988
Views
45
CrossRef citations to date
0
Altmetric
Original Article

Application of natural and semi-synthetic polymers for the delivery of sensitive drugs

, , , &
Pages 101-131 | Received 30 Oct 2013, Accepted 04 Sep 2014, Published online: 23 Sep 2014

References

  • des Rieux A, Fievez V, Garinot M, Schneider YJ and Preat V: ‘Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach’, J. Control. Release, 2006, 116, (1), 1–27.
  • Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX and Kissel T: ‘Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake?’ Eur. J. Pharm. Biopharm., 2000, 50, (1), 147–160.
  • Woodley JF: ‘Enzymatic barriers for Gi peptide and protein delivery’, Crit. Rev. Ther. Drug, 1994, 11, (2–3), 61–95.
  • Cregg JM, Cereghino JL, Shi JY and Higgins DR: ‘Recombinant protein expression in Pichia pastoris’, Mol. Biotechnol., 2000, 16, (1), 23–52.
  • Huang CJ, Lin H and Yang XM: ‘Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements’, J. Ind. Microbiol. Biotechnol., 2012, 39, (3), 383–399.
  • Shukla AA, Hubbard B, Tressel T, Guhan S and Low D: ‘Downstream processing of monoclonal antibodies – application of platform approaches’, J. Chromatogr. B, 2007, 848, (1), 28–39.
  • Manning MC, Chou DK, Murphy BM, Payne RW and Katayama DS: ‘Stability of protein pharmaceuticals: an update’, Pharm. Res., 2010, 27, (4), 544–575.
  • Barnes LM, Bentley CM and Dickson AJ: ‘Stability of protein production from recombinant mammalian cells’, Biotechnol. Bioeng., 2003, 81, (6), 631–639.
  • Federici M, Lubiniecki A, Manikwar P and Volkin DB: ‘Analytical lessons learned from selected therapeutic protein drug comparability studies’, Biologicals, 2013, 41, (3), 131–147.
  • Cromwell MEM, Hilario E and Jacobson F: ‘Protein aggregation and bioprocessing’, AAPS J., 2006, 8, (3), E572–E579.
  • Kwon YM, Baudys M, Knutson K and Kim SW: ‘In situ study of insulin aggregation induced by water-organic solvent interface’, Pharm. Res., 2001, 18, (12), 1754–1759.
  • Wang JJ, Chua KM and Wang CH: ‘Stabilization and encapsulation of human immunoglobulin G into biodegradable microspheres’, J. Colloid Interface Sci., 2004, 271, (1), 92–101.
  • De Rosa G, Iommelli R, La Rotonda MI, Miro A and Quaglia F: ‘Influence of the co-encapsulation of different non-ionic surfactants on the properties of PLGA insulin-loaded microspheres’, J. Control. Release, 2000, 69, (2), 283–295.
  • Jiang G, Woo BH, Kang FR, Singh J and DeLuca PP: ‘Assessment of protein release kinetics, stability and protein polymer interaction of lysozyme encapsulated poly (d,l-lactide-co-glycolide) microspheres’, J. Control. Release, 2002, 79, (1–3), 137–145.
  • Paillard-Giteau A, Tran VT, Thomas O, Garric X, Coudane J, Marchal S, Chourpa I, Benoit JP, Montero-Menei CN and Venier-Julienne MC: ‘Effect of various additives and polymers on lysozyme release from PLGA microspheres prepared by an s/o/w emulsion technique’, Eur. J. Pharm. Biopharm., 2010, 75, (2), 128–136.
  • Kim HK and Park TG: ‘Microencapsulation of human growth hormone within biodegradable polyester microspheres: protein aggregation stability and incomplete release mechanism’, Biotechnol. Bioeng., 1999, 65, (6), 659–667.
  • Wei Y, Wang YX, Kang AJ, Wang W, Ho SV, Gao JF, Ma GH and Su ZG: ‘A novel sustained-release formulation of recombinant human growth hormone and its pharmacokinetic, pharmacodynamic and safety profiles’, Mol. Pharm., 2012, 9, (7), 2039–2048.
  • He JT, Feng MY, Zhou XL, Ma SF, Jiang Y, Wang Y and Zhang HX: ‘Stabilization and encapsulation of recombinant human erythropoietin into PLGA microspheres using human serum albumin as a stabilizer’, Int. J. Pharm., 2011, 416, (1), 69–76.
  • Schmidt PG, Campbell KM, Hinds KD and Cook GP: ‘PEGylated bioactive molecules in biodegradable polymer microparticles’, Expert Opin. Biol. Ther., 2007, 7, (9), 1427–1436.
  • Houchin ML and Topp EM: ‘Chemical degradation of peptides and proteins in PLGA: A review of reactions and mechanisms’, J. Pharm. Sci., 2008, 97, (7), 2395–2404.
  • Fu K, Pack DW, Klibanov AM and Langer R: ‘Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres’, Pharm. Res., 2000, 17, (1), 100–106.
  • Siepmann J, Elkharraz K, Siepmann F and Klose D: ‘How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment’, Biomacromolecules, 2005, 6, (4), 2312–2319.
  • Anderson JM and Shive MS: ‘Biodegradation and biocompatibility of PLA and PLGA microspheres’, Adv. Drug Deliv. Rev., 1997, 28, (1), 5–24.
  • Du JJ, Jin J, Yan M and Lu YF: ‘Synthetic nanocarriers for intracellular protein delivery’, Curr. Drug Metab., 2012, 13, (1), 82–92.
  • Wagner E: ‘Polymers for siRNA Delivery: inspired by viruses to be targeted, dynamic, and precise’, Accounts Chem. Res., 2012, 45, (7), 1005–1013.
  • Nguyen J and Szoka FC: ‘Nucleic acid delivery: the missing pieces of the puzzle?’ Accounts Chem. Res., 2012, 45, (7), 1153–1162.
  • Behr JP: ‘Synthetic gene transfer vectors II: back to the future’, Accounts Chem. Res., 2012, 45, (7), 980–984.
  • Bhattarai N, Gunn J and Zhang MQ: ‘Chitosan-based hydrogels for controlled, localized drug delivery’, Adv. Drug Deliv. Rev., 2010, 62, (1), 83–99.
  • Mourya VK and Inamdar NN: ‘Chitosan-modifications and applications: opportunities galore’, React. Funct. Polym., 2008, 68, (6), 1013–1051.
  • Kumirska J, Weinhold MX, Czerwicka M, Kascynski Z, Bychowska A, Brzozowski K, Thöming J and Stepnowski P: ‘Influence of the chemical structure and physicochemical properties of chitin- and chitosan-based materials on their biomedical activity’, in ‘Biomedical engineering, trends in materials science’, (ed. A. N. Laskovski), 2011, Rijeka, Croatia, InTech.
  • Nwe N, Chandrkrachang S, Stevens WF, Maw T, Tan TK, Khor E and Wong SM: ‘Production of fungal chitosan by solid state and submerged fermentation’, Carbohydr. Polym., 2002, 49, (2), 235–237.
  • Pochanavanich P and Suntornsuk W: ‘Fungal chitosan production and its characterization’, Lett. Appl. Microbiol., 2002, 35, (1), 17–21.
  • Wang QZ, Chen XG, Liu N, Wang SX, Liu CS, Meng XH and Liu CG: ‘Protonation constants of chitosan with different molecular weight and degree of deacetylation’, Carbohydr. Polym., 2006, 65, (2), 194–201.
  • Khalid MN, Agnely F, Yagoubi N, Grossiord JL and Couarraze G: ‘Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks’, Eur. J. Pharm. Sci., 2002, 15, (5), 425–432.
  • Caner C, Vergano PJ and Wiles JL: ‘Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage’, J. Food Sci., 1998, 63, (6), 1049–1053.
  • Nwe N, Furuike T and Tamura H: ‘The mechanical and biological properties of chitosan scaffolds for tissue regeneration templates are significantly enhanced by chitosan from Gongronella butleri’, Materials, 2009, 2, (2), 374–398.
  • Kean T and Thanou M: ‘Biodegradation, biodistribution and toxicity of chitosan’, Adv. Drug Deliv. Rev., 2010, 62, (1), 3–11.
  • Dash M, Chiellini F, Ottenbrite RM and Chiellini E: ‘Chitosan-A versatile semi-synthetic polymer in biomedical applications’, Prog. Polym. Sci., 2011, 36, (8), 981–1014.
  • Whang HS, Kirsch W, Zhu YH, Yang CZ and Hudson SM: ‘Hemostatic agents derived from chitin and chitosan’, J. Macromol. Sci., 2005, C45, (4), 309–323.
  • Illum L: ‘Chitosan and its use as a pharmaceutical excipient’, Pharm. Res., 1998, 15, (9), 1326–1331.
  • Schipper NGM, Varum KM and Artursson P: ‘Chitosans as absorption enhancers for poorly absorbable drugs.1. Influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco-2) cells’, Pharm. Res., 1996, 13, (11), 1686–1692.
