Publication Cover
Redox Report
Communications in Free Radical Research
Volume 9, 2004 - Issue 5
373
Views
38
CrossRef citations to date
0
Altmetric
Reviews

Free radical theory of apoptosis and metamorphosis

, , , , &
Pages 238-248 | Published online: 19 Jul 2013

REFERENCES

  • Ames B. Endogenous oxidative DNA damage, aging and cancer. Free Radic Res Commun 1998; 7: 121–128.
  • Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res 1997; 387: 147–163.
  • Sato ES, Higashino M, Ikeda K et al. Oxidative stress-induced cell death of human oral neutrophils. Am J Physiol 2003; 284: C1048–C1053.
  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979; 59: 527–605.
  • Douglas R, Reed JC. Mitochondria and apoptosis. Science 1998; 281: 1309–1312.
  • Kroemer G. The proto-oncogene Bc1-2 and its role in regulating apoptosis. Nat Med 1997; 3: 614–620.
  • Nunez G, Benedict MA, Hu Y, Inohara N. Caspases: the proteases of the apoptotic pathway. Oncogene 1998; 17: 3237–3245.
  • Chakraborti T, Das S, Mondal M, Roychoudhury S, Chakraborti S. Oxidant, mitochondria and calcium: an overview. Cell Signal 1999; 11: 77–65.
  • Lenaz G, Bovina C, D'Aurelio M et al. Role of mitochondria in oxidative stress and aging. Ann NY Acad Sci 2002; 959: 199–213.
  • Mayer M, Noble M. N-acetyl-L-cysteine is a pluripotent protector against cell death and enhancer of trophic factor-mediated cell survival in vitro. Proc Natl Acad Sci USA 1994; 91: 7496-7500
  • Nordberg J, Amer ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001; 31: 1287–1312
  • Carmody RJ, Cotter TG. Signalling apoptosis: a radical approach. Redox Report 2001; 6: 77–90.
  • Jacobson MD. Reactive oxygen species and programmed cell death. Trends Biochem Sci 1996; 21: 83–86.
  • Salvesen GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell 1997: 91: 443–446.
  • Green DR, Reed JC. Mitochondria and apoptosis. Science 1998: 281: 1309–1312.
  • Kuida K. Caspase-9. Int J Biochem Cell Biol 2000; 32: 121–124.
  • Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta 1995; 1241: 139–176.
  • Tatton WG, Olanow CW. Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta 1999; 1410: 195–213.
  • Scorrano L, Nicolli A, Basso E, Petronilli V, Bernardi P. Two modes of activation of the permeability transition pore: the role of mitochondrial cyclophilin. Mol Cell Biochem 1997; 174: 181–184.
  • Fagian MM, Pereira-da-Silva L, Martins IS, Vercesi AE. Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca” plus prooxidants. J Biol Chem 1990; 265: 19955–19960.
  • Harris EJ, Baum H. Production of thiol groups and retention of calcium ions by cardiac mitochondria. Biochem J1980; 186: 725-732.
  • Valle VG, Fagian MM, Parentoni LS, Meinicke AR, Vercesi AE. The participation of reactive oxygen species and protein thiols in the mechanism of mitochondrial inner membrane permeabilization by calcium plus prooxidants. Arch Biochem Biophys 1993; 307: 1–7.
  • Bernardes CF, Meyer-Fernandes JR, Basseres DS, Castilho RF, Vercesi AE. Ca"-dependent permeabilization of the inner mitochondrial membrane by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). Biochim Biophys Acta 1994; 118: 93–100
  • Lenartowicz E, Bernardi P. Azzone GF. Phenylarsine oxide induces the cyclosporin A-sensitive membrane permeability transition in rat liver mitochondria. J Bioenerg Biomembr 1991; 23: 679–688.
  • Castilho RF, Kowaltowski AJ, Vercesi AE. The irreversibility of inner mitochondrial membrane permeabilization by Ca' plus prooxidants is determined by the extent of membrane protein thiol cross-linking. J Bioenerg Biomembr 1996; 28: 523–529
  • Castilho RF, Kowaltowski AJ, Meinicke AR, Bechara E, Vercesi AE. Permeabilization of the inner mitochondrial membrane by Ca' ions is stimulated by t-butyl hydroperoxide and mediated by reactive oxygen species generated by mitochondria. Free Radic Biol Med 1995; 18: 479–486.
  • McStay G, Clarke S, Halestrap P. Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem J2002; 367: 541–548.
  • Kushnareva Y, Haley L, Sokolove P. The role of low phosphate concentrations in regulation of mitochondrial permeability: modulation of matrix free Ca' concentration. Arch Biochem Biophys 1999; 363: 155–162.
  • Raha S, Robinson BH. Mitochondria, oxygen free radicals, and apoptosis. Am J Med Genet 2001; 106: 62–70.
