüthrich. 1997. Prion-inducing domain 2-114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc. Natl. Acad. Sci. USA 94:6618–6622.
  • Kushnirov, V. V., N. V. Kochneva-Pervukhova, M. B. Chechenova, N. S. Frolova, and M. D. Ter-Avanesyan. 2000. Prion properties of the Sup35 protein of yeast Pichia methanolica. EMBO J. 19:324–331.
  • Lacroute, F.. 1971. Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 106:519–522.
  • Liu, J. J., and S. Lindquist. 1999. Oligopeptide-repeat expansions modulate ‘protein-only’ inheritance in yeast. Nature 400:573–576.
  • Maddelein, M. L., and R. B. Wickner. 1999. Two prion-inducing regions of Ure2p are nonoverlapping. Mol. Cell. Biol. 19:4516–4524.
  • Magasanik, B.. 1992. Regulation of nitrogen utilization. The molecular and cellular biology of the yeast Saccharomyces: gene expression. J. N. Strathern, E. W. Jones, and J. R. Broach. II:283–317. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Masison, D. C., and R. B. Wickner. 1995. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270:93–95.
  • Moriyama, H., H. K. Edskes, and R. B. Wickner. 2000. [URE3] prion propagation in Saccharomyces cerevisiae: requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p. Mol. Cell. Biol. 20:8916–8922.
  • Newnam, G. P., R. D. Wegrzyn, S. L. Lindquist, and Y. O. Chernoff. 1999. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol. Cell. Biol. 19:1325–1333.
  • Nishida, N., D. A. Harris, D. Vilette, H. Laude, Y. Frobert, J. Grassi, D. Casanova, O. Milhavet, and S. Lehmann. 2000. Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-type mouse prion protein. J. Virol. 74:320–325.
  • Patino, M. M., J.-J. Liu, J. R. Glover, and S. Lindquist. 1996. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273:622–626.
  • Paushkin, S. V., V. V. Kushnirov, V. N. Smirnov, and M. D. Ter-Avanesyan. 1997. In vitro propagation of the prion-like state of yeast Sup35 protein. Science 277:381–383.
  • Paushkin, S. V., V. V. Kushnirov, V. N. Smirnov, and M. D. Ter-Avanesyan. 1996. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 15:3127–3134.
  • Peretz, D., M. Scott, D. Groth, A. Williamson, D. Burton, F. E. Cohen, and S. B. Prusiner. 2001. Strain-specified relative conformational stability of the scrapie prion protein. Protein Sci. 10:854–863.
  • Safar, J., H. Wille, V. Itri, D. Groth, H. Serban, M. Torchia, F. E. Cohen, and S. B. Prusiner. 1998. Eight prion strains have PrPSc molecules with different conformations. Nat. Med. 4:1157–1165.
  • Santoso, A., P. Chien, L. Z. Osherovich, and J. S. Weissman. 2000. Molecular basis of a yeast prion species barrier. Cell 100:277–288.
  • Schlumpberger, M., H. Wille, M. A. Baldwin, D. A. Butler, I. Herskowitz, and S. B. Prusiner. 2000. The prion domain of yeast Ure2p induces autocatalytic formation of amyloid fibers by a recombinant fusion protein. Protein Sci. 9:440–451.
  • Scott, M. R., D. Groth, J. Tatzelt, M. Torchia, P. Tremblay, S. J. DeArmond, and S. B. Prusiner. 1997. Propagation of prion strains through specific conformers of the prion protein. J. Virol. 71:9032–9044.
  • Sparrer, H. E., A. Santoso, F. C. Szoka Jr., and J. S. Weissman. 2000. Evidence for the prion hypothesis: induction of the yeast [PSI+] factor by in vitro-converted Sup35 protein. Science 289:595–599.
  • Speransky, V. V., K. L. Taylor, H. K. Edskes, R. B. Wickner, and A. C. Steven. 2001. Prion filament networks in [URE3] cells of Saccharomyces cerevisiae. J. Cell Biol. 153:1327–1336.
  • Taylor, K. L., N. Cheng, R. W. Williams, A. C. Steven, and R. B. Wickner. 1999. Prion domain initiation of amyloid formation in vitro from native Ure2p. Science 283:1339–1343.
  • Telling, G. C., P. Parchi, S. J. DeArmond, P. Cortelli, P. Montagna, R. Gabizon, J. Mastrianni, E. Lugaresi, P. Gambetti, and S. B. Prusiner. 1996. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274:2079–2082.
  • Ter-Avanesyan, M. D., A. R. Dagkesamanskaya, V. V. Kushnirov, and V. N. Smirnov. 1994. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137:671–676.
  • Thomas, B. J., and R. Rothstein. 1989. Elevated recombination rates in transcriptionally active DNA. Cell 4:619–630.
  • Thual, G., A. A. Komar, L. Bousset, E. Fernandez-Bellot, C. Cullin, and R. Melki. 1999. Structural characterization of Saccharomyces cerevisiae prion-like protein Ure2. J. Biol. Chem. 274:13666–13674.
  • Tuite, M. F.. 2000. Yeast prions and their prion-forming domain. Cell 100:289–292.
  • Turoscy, V., and T. G. Cooper. 1987. Ureidosuccinate is transported by the allantoate transport system in Saccharomyces cerevisiae. J. Bacteriol. 169:2598–2600.
  • Wickner, R. B.. 1994. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264:566–569.
  • Wickner, R. B., K. L. Taylor, H. K. Edskes, and M. L. Maddelein. 2000. Prions: portable prion domains. Curr. Biol. 10:R335–R337.
  • Zaret, K. S., and F. Sherman. 1985. α-Aminoadipate as a primary nitrogen source for Saccharomyces cerevisiae mutants. J. Bacteriol. 162:579–583.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.