  • Richardson SCW, Kolbe HJV and Duncan R: ‘Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA’, Int. J. Pharm., 1999, 178, (2), 231–243.
  • Hirano S, Iwata M, Yamanaka K, Tanaka H, Toda T and Inui H: ‘Enhancement of serum lysozyme activity by injecting a mixture of chitosan oligosaccharides intraveneously in rabbits’, Agric. Biol. Chem., 1991, 55, (10), 2623–2625.
  • Rao SB and Sharma CP: ‘Use of chitosan as a biomaterial: studies on its safety and hemostatic potential’, J. Biomed. Mater. Res., 1997, 34, (1), 21–28.
  • Gades MD and Stern JS: ‘Chitosan supplementation and fecal fat excretion in men’, Obes. Res., 2003, 11, (5), 683–688.
  • Arai K, Kinumaki T and Fujita T: ‘Toxity of chitosan’, Bull. Tokai Reg. Fish. Res. Lab., 1968, 56, 89–94.
  • Funkhouser JD and Aronson NN: ‘Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family’, BMC Evol. Biol., 2007, 7, 96.
  • Jayakumar R, Chennazhi KP, Muzzarelli RAA, Tamura H, Nair SV and Selvamurugan N: ‘Chitosan conjugated DNA nanoparticles in gene therapy’, Carbohydr. Polym., 2010, 79, (1), 1–8.
  • Holzerny P, Ajdini B, Heusermann W, Bruno K, Schuleit M, Meinel L and Keller M: ‘Biophysical properties of chitosan/siRNA polyplexes: profiling the polymer/siRNA interactions and bioactivity’, J. Control. Release, 2012, 157, (2), 297–304.
  • Mao SR, Sun W and Kissel T: ‘Chitosan-based formulations for delivery of DNA and siRNA’, Adv. Drug Deliv. Rev., 2010, 62, (1), 12–27.
  • Lai WF and Lin MCM: ‘Nucleic acid delivery with chitosan and its derivatives’, J. Control. Release, 2009, 134, (3), 158–168.
  • Sieval AB, Thanou M, Kotze AF, Verhoef JE, Brussee J and Junginger HE: ‘Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride’, Carbohydr. Polym., 1998, 36, (2–3), 157–165.
  • Kean T, Roth S and Thanou M: ‘Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency’, J. Control. Release, 2005, 103, (3), 643–653.
  • Kotze AF, Luessen HL, deLeeuw BJ, deBoer BG, Verhoef JC and Junginger HE: ‘N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: in vitro evaluation in intestinal epithelial cells (Caco-2)’, Pharm. Res., 1997, 14, (9), 1197–1202.
  • Mao S, Germershaus O, Fischer D, Linn T, Schnepf R and Kissel T: ‘Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells’, Pharm. Res., 2005, 22, (12), 2058–2068.
  • Germershaus O, Mao SR, Sitterberg J, Bakowsky U and Kissel T: ‘Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: establishment of structure-activity relationships in vitro’, J. Control. Release, 2008, 125, (2), 145–154.
  • Mao SR, Shuai XT, Unger F, Wittmar M, Xie XL and Kissel T: ‘Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers’, Biomaterials, 2005, 26, (32), 6343–6356.
  • Behrens I, Pena AIV, Alonso MJ and Kissel T: ‘Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport’, Pharm. Res., 2002, 19, (8), 1185–1193.
  • He P, Davis SS and Illum L: ‘In vitro evaluation of the mucoadhesive properties of chitosan microspheres’, Int. J. Pharm., 1998, 166, (1), 75–88.
  • Lehr CM, Bouwstra JA, Schacht EH and Junginger HE: ‘Invitro evaluation of mucoadhesive properties of chitosan and some other natural polymers’, Int. J. Pharm., 1992, 78, (1), 43–48.
  • Illum L, Farraj NF and Davis SS: ‘Chitosan as a novel nasal delivery system for peptide drugs’, Pharm. Res., 1994, 11, (8), 1186–1189.
  • Artursson P, Lindmark T, Davis SS and Illum L: ‘Effect of chitosan on the permeability of monolayers of intestinal epithelial-cells (Caco-2)’, Pharm. Res., 1994, 11, (9), 1358–1361.
  • Smith J, Wood E and Dornish M: ‘Effect of chitosan on epithelial cell tight junctions’, Pharm. Res., 2004, 21, (1), 43–49.
  • Kotze AF, Luessen HL, de Leeuw BJ, de Boer BG, Verhoef JC and Junginger HE: ‘Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2)’, J. Control. Release, 1998, 51, (1), 35–46.
  • Schipper NGM, Varum KM, Stenberg P, Ocklind G, Lennernas H and Artursson P: ‘Chitosans as absorption enhancers of poorly absorbable drugs 3: influence of mucus on absorption enhancement’, Eur. J. Pharm. Sci., 1999, 8, (4), 335–343.
  • Fraser JRE, Laurent TC and Laurent UBG: ‘Hyaluronan: its nature, distribution, functions and turnover’, J. Intern. Med., 1997, 242, (1), 27–33.
  • Lago G, Oruna L, Cremata JA, Perez C, Coto G, Lauzan E and Kennedy JF: ‘Isolation, purification and characterization of hyaluronan from human umbilical cord residues’, Carbohydr. Polym., 2005, 62, (4), 321–326.
  • Vazquez JA, Montemayor MI, Fraguas J and Murado MA: ‘High production of hyaluronic and lactic acids by Streptococcus zooepidemicus in fed-batch culture using commercial and marine peptones from fishing by-products’, Biochem. Eng. J., 2009, 44, (2–3), 125–130.
  • Boeriu CG, Springer J, Kooy FK, van den Broek LAM and Eggink G: ‘Production methods for hyaluronan’, Int. J. Carbohydr. Chem., 2013, 2013, 14.
  • Oh EJ, Park K, Kim KS, Kim J, Yang JA, Kong JH, Lee MY, Hoffman AS and Hahn SK: ‘Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives’, J. Control. Release, 2010, 141, (1), 2–12.
  • Larsen NE and Balazs EA: ‘Drug delivery systems using hyaluronan and its derivatives’, Adv. Drug Deliv. Rev., 1991, 7, (2), 279–293.
  • Stern R: ‘Hyaluronan catabolism: a new metabolic pathway’, Eur. J. Cell Biol., 2004, 83, (7), 317–325.
  • Jeon O, Song SJ, Lee KJ, Park MH, Lee SH, Hahn SK, Kim S and Kim BS: ‘Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities’, Carbohydr. Polym., 2007, 70, (3), 251–257.
  • Fujii T, Sun YL, An KN and Luo ZP: ‘Mechanical properties of single hyaluronan molecules’, J. Biomech., 2002, 35, (4), 527–531.
  • Miyamoto K, Sasaki M, Minamisawa Y, Kurahashi Y, Kano H and Ishikawa S: ‘Evaluation of in vivo biocompatibility and biodegradation of photocrosslinked hyaluronate hydrogels (HADgels)’, J. Biomed. Mater. Res. A, 2004, 70A, (4), 550–559.
  • Leach JB and Schmidt CE: ‘Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds’, Biomaterials, 2005, 26, (2), 125–135.
  • Seidlits SK, Khaing ZZ, Petersen RR, Nickels JD, Vanscoy JE, Shear JB and Schmidt CE: ‘The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation’, Biomaterials, 2010, 31, (14), 3930–3940.
  • Jansen K, van der Werff JFA, van Wachem PB, Nicolai JPA, de Leij LFMH and van Luyn MJA: ‘A hyaluronan-based nerve guide: in vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat’, Biomaterials, 2004, 25, (3), 483–489.
  • Benedetti L, Cortivo R, Berti T, Berti A, Pea F, Mazzo M, Moras M and Abatangelo G: ‘Biocompatibility and biodegradation of different hyaluronan derivatives (Hyaff) implanted in rats’, Biomaterials, 1993, 14, (15), 1154–1160.
  • Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G and Williams DF: ‘Semisynthetic resorbable materials from hyaluronan esterification’, Biomaterials, 1998, 19, (23), 2101–2127.
  • Liu YC, Shu XZ and Prestwich GD: ‘Biocompatibility and stability of disulfide-crosslinked hyaluronan films’, Biomaterials, 2005, 26, (23), 4737–4746.
  • Ottaviani RA, Wooley P, Song Z and Markel DC: ‘Inflammatory and immunological responses to hyaluronan preparations – study of a murine biocompatibility model’, J. Bone Joint Surg. Am., 2007, 89A, (1), 148–157.
  • Balazs EA: ‘Hyaluronan as an ophthalmic viscoelastic device’, Curr. Pharm. Biotechnol., 2008, 9, (4), 236–238.
  • Goa KL and Benfield P: ‘Hyaluronic-acid – a review of its pharmacology and use as a surgical aid in ophthalmology, and its therapeutic potential in joint disease and wound-healing’, Drugs, 1994, 47, (3), 536–566.