  • Kowaltowski A, Castilho R, Grijalba M, Bechara E, Vercesi A. Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca' ions. A proposed model for phosphate stimulated lipid peroxidation. J Biol Chem 1996; 271: 2929–2934.
  • Kowaltowski A, Naia-da-Silva E, Castilho R, Vercesi A. Ca"- stimulated mitochondrial reactive oxygen species generation and permeability transition are inhibited by dibucaine or Mg'. Arch Biochem Biophys 1998; 359: 77–81.
  • Kowaltowski AJ, Castilho RF, Vercesi AE. Mitochondrial permeability transition and oxidative stress. FEBS Lett 2001; 495: 12–15.
  • Kanno T, Sato EF, Muranaka S et al. Oxidative stress underlies the mechanism for Ca"-induced permeability transition of mitochondria. Free Radic Res 2004; 38: 27–35.
  • Nishikimi A, Kira Y, Kasahara E et al. Tributyltin interacts with mitochondria and induces cytochrome c release. Biochem J2001; 356: 621–626.
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351–358.
  • Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–257.
  • Gudematsch JF. Feeding experiments on tadpoles. I. The influence of specific organs given as food on growth and differentiation: a contribution to the knowledge of organs with internal secretion. Arch Entwicklungsmech Org 1912; 35:475–483.
  • Kendall EC. The isolation in crystalline form of the compound containing iodine which occurs in the thyroid: its chemical nature and physiological activity. Trans Assoc Am Phys 1915; 30: 420 149
  • Kendall EC. Physiological action of the thyroid hormone. Am J Physio11919; 49: 136-137.
  • Leloup J, Buscaglia M. La triiodothyronine, hormone de la metamorphose des amphibiens. C R Acad Sci (Paris) 1977; 284D: 2261–2263.
  • White BA, Nicoll CS. Hormonal control of amphibian metamorphosis. In: Gilbert LI, Frieden E. (eds) Metamorphosis. A Problem in Developmental Biology. New York: Plenum, 1981; 363–396.
  • Burggren WW, Just JJ. Developmental changes in physiological systems. In: Feder ME, Burggren WW. (eds) Environmental Physiology of the Amphibians. Chicago, IL: The University of Chicago Press, 1992; 467–530.
  • Adler L. Metamorphosestudien an Batrachier-larven: 1. Exstirpation endokriner Drusen: A. Exstirpation der Hypophyse. Wilhelm Roux. Arch Entwicklungsmech Organism 1914; 39: 21–45.
  • Hanaoka Y. The effects of posterior hypothalectomy upon the growth and metamorphosis of the tadpole of Rana pipiens. Gen Comp Endocrinol 1967; 8: 417–431.
  • Kollros JJ. Mechanisms of amphibian metamorphosis: hormones. Am Zoo11961; 1: 107-114.
  • Just JJ. Protein-bound iodine and protein concentration in plasma and pericardial fluid of metamorphosing anuran tadpoles. Physiol Zool 1972; 45: 143–152.
  • Shi YB. Molecular biology of amphibian metamorphosis. A new approach to an old problem. TEM 1994; 5: 14–20.
  • Brown DD, Wang Z, Furlow JD et al. The thyroid hormone-induced tail resorption program during Xen opus laevis metamorphosis. Proc Natl Acad Sci USA 1996; 93: 1924–1929.
  • Gona AG. Radioiodine studies on prolactin action in tadpoles. Gen Comp Endocrinol 1968; 11:278–283.
  • Regard E, Mauchamp J. Activité peroxydasique dans la glande thyroide du Xénope au cours du développement larvaire: correlations avec l'organification de l'iodure et controle thyréotrope. J Microscop (Paris) 1973; 18: 291–306.
  • Regard E, Hourdry J. Modifications structurelles des cellules thyroidiennes chez la larve du Xénope traitée par la prolactine ovine: incidences sur le métabolisme de l'iode. J Microscop Biol Cell 1975; 22: 39–54.
  • Dodd MH, Dodd LM. The biology of metamorphosis. In: Lofts B. (ed) Physiology of the Amphibia, vol. 3. London: Academic Press, 1976; 467-599.
  • Tata JR, Kawahara A, Baker BS. Prolactin inhibits both thyroid hormone-induced morphogenesis and cell death in cultured amphibian larval tissues. Dev Biol 1991; 146: 72–80.
  • Iwamuro S, Tata JR. Contrasting patterns of expression of thyroid hormone and retinoid X receptor genes during hormonal manipulation of Xen opus tadpole tail regression in culture. Mol Cell Endocrinol 1995; 113:235–243.
  • Denver RJ, Pavgi S, Hi Y. Thyroid hormone-dependent gene expression program for Xen opus neural development. J Biol Chem 1997; 272: 8179–8188.
  • Hanada H, Kashiwagi A, Takehara Y et al. Do reactive oxygen species underlie the mechanism of apoptosis in the tadpole tail? Free Radic Biol Med 1997; 23: 294–301.