  • Rinaudo M: ‘Main properties and current applications of some polysaccharides as biomaterials’, Polym. Int., 2008, 57, (3), 397–430.
  • Garcia-Fuentes M, Meinel AJ, Hilbe M, Meinel L and Merkle HP: ‘Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering’, Biomaterials, 2009, 30, (28), 5068–5076.
  • Garcia-Fuentes M, Giger E, Meinel L and Merkle HP: ‘The effect of hyaluronic acid on silk fibroin conformation’, Biomaterials, 2008, 29, (6), 633–642.
  • Hoffman AS: ‘Hydrogels for biomedical applications’, Adv. Drug Deliv. Rev., 2002, 54, (1), 3–12.
  • Kim SJ, Hahn SK, Kim MJ, Kim DH and Lee YP: ‘Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles’, J. Control. Release, 2005, 104, (2), 323–335.
  • Surendrakumar K, Martyn GP, Hodgers ECM, Jansen M and Blair JA: ‘Sustained release of insulin from sodium hyaluronate based dry powder formulations after pulmonary delivery to beagle dogs’, J. Control. Release, 2003, 91, (3), 385–394.
  • Yang JA, Kim H, Park K and Hahn SK: ‘Molecular design of hyaluronic acid hydrogel networks for long-term controlled delivery of human growth hormone’, Soft Matter, 2011, 7, (3), 868–870.
  • Xu KM, Lee F, Gao SJ, Chung JE, Yano H and Kurisawa M: ‘Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-alpha 2a for liver cancer therapy’, J. Control. Release, 2013, 166, (3), 203–210.
  • Lee F, Chung JE and Kurisawa M: ‘An injectable enzymatically crosslinked hyaluronic acid-tyramine hydrogel system with independent tuning of mechanical strength and gelation rate’, Soft Matter, 2008, 4, (4), 880–887.
  • Lee F, Chung JE and Kurisawa M: ‘An injectable hyaluronic acid-tyramine hydrogel system for protein delivery’, J. Control. Release, 2009, 134, (3), 186–193.
  • Byeon HJ, Choi SH, Choi JS, Kim I, Shin BS, Lee ES, Park ES, Lee KC and Youn YS: ‘Four-arm PEG cross-linked hyaluronic acid hydrogels containing PEGylated apoptotic TRAIL protein for treating pancreatic cancer’, Acta Biomater., 2014, 10, (1), 142–150.
  • Choh SY, Cross D and Wang C: ‘Facile synthesis and characterization of disulfide-cross-linked hyaluronic acid hydrogels for protein delivery and cell encapsulation’, Biomacromolecules, 2011, 12, (4), 1126–1136.
  • Zhang R, Huang ZB, Xue MY, Yang J and Tan TW: ‘Detailed characterization of an injectable hyaluronic acid-polyaspartylhydrazide hydrogel for protein delivery’, Carbohydr. Polym., 2011, 85, (4), 717–725.
  • Kim J, Kim IS, Cho TH, Kim HC, Yoon SJ, Choi J, Park Y, Sun K and Hwang SJ: ‘In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering’, J. Biomed. Mater. Res. A, 2010, 95A, (3), 673–681.
  • Kim J, Park Y, Tae G, Lee KB, Hwang SJ, Kim IS, Noh I and Sun K: ‘Synthesis and characterization of matrix metalloprotease sensitive-low molecular weight hyaluronic acid based hydrogels’, J. Mater. Sci. Mater. Med., 2008, 19, (11), 3311–3318.
  • Yang JA, Kim ES, Kwon JH, Kim H, Shin JH, Yun SH, Choi KY and Hahn SK: ‘Transdermal delivery of hyaluronic acid – human growth hormone conjugate’, Biomaterials, 2012, 33, (25), 5947–5954.
  • Mero A, Pasqualin M, Campisi M, Renier D and Pasut G: ‘Conjugation of hyaluronan to proteins’, Carbohydr. Polym., 2013, 92, (2), 2163–2170.
  • Ferguson EL, Alshame AMJ and Thomas DW: ‘Evaluation of hyaluronic acid-protein conjugates for polymer masked-unmasked protein therapy’, Int. J. Pharm., 2010, 402, (1–2), 95–102.
  • Grasdalen H, Larsen B and Smidsrod O: ‘C-13-Nmr studies of monomeric composition and sequence in alginate’, Carbohyd. Res., 1981, 89, (2), 179–191.
  • Simpson NE, Stabler CL, Simpson CP, Sambanis A and Constantinidis L: ‘The role of the CaCl2-guluronic acid interaction on alginate encapsulated beta TC3 cells’, Biomaterials, 2004, 25, (13), 2603–2610.
  • DeVos P, DeHaan B, Wolters GHJ and VanSchilfgaarde R: ‘Factors influencing the adequacy of microencapsulation of rat pancreatic islets’, Transplantation, 1996, 62, (7), 888–893.
  • Cuadros TR, Skurtys O and Aguilera JM: ‘Mechanical properties of calcium alginate fibers produced with a microfluidic device’, Carbohydr. Polym., 2012, 89, (4), 1198–1206.
  • Davidovich-Pinhas M and Bianco-Peled H: ‘A quantitative analysis of alginate swelling’, Carbohydr. Polym., 2010, 79, (4), 1020–1027.
  • Schneider S, Feilen PJ, Kraus O, Haase T, Sagban TA, Lehr HA, Beyer J, Pommersheim R and Weber MM: ‘Biocompatibility of alginates for grafting: impact of alginate molecular weight’, Artif. Cells Blood Substit. Immobil. Biotechnol., 2003, 31, (4), 383–394.
  • DeVos P, DeHaan B and VanSchilfgaarde R: ‘Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules’, Biomaterials, 1997, 18, (3), 273–278.
  • Tam SK, Dusseault J, Bilodeau S, Langlois G, Halle JP and Yahia L: ‘Factors influencing alginate gel biocompatibility’, J. Biomed. Mater. Res. A, 2011, 98A, (1), 40–52.
  • Otterlei M, Ostgaard K, Skjakbraek G, Smidsrod O, Soonshiong P and Espevik T: ‘Induction of cytokine production from human monocytes stimulated with alginate’, J. Immunother., 1991, 10, (4), 286–291.
  • Espevik T, Otterlei M, Skjakbraek G, Ryan L, Wright SD and Sundan A: ‘The involvement of Cd14 in stimulation of cytokine production by uronic-acid polymers’, Eur. J. Immunol., 1993, 23, (1), 255–261.
  • Alshamkhani A and Duncan R: ‘Radioiodination of alginate via covalently-bound tyrosinamide allows monitoring of its fate in-vivo’, J. Bioact. Compat. Polym., 1995, 10, (1), 4–13.
  • Bouhadir KH, Lee KY, Alsberg E, Damm KL, Anderson KW and Mooney DJ: ‘Degradation of partially oxidized alginate and its potential application for tissue engineering’, Biotechnol. Prog., 2001, 17, (5), 945–950.
  • Pescosolido L, Piro T, Vermonden T, Coviello T, Alhaique F, Hennink WE and Matricardi P: ‘Biodegradable IPNs based on oxidized alginate and dextran-HEMA for controlled release of proteins’, Carbohydr. Polym., 2011, 86, (1), 208–213.
  • Jeon O, Bouhadir KH, Mansour JM and Alsberg E: ‘Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties’, Biomaterials, 2009, 30, (14), 2724–2734.
  • Schweizer D, Schonhammer K, Jahn M and Gopferich A: ‘Protein-polyanion interactions for the controlled release of monoclonal antibodies’, Biomacromolecules, 2013, 14, (1), 75–83.
  • Mobus K, Siepmann J and Bodmeier R: ‘Zinc-alginate microparticles for controlled pulmonary delivery of proteins prepared by spray-drying’, Eur. J. Pharm. Biopharm., 2012, 81, (1), 121–130.
  • Jay SM and Saltzman WM: ‘Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking’, J. Control. Release, 2009, 134, (1), 26–34.
  • Bochek AM: ‘Effect of hydrogen bonding on cellulose solubility in aqueous and nonaqueous solvents’, Russ. J. Appl. Chem., 2003, 76, (11), 1711–1719.
  • Czaja WK, Young DJ, Kawecki M and Brown RM: ‘The future prospects of microbial cellulose in biomedical applications’, Biomacromolecules, 2007, 8, (1), 1–12.
  • Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P and Risberg B: ‘In vivo biocompatibility of bacterial cellulose’, J. Biomed. Mater. Res. A, 2006, 76A, (2), 431–438.
  • El-Saied H, Basta AH and Gobran RH: ‘Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application)’, Polym.-Plast. Technol. Eng., 2004, 43, (3), 797–820.
  • Muller A, Ni ZX, Hessler N, Wesarg F, Muller FA, Kralisch D and Fischer D: ‘The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin’, J. Pharm. Sci., 2013, 102, (2), 579–592.
  • Czaja W, Romanovicz D and Brown RM: ‘Structural investigations of microbial cellulose produced in stationary and agitated culture’, Cellulose, 2004, 11, (3–4), 403–411.
  • Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindstrom T, Sampson WW and Eichhorn SJ: ‘Effective young's modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks’, Biomacromolecules, 2012, 13, (5), 1340–1349.
  • Guhados G, Wan WK and Hutter JL: ‘Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy’, Langmuir, 2005, 21, (14), 6642–6646.
  • Lee KY, Buldum G, Mantalaris A and Bismarck A: ‘More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites’, Macromol. Biosci., 2014, 14, (1), 10–32.
  • Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH and Supaphol P: ‘A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages’, Polym. Adv. Technol., 2010, 21, (2), 77–95.
  • Kuzmenko V, Samfors S, Hagg D and Gatenholm P: ‘Universal method for protein bioconjugation with nanocellulose scaffolds for increased cell adhesion’, Mater. Sci. Eng. C Mater. Biol. Appl., 2013, 33, (8), 4599–4607.
  • Petersen N and Gatenholm P: ‘Bacterial cellulose-based materials and medical devices: current state and perspectives’, Appl. Microbiol. Biotechnol., 2011, 91, (5), 1277–1286.
  • Martson M, Viljanto J, Hurme T, Laippala P and Saukko P: ‘Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat’, Biomaterials, 1999, 20, (21), 1989–1995.
  • Kino Y, Sawa M, Kasai S and Mito M: ‘Multiporous cellulose microcarrier for the development of a hybrid artificial liver using isolated hepatocytes’, J. Surg. Res., 1998, 79, (1), 71–76.
  • Miyamoto T, Takahashi S, Ito H, Inagaki H and Noishiki Y: ‘Tissue biocompatibility of cellulose and its derivatives’, J. Biomed. Mater. Res., 1989, 23, (1), 125–133.
  • Song YB, Sun YX, Zhang XZ, Zhou JP and Zhang LN: ‘Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers’, Biomacromolecules, 2008, 9, (8), 2259–2264.
  • Song YB, Zhou JP, Li Q, Guo Y and Zhang LN: ‘Preparation and characterization of novel quaternized cellulose nanoparticles as protein carriers’, Macromol. Biosci., 2009, 9, (9), 857–863.
  • Tripathy J and Raichur AM: ‘Designing carboxymethyl cellulose based layer-by-layer capsules as a carrier for protein delivery’, Colloid Surface B, 2013, 101, 487–492.
  • Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Yang HL and Wang ZX: ‘The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2’, Biomaterials, 2012, 33, (28), 6644–6649.
  • Weisel JW: ‘The mechanical properties of fibrin for basic scientists and clinicians’, Biophys. Chem., 2004, 112, (2–3), 267–276.
  • Fuss C, Palmaz JC and Sprague EA: ‘Fibrinogen: structure, function, and surface interactions’, J. Vasc. Interv. Radiol., 2001, 12, (6), 677–682.
  • Mosesson MW: ‘Fibrinogen and fibrin structure and functions’, J. Thromb. Haemost., 2005, 3, (8), 1894–1904.
  • Pankov R and Yamada KM: ‘Fibronectin at a glance’, J. Cell Sci., 2002, 115, (Pt 20), 3861–3863.
  • Dugan TA, Yang VW, McQuillan DJ and Hook M: ‘Decorin modulates fibrin assembly and structure’, J. Biol. Chem., 2006, 281, (50), 38208–38216.
  • Sahni A, Odrljin T and Francis CW: ‘Binding of basic fibroblast growth factor to fibrinogen and fibrin’, J. Biol. Chem., 1998, 273, (13), 7554–7559.
  • Sahni A and Francis CW: ‘Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation’, Blood, 2000, 96, (12), 3772–3778.
  • Liu W, Jawerth LM, Sparks EA, Falvo MR, Hantgan RR, Superfine R, Lord ST and Guthold M: ‘Fibrin fibers have extraordinary extensibility and elasticity’, Science, 2006, 313, (5787), 634.
  • Guthold M, Liu W, Sparks EA, Jawerth LM, Peng L, Falvo M, Superfine R, Hantgan RR and Lord ST: ‘A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers’, Cell Biochem. Biophys., 2007, 49, (3), 165–181.
  • Collet JP, Shuman H, Ledger RE, Lee S and Weisel JW: ‘The elasticity of an individual fibrin fiber in a clot’, Proc. Natl. Acad. Sci. U.S.A., 2005, 102, (26), 9133–9137.
  • Ferry JD and Morrison PR: ‘Preparation and properties of serum and plasma proteins: human fibrin in the form of an elastic film’, J. Am. Chem. Soc., 1947, 69, (2), 400–409.
  • Stenhagen E: ‘Electrophoresis of human blood plasma: electrophoretic properties of fibrinogen’, Biochem. J., 1938, 32, (4), 714–718.
  • Ho HO, Hsiao CC, Sokoloski TD, Chen CY and Sheu MT: ‘Fibrin-based drug-delivery systems.3. The evaluation of the release of macromolecules from microbeads’, J. Control. Release, 1995, 34, (1), 65–70.
  • Raeber GP, Lutolf MP and Hubbell JA: ‘Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration’, Biophys. J., 2005, 89, (2), 1374–1388.
  • Urech L, Bittermann AG, Hubbell JA and Hall H: ‘Mechanical properties, proteolytic degradability and biological modifications affect angiogenic process extension into native and modified fibrin matrices in vitro’, Biomaterials, 2005, 26, (12), 1369–1379.
  • Spicer PP and Mikos AG: ‘Fibrin glue as a drug delivery system’, J. Control. Release, 2010, 148, (1), 49–55.
  • Kulkarni M, Breen A, Greiser U, O'Brien T and Pandit A: ‘Fibrin-lipoplex system for controlled topical delivery of multiple genes’, Biomacromolecules, 2009, 10, (6), 1650–1654.
  • des Rieux A, Shikanov A and Shea LD: ‘Fibrin hydrogels for non-viral vector delivery in vitro’, J. Control. Release, 2009, 136, (2), 148–154.
  • Lei P, Padmashali RM and Andreadis ST: ‘Cell-controlled and spatially arrayed gene delivery from fibrin hydrogels’, Biomaterials, 2009, 30, (22), 3790–3799.
  • Trentin D, Hubbell J and Hall H: ‘Non-viral gene delivery for local and controlled DNA release’, J. Control. Release, 2005, 102, (1), 263–275.
  • Trentin D, Hall H, Wechsler S and Hubbell JA: ‘Peptide-matrix-mediated gene transfer of an oxygen-insensitive hypoxia-inducible factor-1alpha variant for local induction of angiogenesis’, Proc. Natl. Acad. Sci. U.S.A., 2006, 103, (8), 2506–2511.
  • Thiersch M, Rimann M, Panagiotopoulou V, Ozturk E, Biedermann T, Textor M, Luhmann TC and Hall H: ‘The angiogenic response to PLL-g-PEG-mediated HIF-1alpha plasmid DNA delivery in healthy and diabetic rats’, Biomaterials, 2013, 34, (16), 4173–4182.
  • Saul JM, Linnes MP, Ratner BD, Giachelli CM and Pun SH: ‘Delivery of non-viral gene carriers from sphere-templated fibrin scaffolds for sustained transgene expression’, Biomaterials, 2007, 28, (31), 4705–4716.
  • Losi P, Briganti E, Errico C, Lisella A, Sanguinetti E, Chiellini F and Soldani G: ‘Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice’, Acta Biomater., 2013, 9, (8), 7814–7821.
  • Shikanov A, Zhang Z, Xu M, Smith RM, Rajan A, Woodruff TK and Shea LD: ‘Fibrin encapsulation and vascular endothelial growth factor delivery promotes ovarian graft survival in mice’, Tissue Eng. Part A, 2011, 17, (23–24), 3095–3104.
  • Bhang SH, Sun AY, Yang HS, Rhim T, Kim DI and Kim BS: ‘Skin regeneration with fibroblast growth factor 2 released from heparin-conjugated fibrin’, Biotechnol. Lett., 2011, 33, (4), 845–851.
  • Layman H, Li X, Nagar E, Vial X, Pham SM and Andreopoulos FM: ‘Enhanced angiogenic efficacy through controlled and sustained delivery of FGF-2 and G-CSF from fibrin hydrogels containing ionic-albumin microspheres’, J. Biomater. Sci. Polym. Ed., 2012, 23, (1–4), 185–206.
  • Bhang SH, Lee TJ, La WG, Kim DI and Kim BS: ‘Delivery of fibroblast growth factor 2 enhances the viability of cord blood-derived mesenchymal stem cells transplanted to ischemic limbs’, J. Biosci. Bioeng., 2011, 111, (5), 584–589.
  • Schense JC, Bloch J, Aebischer P and Hubbell JA: ‘Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension’, Nat. Biotechnol., 2000, 18, (4), 415–419.
  • Schense JC and Hubbell JA: ‘Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa’, Bioconjug Chem., 1999, 10, (1), 75–81.