  • Kashiwagi A, Hanada H, Yabuki M et al. Thyroxine enhancement and the role of reactive oxygen species in tadpole tail apoptosis. Free Radic Biol Med 1999; 26: 100–109
  • Kashiwagi A, Kanno T, Arita K, Ishisaka R, Utsumi T, Utsumi K. Suppression of T(3)- and fatty acid-induced membrane permeability transition by L-carnitine. Comp Biochem Physiol B Biochem Mol Biol 2001; 130: 411–418
  • Hanada H, Katsu K, Kanno T et al. Cyclosporin A inhibits thyroid hormone-induced shortening of the tadpole tail through membrane permeability transition. Comp Biochem Physiol B Biochem Mol Biol 2003; 135: 473–483.
  • Brown CB, Russel JR, Howland JL. Antimycin-insensitive respiration in beef-heart mitochondria. Biochim Biophys Acta 1965; 110: 640–642.
  • Kashiwagi A. Peroxisomal enzyme activity changes in the tail of anuran tadpoles during metamorphosis. Comp Biochem Physiol B Biochem Mol Biol 1995; 111: 483–489.
  • Inoue M, Sato E, Park A et al. Crosstalk between NO and oxyradicals, a super system that regulates energy metabolism and survival of animals. Free Radic Res 2000; 33: 757–770.
  • Inoue M, Nishikawa M, Sato E et al. Cross-talk of NO, superoxide and molecular oxygen, a majesty of aerobic life. Free Radic Res 1999; 31: 251–260.
  • Chang B, Nishikawa M, Sato E, Inoue M. L-Carnitine inhibits cisplatin-induced injury of the kidney and small intestine. Arch Biochem Biophys 2002; 405: 55–64.
  • Choi H, Choi K, Okuda K et al. Occurrence of novel types of nitric oxide synthase in the silkworm, Bombyx mori. Biochem Biophys Res Commun 1995; 207: 452–459.
  • Morris Jr SM. Thyroxine elicits divergent changes in mRNA levels of two urea cycle enzymes and one gluconeogenic enzyme in tadpole liver. Arch Biochem Biophys 1987; 259: 144–148.
  • Helbing CC, Gergely G, Atkinson BG. Sequential up-regulation of thyroid hormone 13 receptor, ornithine transcarbamylase, and carbamyl phosphate synthetase mRNAs in the liver of Rana catesbeiana tadpoles during spontaneous and thyroid hormone-induced metamorphosis. Dev Genet 1992; 13: 289–301.
  • Helbing CC, Atkinson BG. 3,5,3'-triiodothyronine-induced carbamoyl-phosphate synthetase gene expression is stabilized in the liver of Rana catesbeiana tadpoles during heat shock. J Biol Chem 1994; 269: 11743–11750.
  • Xu Q, Baker BS, Tata JR. Developmental and hormonal regulation of the Xenopus liver-type arginine gene. Eur J Biochem 1993; 211: 891–898.
  • Iwase K, Yamauchi K, Ishikawa K. Cloning of cDNAs encoding argininosuccinate lyase and arginase from Rana catesbeiana liver and regulation of their mRNAs during spontaneous and thyroid hormone-induced metamorphosis. Biochim Biophys Acta 1995; 1260: 139–146.
  • Patterton D, Shi YB. Thyroid hormone-dependent differential regulation of multiple arginase genes during amphibian metamorphosis. J Biol Chem 1994; 269: 25328–25334.
  • Haraguchi Y, Takiguchi M, Amaya Y, Kawamoto S, Matsuda I, Mori M. Molecular cloning and nucleotide sequence of cDNA for human liver arginase. Proc Natl Acad Sci USA, 1987; 84: 412–415.
  • Kawamoto S, Amaya Y, Murakami K et al. Complete nucleotide sequence of cDNA and deduced amino acid sequence of rat liver arginase. J Biol Chem 1989; 262: 6280–6283.
  • Gotoh T, Sonoki T, Nagasaki A et al. Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line. FEBS Lett 1992; 395: 119–122
  • Vockley JG, Jenkinson CP, Shukla H, Kern RM, Grody WW, Cederbaum SD. Cloning and characterization of the human type II arginase gene. Genomics 1996; 38: 118–123.
  • Morris Jr SM, Bhamidipati D, Kepka-Lenhart D. Human type II arginase: sequence analysis and tissue-specific expression. Gene 1997; 193: 157–161.
  • Gotoh T, Mori M. Arginase II downregulates nitric oxide (NO) pro-duction and prevents NO-mediated apoptosis in murine macrophage-derived RAW 264.7 cells. J Cell Biol 1999; 144:427–434.
  • Mori M, Gotoh T. Regulation of nitric oxide production by arginine metabolizing enzymes. Biochem Biophys Res Commun 2000; 275: 715–719.
  • Yu H, Sato EF, Nagata K et al. Oxygen-dependent regulation of the respiration and growth of E. coli by nitric oxide. FEBS Lett 1997; 409: 161–165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.