  • Lienemann PS, Lutolf MP and Ehrbar M: ‘Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration’, Adv. Drug Deliv. Rev., 2012, 64, (12), 1078–1089.
  • Luhmann T, Hanseler P, Grant B and Hall H: ‘The induction of cell alignment by covalently immobilized gradients of the 6th Ig-like domain of cell adhesion molecule L1 in 3D-fibrin matrices’, Biomaterials, 2009, 30, (27), 4503–4512.
  • Hall H: ‘Modified fibrin hydrogel matrices: both, 3D-scaffolds and local and controlled release systems to stimulate angiogenesis’, Curr. Pharm. Des., 2007, 13, (35), 3597–3607.
  • Martino MM, Briquez PS, Ranga A, Lutolf MP and Hubbell JA: ‘Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix’, Proc. Natl. Acad. Sci. U.S.A., 2013, 110, (12), 4563–4568.
  • Kadler KE, Hill A and Canty-Laird EG: ‘Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators’, Curr. Opin. Cell Biol., 2008, 20, (5), 495–501.
  • Friess W: ‘Collagen – biomaterial for drug delivery’, Eur. J. Pharm. Biopharm., 1998, 45, (2), 113–136.
  • Kadler KE, Holmes DF, Trotter JA and Chapman JA: ‘Collagen fibril formation’, Biochem. J., 1996, 316, (Pt 1), 1–11.
  • Gelse K, Poschl E and Aigner T: ‘Collagens – structure, function, and biosynthesis’, Adv. Drug Deliv. Rev., 2003, 55, (12), 1531–1546.
  • Gansler H and Nemetschek T: ‘[The swelling of collagen fibrils]’, Z Naturforsch B, 1960, 15B, 414.
  • Wood GC: ‘The formation of fibrils from collagen solutions. 2. A mechanism of collagen-fibril formation’, Biochem. J., 1960, 75, 598–605.
  • Gross J: ‘Studies on the formation of collagen.1. Properties and fractionation of neutral salt extracts of normal guinea pig connective tissue’, J. Exp. Med., 1958, 107, (2), 247–263.
  • Gross J and Kirk D: ‘Heat precipitation of collagen from neutral salt solutions – some rate-regulating factors’, J. Biol. Chem., 1958, 233, (2), 355–360.
  • Gelman RA, Williams BR and Piez KA: ‘Collagen fibril formation. Evidence for a multistep process’, J. Biol. Chem., 1979, 254, (1), 180–186.
  • Suarez G, Oronsky AL, Bordas J and Koch MH: ‘Synchrotron radiation x-ray scattering in the early stages of in vitro collagen fibril formation’, Proc. Natl. Acad. Sci. U.S.A., 1985, 82, (14), 4693–4696.
  • Mertz EL and Leikin S: ‘Interactions of inorganic phosphate and sulfate anions with collagen’, Biochemistry, 2004, 43, (47), 14901–14912.
  • de Wild M, Pomp W and Koenderink GH: ‘Thermal memory in self-assembled collagen fibril networks’, Biophys. J., 2013, 105, (1), 200–210.
  • Silver FH, Christiansen D, Snowhill PB, Chen Y and Landis WJ: ‘The role of mineral in the storage of elastic energy in turkey tendons’, Biomacromolecules, 2000, 1, (2), 180–185.
  • Uquillas JA and Akkus O: ‘Modeling the electromobility of type-I collagen molecules in the electrochemical fabrication of dense and aligned tissue constructs’, Ann. Biomed. Eng., 2012, 40, (8), 1641–1653.
  • Mello ML, Vidal BC and Valdrighi L: ‘Anisotropy and isoelectrical point determinations on collagen bundles of the rat periodontal fibers’, Histochemistry, 1974, 42, (2), 163–174.
  • Ma L, Gao C, Mao Z, Zhou J and Shen J: ‘Enhanced biological stability of collagen porous scaffolds by using amino acids as novel cross-linking bridges’, Biomaterials, 2004, 25, (15), 2997–3004.
  • Parenteau-Bareil R, Gauvin R and Berthod F: ‘Collagen-based biomaterials for tissue engineering applications’, Materials, 2010, 3, (3), 1863–1887.
  • Lee CH, Singla A and Lee Y: ‘Biomedical applications of collagen’, Int. J. Pharm., 2001, 221, (1–2), 1–22.
  • Olsen D, Yang C, Bodo M, Chang R, Leigh S, Baez J, Carmichael D, Perala M, Hamalainen ER, Jarvinen M and Polarek J: ‘Recombinant collagen and gelatin for drug delivery’, Adv. Drug Deliv. Rev., 2003, 55, (12), 1547–1567.
  • Wallace DG and Rosenblatt J: ‘Collagen gel systems for sustained delivery and tissue engineering’, Adv. Drug Deliv. Rev., 2003, 55, (12), 1631–1649.
  • Scherer F, Schillinger U, Putz U, Stemberger A and Plank C: ‘Nonviral vector loaded collagen sponges for sustained gene delivery in vitro and in vivo’, J. Gene Med., 2002, 4, (6), 634–643.
  • Tierney EG, Duffy GP, Hibbitts AJ, Cryan SA and O'Brien FJ: ‘The development of non-viral gene-activated matrices for bone regeneration using polyethyleneimine (PEI) and collagen-based scaffolds’, J. Control. Release, 2012, 158, (2), 304–311.
  • Reckhenrich AK, Hopfner U, Krotz F, Zhang Z, Koch C, Kremer M, Machens HG, Plank C and Egana JT: ‘Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector’, Biomaterials, 2011, 32, (7), 1996–2003.
  • Capito RM and Spector M: ‘Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering’, Gene Ther., 2007, 14, (9), 721–732.
  • Lutz R, Park J, Felszeghy E, Wiltfang J, Nkenke E and Schlegel KA: ‘Bone regeneration after topical BMP-2-gene delivery in circumferential peri-implant bone defects’, Clin. Oral Implants Res., 2008, 19, (6), 590–599.
  • Premaraj S and Moursi AM: ‘Delivery of transforming growth factor-beta3 plasmid in a collagen gel inhibits cranial suture fusion in rats’, Cleft Palate Craniofac. J., 2013, 50, (3), e47–e60.
  • Krebs MD, Jeon O and Alsberg E: ‘Localized and sustained delivery of silencing RNA from macroscopic biopolymer hydrogels’, J. Am. Chem. Soc., 2009, 131, (26), 9204–9206.
  • Bhakta G, Lim ZX, Rai B, Lin T, Hui JH, Prestwich GD, van Wijnen AJ, Nurcombe V and Cool SM: ‘The influence of collagen and hyaluronan matrices on the delivery and bioactivity of bone morphogenetic protein-2 and ectopic bone formation’, Acta Biomater., 2013, 9, (11), 9098–9106.
  • Yang HS, La WG, Cho YM, Shin W, Yeo GD and Kim BS: ‘Comparison between heparin-conjugated fibrin and collagen sponge as bone morphogenetic protein-2 carriers for bone regeneration’, Exp. Mol. Med., 2012, 44, (5), 350–355.
  • Nitta SK and Numata K: ‘Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering’, Int. J. Mol. Sci., 2013, 14, (1), 1629–1654.
  • Djagny VB, Wang Z and Xu S: ‘Gelatin: a valuable protein for food and pharmaceutical industries: review’, Crit. Rev. Food Sci. Nutr., 2001, 41, (6), 481–492.
  • Food and Drug Administration: ‘Guidance for industry – the sourcing and processing of gelatin to reduce the potential risk posed by bovine spongiform encephalopathy (BSE) in FDA-regulated products for human use’; 1997, Silver Spring, Food and Drug Administration.
  • Won YW and Kim YH: ‘Preparation and cytotoxicity comparison of type A gelatin nanoparticles with recombinant human gelatin nanoparticles’, Macromol. Res., 2009, 17, (7), 464–468.
  • Vandelli MA, Rivasi F, Guerra P, Forni F and Arletti R: ‘Gelatin microspheres crosslinked with d,l-glyceraldehyde as a potential drug delivery system: preparation, characterisation, in vitro and in vivo studies’, Int. J. Pharm., 2001, 215, (1–2), 175–184.
  • Speer DP, Chvapil M, Eskelson CD and Ulreich J: ‘Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials’, J. Biomed. Mater. Res., 1980, 14, (6), 753–764.
  • Brzoska M, Langer K, Coester C, Loitsch S, Wagner TOF and Mallinckrodt CV: ‘Incorporation of biodegradable nanoparticles into human airway epithelium cells – in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases’, Biochem. Biophys. Res. Commun., 2004, 318, (2), 562–570.
  • Gupta AK, Gupta M, Yarwood SJ and Curtis ASG: ‘Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts’, J. Control. Release, 2004, 95, (2), 197–207.
  • Lee EJ, Khan SA, Park JK and Lim KH: ‘Studies on the characteristics of drug-loaded gelatin nanoparticles prepared by nanoprecipitation’, Bioprocess Biosyst. Eng., 2012, 35, (1–2), 297–307.
  • Zhao YZ, Li X, Lu CT, Xu YY, Lv HF, Dai DD, Zhang L, Sun CZ, Yang W, Li XK, Zhao YP, Fu HX, Cai L, Lin M, Chen LJ and Zhang M: ‘Experiment on the feasibility of using modified gelatin nanoparticles as insulin pulmonary administration system for diabetes therapy’, Acta Diabetol., 2012, 49, (4), 315–325.
  • Coester CJ, Langer K, van Briesen H and Kreuter J: ‘Gelatin nanoparticles by two step desolvation – a new preparation method, surface modifications and cell uptake’, J. Microencapsul., 2000, 17, (2), 187–193.
  • Leo E, Arletti R, Forni F and Cameroni R: ‘General and cardiac toxicity of doxorubicin-loaded gelatin nanoparticles’, Farmaco, 1997, 52, (6–7), 385–388.
  • Mimi H, Ho KM, Siu YS, Wu A and Li P: ‘Polyethyleneimine-based core-shell nanogels: a promising siRNA carrier for argininosuccinate synthetase mRNA knockdown in HeLa cells’, J. Control. Release, 2012, 158, (1), 123–130.
  • Gan ZH, Ju JH, Zhang T and Wu DC: ‘Preparation of rhodamine B fluorescent poly(methacrylic acid) coated gelatin nanoparticles’, J. Nanomater., 2011, 2011, 8.
  • Li WM, Liu DM and Chen SY: ‘Amphiphilically-modified gelatin nanoparticles: self-assembly behavior, controlled biodegradability, and rapid cellular uptake for intracellular drug delivery’, J. Mater. Chem., 2011, 21, (33), 12381–12388.
  • Won YW and Kim YH: ‘Recombinant human gelatin nanoparticles as a protein drug carrier’, J. Control. Release, 2008, 127, (2), 154–161.
  • Balthasar S, Michaelis K, Dinauer N, von Briesen H, Kreuter J and Langer K: ‘Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes’, Biomaterials, 2005, 26, (15), 2723–2732.
  • Tseng CL, Wu SYH, Wang WH, Peng CL, Lin FH, Lin CC, Young TH and Shieh MJ: ‘Targeting efficiency and biodistribution of biotinylated-EGF-conjugated gelatin nanoparticles administered via aerosol delivery in nude mice with lung cancer’, Biomaterials, 2008, 29, (20), 3014–3022.
  • Morimoto K, Chono S, Kosai T, Seki T and Tabata Y: ‘Design of cationic microspheres based on aminated gelatin for controlled release of peptide and protein drugs’, Drug Deliv., 2008, 15, (2), 113–117.
  • Lopez-Cebral R, Martin-Pastor M, Parraga JE, Zorzi GK, Seijo B and Sanchez A: ‘Chemically modified gelatin as biomaterial in the design of new nanomedicines’, Med. Chem., 2011, 7, (3), 145–154.
  • Wang HA, Boerman OC, Sariibrahimoglu K, Li YB, Jansen JA and Leeuwenburgh SCG: ‘Comparison of micro- vs. nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins: bone morphogenetic protein-2 and alkaline phosphatase’, Biomaterials, 2012, 33, (33), 8695–8703.
  • Wang HN, Zou Q, Boerman OC, Nijhuis AWG, Jansen JA, Li YB and Leeuwenburgh SCG: ‘Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo’, J. Control. Release, 2013, 166, (2), 172–181.
  • Mithieux SM and Weiss AS: ‘Elastin’, Adv. Protein Chem., 2005, 70, 437–461.
  • Kim W and Chaikof EL: ‘Recombinant elastin-mimetic biomaterials: emerging applications in medicine’, Adv. Drug Deliv. Rev., 2010, 62, (15), 1468–1478.
  • Rosenbloom J, Abrams WR and Mecham R: ‘Extracellular-matrix.4. The elastic fiber’, FASEB J., 1993, 7, (13), 1208–1218.
  • Mascaretti RS, Mataloun MM, Dolhnikoff M and Rebello CM: ‘Lung morphometry, collagen and elastin content: changes after hyperoxic exposure in preterm rabbits’, Clinics (Sao Paulo), 2009, 64, (11), 1099–1104.
  • Lee KW, Stolz DB and Wang Y: ‘Substantial expression of mature elastin in arterial constructs’, Proc. Natl. Acad. Sci. U.S.A., 2011, 108, (7), 2705–2710.
  • Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C and Savage K: ‘Elastic proteins: biological roles and mechanical properties’, Philos. Trans. R. Soc. Lond. B Biol. Sci., 2002, 357, (1418), 121–132.
  • Aaron BB and Gosline JM: ‘Elastin as a random-network elastomer – a mechanical and optical analysis of single elastin fibers’, Biopolymers, 1981, 20, (6), 1247–1260.
  • Hsueh YS, Savitha S, Sadhasivam S, Lin FH and Shieh MJ: ‘Design and synthesis of elastin-like polypeptides for an ideal nerve conduit in peripheral nerve regeneration’, Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 38, 119–126.
  • Bozzini S, Giuliano L, Altomare L, Petrini P, Bandiera A, Conconi MT, Fare S and Tanzi MC: ‘Enzymatic cross-linking of human recombinant elastin (HELP) as biomimetic approach in vascular tissue engineering’, J. Mater. Sci. Mater. Med., 2011, 22, (12), 2641–2650.
  • Rincon AC, Molina-Martinez IT, de Las Heras B, Alonso M, Bailez C, Rodriguez-Cabello JC and Herrero-Vanrell R: ‘Biocompatibility of elastin-like polymer poly(VPAVG) microparticles: in vitro and in vivo studies’, J. Biomed. Mater. Res. A, 2006, 78A, (2), 343–351.
  • Nettles DL, Chilkoti A and Setton LA: ‘Applications of elastin-like polypeptides in tissue engineering’, Adv. Drug Deliv. Rev., 2010, 62, (15), 1479–1485.
  • Shah M, Hsueh PY, Sun GY, Chang HY, Janib SM and MacKay JA: ‘Biodegradation of elastin-like polypeptide nanoparticles’, Protein Sci., 2012, 21, (6), 743–750.
  • Liu WE, Dreher MR, Furgeson DY, Peixoto KV, Yuan H, Zalutsky MR and Chilkoti A: ‘Tumor accumulation, degradation and pharmacokinetics of elastin-like polypeptides in nude mice’, J. Control. Release, 2006, 116, (2), 170–178.
  • Mackay JA and Chilkoti A: ‘Temperature sensitive peptides: engineering hyperthermia-directed therapeutics’, Int. J. Hyperthermia, 2008, 24, (6), 483–495.
  • Reiersen H, Clarke AR and Rees AR: ‘Short elastin-like peptides exhibit the same temperature-induced structural transitions as elastin polymers: implications for protein engineering’, J. Mol. Biol., 1998, 283, (1), 255–264.
  • Hassouneh W, MacEwan SR and Chilkoti A: ‘Fusions of elastin-like polypeptides to pharmaceutical proteins’, Methods Enzymol., 2012, 502, 215–237.
  • Chen TH, Bae Y, Furgeson DY and Kwon GS: ‘Biodegradable hybrid recombinant block copolymers for non-viral gene transfection’, Int. J. Pharm., 2012, 427, (1), 105–112.
  • Liu Y, Jia Z, Li L and Chen F: ‘A genetically synthetic protein-based cationic polymer for siRNA delivery’, Med. Hypotheses, 2011, 76, (2), 239–240.
  • Amruthwar SS and Janorkar AV: ‘Preparation and characterization of elastin-like polypeptide scaffolds for local delivery of antibiotics and proteins’, J. Mater. Sci. Mater. Med., 2012, 23, (12), 2903–2912.
  • Machado R, Bessa PC, Reis RL, Rodriguez-Cabello JC and Casal M: ‘Elastin-based nanoparticles for delivery of bone morphogenetic proteins’, Methods Mol. Biol., 2012, 906, 353–363.
  • Bidwell G.L. 3rd, Perkins E., Hughes J., Khan M., James J.R. and Raucher D.: ‘Thermally targeted delivery of a c-Myc inhibitory polypeptide inhibits tumor progression and extends survival in a rat glioma model’, PLoS One, 2013, 8, (1), e55104.
  • He XM and Carter DC: ‘Atomic structure and chemistry of human serum albumin’, Nature, 1992, 358, (6383), 209–215.
  • Carter DC, He XM, Munson SH, Twigg PD, Gernert KM, Broom MB and Miller TY: ‘Three-dimensional structure of human serum albumin’, Science, 1989, 244, (4909), 1195–1198.
  • Carter DC and Ho JX: ‘Structure of serum albumin’, Adv. Protein Chem., 1994, 45, 153–203.
  • Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP and Jain RK: ‘Vascular-permeability in a human tumor xenograft – molecular-size dependence and cutoff size’, Cancer Res., 1995, 55, (17), 3752–3756.
  • Maeda H, Wu J, Sawa T, Matsumura Y and Hori K: ‘Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review’, J. Control. Release, 2000, 65, (1–2), 271–284.
  • Fleischer S, Shapira A, Regev O, Nseir N, Zussman E and Dvir T: ‘: Albumin fiber scaffolds for engineering functional cardiac tissues’, Biotechnol. Bioeng., 2014, 111, (6), 1246–1257.
  • Puhl S, Li L, Meinel L and Germershaus O: ‘Controlled protein delivery from electrospun non-wovens: novel combination of protein crystals and a biodegradable release matrix’, Mol. Pharm., 2014, 11, (7), 2372–2380.
  • Rohanizadeh R and Kokabi N: ‘Heat denatured/aggregated albumin-based biomaterial: effects of preparation parameters on biodegradability and mechanical properties’, J. Mater. Sci. Mater. Med., 2009, 20, (12), 2413–2418.
  • Nseir N, Regev O, Kaully T, Blumenthal J, Levenberg S and Zussman E: ‘Biodegradable scaffold fabricated of electrospun albumin fibers: mechanical and biological characterization’, Tissue Eng. Part C Methods, 2013, 19, (4), 257–264.
  • Li YJ, Feng LZ, Shi XZ, Wang XJ, Yang YL, Yang K, Liu T, Yang GB and Liu Z: ‘Surface coating-dependent cytotoxicity and degradation of graphene derivatives: towards the design of non-toxic, degradable nano-graphene’, Small, 2014, 10, (8), 1544–1554.
  • Martinez A, Olmo R, Iglesias I, Teijon JM and Blanco MD: ‘Folate-targeted nanoparticles based on albumin and albumin/alginate mixtures as controlled release systems of tamoxifen: synthesis and in vitro characterization’, Pharm. Res., 2014, 31, (1), 182–193.
  • Li FQ, Su H, Wang J, Liu JY, Zhu QG, Fei YB, Pan YH and Hu JH: ‘Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting’, Int. J. Pharm., 2008, 349, (1–2), 274–282.
  • Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Wagner S, Buchel C, von Briesen H and Kreuter J: ‘Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones’, J. Control. Release, 2009, 137, (1), 78–86.
  • Mishra V, Mahor S, Rawat A, Gupta PN, Dubey P, Khatri K and Vyas SP: ‘Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles’, J. Drug Target, 2006, 14, (1), 45–53.
  • Stollenwerk MM, Pashkunova-Martic I, Kremser C, Talasz H, Thurner GC, Abdelmoez AA, Wallnofer EA, Helbok A, Neuhauser E, Klammsteiner N, Klimaschewski L, von Guggenberg E, Frohlich E, Keppler B, Jaschke W and Debbage P: ‘Albumin-based nanoparticles as magnetic resonance contrast agents: I. Concept, first syntheses and characterisation’, Histochem. Cell Biol., 2010, 133, (4), 375–404.
  • Elzoghby AO, Samy WM and Elgindy NA: ‘Albumin-based nanoparticles as potential controlled release drug delivery systems’, J. Control. Release, 2012, 157, (2), 168–182.
  • Elsadek B and Kratz F: ‘Impact of albumin on drug delivery – new applications on the horizon’, J. Control. Release, 2012, 157, (1), 4–28.
  • Subramanian GM, Fiscella M, Lamouse-Smith A, Zeuzem S and McHutchison JG: ‘Albinterferon alpha-2b: a genetic fusion protein for the treatment of chronic hepatitis C’, Nat. Biotechnol., 2007, 25, (12), 1411–1419.
  • Walker A, Dunlevy G, Rycroft D, Topley P, Holt LJ, Herbert T, Davies M, Cook F, Holmes S, Jespers L and Herring C: ‘Anti-serum albumin domain antibodies in the development of highly potent, efficacious and long-acting interferon’, Protein Eng. Des. Sel., 2010, 23, (4), 271–278.
  • Zhao HL, Xue C, Wang Y, Li XY, Xiong XH, Yao XQ and Liu ZM: ‘Circumventing the heterogeneity and instability of human serum albumin-interferon-alpha 2b fusion protein by altering its orientation’, J. Biotechnol., 2007, 131, (3), 245–252.
  • Morales J: ‘Defining the role of insulin detemir in basal insulin therapy’, Drugs, 2007, 67, (17), 2557–2584.
  • Peterson GE: ‘Intermediate and long-acting insulins: a review of NPH insulin, insulin glargine and insulin detemir’, Curr. Med. Res. Opin., 2006, 22, (12), 2613–2619.
  • Ming X, Carver K and Wu L: ‘Albumin-based nanoconjugates for targeted delivery of therapeutic oligonucleotides’, Biomaterials, 2013, 34, (32), 7939–7949.
  • Zhang SF, Wang GL, Lin XY, Chatzinikolaidou M, Jennissen HP, Laub M and Uludag H: ‘Polyethylenimine-coated albumin nanoparticles for BMP-2 delivery’, Biotechnol. Prog., 2008, 24, (4), 945–956.
  • Shaw JTB and Smith SG: ‘Amino-acids of silk sericin’, Nature, 1951, 168, (4278), 745–745.
  • Wang YJ and Zhang YQ: ‘Three-layered sericins around the silk fibroin fiber from Bombyx mori cocoon and their amino acid composition’, Adv. Mater. Res., 2011, 175–176, 158–163.
  • Schroeder WA and Kay LM: ‘The amino acid composition of bombyx-mori silk fibroin and of tussah silk fibroin’, J. Am. Chem. Soc., 1955, 77, (14), 3908–3913.
  • Warwicker JO: ‘Comparative studies of fibroins. 2. Crystal structures of various fibroins’, J. Mol. Biol., 1960, 2, (6), 350–362.
  • Giesa T, Arslan M, Pugno NM and Buehler MJ: ‘Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness’, Nano Lett., 2011, 11, (11), 5038–5046.
  • Vollrath F and Knight DP: ‘Liquid crystalline spinning of spider silk’, Nature, 2001, 410, (6828), 541–548.
  • Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen JS, Lu H, Richmond J and Kaplan DL: ‘Silk-based biomaterials’, Biomaterials, 2003, 24, (3), 401–416.
  • Scheibel T: ‘Protein fibers as performance proteins: new technologies and applications’, Curr. Opin. Biotechnol., 2005, 16, (4), 427–433.
  • Vepari C and Kaplan DL: ‘Silk as a biomaterial’, Prog. Polym. Sci., 2007, 32, (8–9), 991–1007.
  • Omenetto FG and Kaplan DL: ‘A new route for silk’, Nat. Photon., 2008, 2, (11), 641–643.
  • Tsioris K, Raja WK, Pritchard EM, Panilaitis B, Kaplan DL and Omenetto FG: ‘Fabrication of silk microneedles for controlled-release drug delivery’, Adv. Funct. Mater., 2012, 22, (2), 330–335.
  • Uebersax L, Apfel T, Nuss KMR, Vogt R, Kim HY, Meinel L, Kaplan DL, Auer JA, Merkle HP and von RB: ‘Biocompatibility and osteoconduction of macroporous silk fibroin implants in cortical defects in sheep’, Eur. J. Pharm. Biopharm., 2013, 85, (1), 107–118.
  • Hofmann S, Hilbe M, Fajardo RJ, Hagenmuller H, Nuss K, Arras M, Muller R, von RB, Kaplan DL, Merkle HP and Meinel L: ‘Remodeling of tissue-engineered bone structures in vivo’, Eur. J. Pharm. Biopharm., 2013, 85, (1), 119–129.
  • Meinel L and Kaplan DL: ‘Silk constructs for delivery of musculoskeletal therapeutics’, Adv. Drug Deliv. Rev., 2012, 64, (12), 1111–1122.
  • Meinel AJ, Kubow KE, Klotzsch E, Garcia-Fuentes M, Smith ML, Vogel V, Merkle HP and Meinel L: ‘Optimization strategies for electrospun silk fibroin tissue engineering scaffolds’, Biomaterials, 2009, 30, (17), 3058–3067.
  • Uebersax L, Merkle HP and Meinel L: ‘Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells’, J. Control. Release, 2008, 127, (1), 12–21.
  • Uebersax L, Mattotti M, Papaloizos M, Merkle HP, Gander B and Meinel L: ‘Silk fibroin matrices for the controlled release of nerve growth factor (NGF)’, Biomaterials, 2007, 28, (30), 4449–4460.
  • Kirker-Head C, Karageorgiou V, Hofmann S, Fajardo R, Betz O, Merkle HP, Hilbe M, von RB, McCool J, Abrahamsen L, Nazarian A, Cory E, Curtis M, Kaplan D and Meinel L: ‘BMP-silk composite matrices heal critically sized femoral defects’, Bone, 2007, 41, (2), 247–255.
  • Hofmann S, Knecht S, Langer R, Kaplan DL, Vunjak-Novakovic G, Merkle HP and Meinel L: ‘Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells’, Tissue Eng., 2006, 12, (10), 2729–2738.
  • Yang YM, Chen XM, Ding F, Zhang PY, Liu J and Go XS: ‘Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro’, Biomaterials, 2007, 28, (9), 1643–1652.
  • Acharya C, Ghosh SK and Kundu SC: ‘Silk fibroin protein from mulberry and non-mulberry silkworms: cytotoxicity, biocompatibility and kinetics of L929 murine fibroblast adhesion’, J. Mater. Sci. Mater. Med., 2008, 19, (8), 2827–2836.
  • Bessa PC, Balmayor ER, Hartinger J, Zanoni G, Dopler D, Meinl A, Banerjee A, Casal M, Redl H, Reis RL and van Griensven M: ‘Silk fibroin microparticles as carriers for delivery of human recombinant bone morphogenetic protein-2: in vitro and in vivo bioactivity’, Tissue Eng. Part C Methods, 2010, 16, (5), 937–945.
  • Santin M, Motta A, Freddi G and Cannas M: ‘In vitro evaluation of the inflammatory potential of the silk fibroin’, J. Biomed. Mater. Res., 1999, 46, (3), 382–389.
  • Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G and Kaplan DL: ‘The inflammatory responses to silk films in vitro and in vivo’, Biomaterials, 2005, 26, (2), 147–155.
  • Mandal BB, Priya AS and Kundu SC: ‘Novel silk sericin/gelatin 3-D scaffolds and 2-D films: fabrication and characterization for potential tissue engineering applications’, Acta Biomater., 2009, 5, (8), 3007–3020.
  • Bhattacharjee M, Schultz-Thater E, Trella E, Miot S, Das S, Loparic M, Ray AR, Martin I, Spagnoli GC and Ghosh S: ‘The role of 3D structure and protein conformation on the innate and adaptive immune responses to silk-based biomaterials’, Biomaterials, 2013, 34, (33), 8161–8171.
  • Panilaitis B, Altman GH, Chen JS, Jin HJ, Karageorgiou V and Kaplan DL: ‘Macrophage responses to silk’, Biomaterials, 2003, 24, (18), 3079–3085.
  • Hu YP, Zhang Q, You RC, Wang LS and Li MZ: ‘The relationship between secondary structure and biodegradation behavior of silk fibroin scaffolds’, Adv. Mater. Sci. Eng., 2012, 2012, 5.
  • Wang Y, Rudym DD, Walsh A, Abrahamsen L, Kim HJ, Kim HS, Kirker-Head C and Kaplan DL: ‘In vivo degradation of three-dimensional silk fibroin scaffolds’, Biomaterials, 2008, 29, (24–25), 3415–3428.
  • Uebersax L, Merkle HP and Meinel L: ‘Biopolymer-based growth factor delivery for tissue repair: from natural concepts to engineered systems’, Tissue Eng., Part B, 2009, 15, (3), 263–289.
  • Wenk E, Wandrey AJ, Merkle HP and Meinel L: ‘Silk fibroin spheres as a platform for controlled drug delivery’, J. Control. Release, 2008, 132, (1), 26–34.
  • Hofmann S, Wong PFCT, Rossetti F, Textor M, Vunjak-Novakovic G, Kaplan DL, Merkle HP and Meinel L: ‘Silk fibroin as an organic polymer for controlled drug delivery’, J. Control. Release, 2006, 111, (1–2), 219–227.
  • Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D and Vunjak-Novakovic G: ‘Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds’, Biotechnol. Bioeng., 2004, 88, (3), 379–391.
  • Meinel L, Karageorgiou V, Fajardo R, Snyder B, Shinde-Patil V, Zichner L, Kaplan D, Langer R and Vunjak-Novakovic G: ‘Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow’, Ann. Biomed. Eng., 2004, 32, (1), 112–122.
  • Meinel L, Karageorgiou V, Hofmann S, Fajardo R, Snyder B, Li C, Zichner L, Langer R, Vunjak-Novakovic G and Kaplan DL: ‘Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds’, J. Biomed. Mater. Res. Part A, 2004, 71A, (1), 25–34.
  • Uebersax L, Fedele DE, Schumacher C, Kaplan DL, Merkle HP, Boison D and Meinel L: ‘The support of adenosine release from adenosine kinase deficient ES cells by silk substrates’, Biomaterials, 2006, 27, (26), 4599–4607.
  • Karageorgiou V, Tomkins M, Fajardo R, Meinel L, Snyder B, Wade K, Chen J, Vunjak-Novakovic G and Kaplan DL: ‘Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo’, J. Biomed. Mater. Res. Part A, 2006, 78A, (2), 324–334.
  • Pritchard EM, Dennis PB, Omenetto F, Naik RR and Kaplan DL: ‘Physical and chemical aspects of stabilization of compounds in silk’, Biopolymers, 2012, 97, (6), 479–498.
  • Wenk E, Merkle HP and Meinel L: ‘Silk fibroin as a vehicle for drug delivery applications’, J. Control. Release, 2011, 150, (2), 128–141.
  • Biondi M, Ungaro F, Quaglia F and Netti PA: ‘Controlled drug delivery in tissue engineering’, Adv. Drug Deliv. Rev., 2008, 60, (2), 229–242.
  • Jin H.-J and Kaplan DL: ‘Mechanism of silk processing in insects and spiders’, Nature, 2003, 424, (6952), 1057–1061.
  • Cohen S and Bernstein H: ‘ Microparticulate systems for the delivery of proteins and vaccines’, in ‘Drugs and the pharmaceutical sciences’, Vol. Vol. 77, 525; 1996, New York, Marcel Dekker Inc.
  • Karageorgiou V, Meinel L, Hofmann S, Malhotra A, Volloch V and Kaplan D: ‘Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells’, J. Biomed. Mater. Res. Part A, 2004, 71A, (3), 528–537.
  • Sofia S, McCarthy MB, Gronowicz G and Kaplan DL: ‘Functionalized silk-based biomaterials for bone formation’, J. Biomed. Mater. Res., 2000, 54, (1), 139–148.
  • Lu Q, Wang X, Zhu H and Kaplan DL: ‘Surface immobilization of antibody on silk fibroin through conformational transition’, Acta Biomater., 2011, 7, (7), 2782–2786.
  • Lv Q, Hu K, Feng Q and Cui F: ‘Fibroin/collagen hybrid hydrogels with crosslinking method: preparation, properties, and cytocompatibility’, J. Biomed. Mater. Res. A, 2008, 84, (1), 198–207.
  • Wenk E, Murphy AR, Kaplan DL, Meinel L, Merkle HP and Uebersax L: ‘The use of sulfonated silk fibroin derivatives to control binding, delivery and potency of FGF-2 in tissue regeneration’, Biomaterials, 2010, 31, (6), 1403–1413.
  • Murphy AR, St JP and Kaplan DL: ‘Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation’, Biomaterials, 2008, 29, (19), 2829–2838.
  • Zhao HS, Heusler E, Jones G, Li LH, Werner V, Germershaus O, Ritzer J, Luehmann T and Meinel L: ‘Decoration of silk fibroin by click chemistry for biomedical application’, J. Struct. Biol., 2014, 186, (3), 420–430.
  • Fekner T, Li X, Lee MM and Chan MK: ‘A pyrrolysine analogue for protein click chemistry’, Angew. Chem. Int. Ed. Engl., 2009, 48, (9), 1633–1635.
  • Gaston MA, Jiang R and Krzycki JA: ‘Functional context, biosynthesis, and genetic encoding of pyrrolysine’, Curr. Opin. Microbiol., 2011, 14, (3), 342–349.
  • Hertweck C: ‘Biosynthesis and charging of pyrrolysine, the 22nd genetically encoded amino acid’, Angew. Chem. Int. Ed. Engl., 2011, 50, (41), 9540–9541.
  • Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G and Kaplan DL: ‘Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering’, J. Control. Release, 2009, 134, (2), 81–90.
  • Zhang J, Pritchard E, Hu X, Valentin T, Panilaitis B, Omenetto FG and Kaplan DL: ‘Stabilization of vaccines and antibiotics in silk and eliminating the cold chain’, Proc. Natl. Acad. Sci. U.S.A, 2012, 109, (30), 11981–11986.
  • Colinet G, Rossignol J and Peetermans J: ‘A study of the stability of a bivalent measles–mumps vaccine’, J. Biol. Stand., 1982, 10, (4), 341–346.
  • Clementi F: ‘Alginate production by Azotobacter vinelandii’, Crit. Rev. Biotechnol., 1997, 17, (4), 327–361.
  • Hay ID, Rehman ZU, Ghafoor A and Rehm BHA: ‘Bacterial biosynthesis of alginates’, J. Chem. Technol. Biot., 2010, 85, (6), 752–759.
  • Dhillon GS, Kaur S, Brar SK and Verma M: ‘Green synthesis approach: extraction of chitosan from fungus mycelia’, Crit. Rev. Biotechnol., 2013, 33, (4), 379–403.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.