530
Views
15
CrossRef citations to date
0
Altmetric
Review

Biological effects of wear particles generated in total joint replacements: trends and future prospects

, &
Pages 39-52 | Received 13 Feb 2012, Accepted 14 Feb 2012, Published online: 12 Nov 2013

References

  • Goodman SB, Barrena EGomez, Takagi M, Konttinen YT: ‘Biocompatibility of total joint replacements: a review’, J. Biomed. Mater. Res. A, 2009, 90A, 603–618.
  • Tipper JL, Ingham E, Jin ZM, Fisher J: ‘The science of metal-on-metal articulation’, Curr. Orthopaedics, 2005, 19, 280.
  • Takahashi K, Onodera S, Tohyama H, Kwon HJ, Honma K, Yasuda K: ‘In vivo imaging of particle-induced inflammation and osteolysis in the calvariae of NFkappaB/luciferase transgenic mice’, J. Biomed. Biotechnol., 2011, Article ID 727063.
  • Hosman AH, van der Mei HC, Bulstra SK, Busscher HJ, Neut D: ‘Effects of metal-on-metal wear on the host immune system and infection in hip arthroplasty’, Acta Orthop., 2010, 81, (5), 526–534.
  • Savarino L, Baldini N, Ciapetti G, Pellacani A, Giunti A: ‘Is wear debris responsible for failure in alumina-on-alumina implants?’, Acta Orthop. Scand., 2009, 80, 162.
  • Walter WL, O’Toole GC, Walter WK, Ellis A, Zicat BA: ‘Squeaking in ceramic-on-ceramic hips: the importance of acetabular component orientation’, J. Arthroplasty, 2007, 22, 496–503.
  • Barrena EGomez, Puertolas JA, Munuera L, Konttinen YT: ‘Update on UHMWPE research from the bench to the bedside’, Acta Orthop. Scand., 2008, 79, 832.
  • Dowson D, Jobbins B: ‘Design and development of a versatile hip joint simulator and a preliminary assessment of wear and creep in Charnley total replacement hip joints’, Eng. Med., 1988, 17, 111–117.
  • Tipper JL, Galvin AL, Williams S, McEwen HMJ, Stone MH, Ingham E, Fisher J: ‘Isolation and characterization of UHMWPE wear particles down to ten nanometers in size from in vitro hip and knee joint simulators’, J. Biomed. Mater. Res. A, 2006, 78A, 473–480.
  • Slouf M, Eklova S, Kumstatova J, Berger S, Synkova H, Sosna A, Pokorny D, Spundova M, Entlicher G: ‘Isolation, characterization and quantification of polyethylene wear debris from periprosthetic tissues around total joint replacements’, Wear, 2007, 262, 1171–1181.
  • Purdue PE, Koulouvaris P, Nestor BJ, Sculco TP: ‘The central role of wear debris in periprosthetic osteolysis’, HSS J., 2006, 2, 102–113.
  • Hall RM, Bankes MJK, Blunn G: ‘Biotribology for joint replacement’, Curr. Orthopaedics, 2001, 15, 281–290.
  • Premnath V, Harris WH, Jasty M, Merrill EW: ‘Gamma sterilization of UHMWPE articular implants: an analysis of the oxidation problem’, Biomaterials, 1996, 17, 1741–1753.
  • del Prever EMBrach, Bistolfi A, Bracco P, Costa L: ‘UHMWPE for arthroplasty: past or future?’, J. Orthopaedics Traumatol., 2009, 10, 1.
  • Gupta SK, Chu A, Ranawat AS, Slamin J, Ranawat CS: ‘Review article: osteolysis after total knee arthroplasty’, J. Arthroplasty, 2007, 22, 787–799.
  • Orhun K, Muratoglu P: ‘Highly crosslinked and melted UHMWPE’ ‘UHMWPE biomaterials handbook’; 197–204; 2009, New York, Elsevier.
  • D'Antonio JA, Manley MT, Capello WN, Bierbaum BE, Ramakrishnan R, Naughton M, Sutton K: ‘Five-year experience with crossfire (R) highly cross-linked polyethylene’, Clin. Orthop., 2005, 441, 143.
  • Wang A, Polineni VK, Essner A, Sun DC, Stark C, Dumbleton JH: ‘Effect of radiation dosage on the wear of stabilized UHMWPE evaluated by hip and knee joint simulators’, Trans. Soc. Biomater., 1997, 23, 394.
  • Plumlee K, Schwartz CJ: ‘Improved wear resistance of orthopaedic UHMWPE by reinforcement with zirconium particles’, Wear, 2009, 267, 710.
  • Illgen RL., Bauer L.M., Hotujec B.T., Kolpin S.E., Bakhtiar A., Forsythe T.M.: ‘Highly crosslinked vs conventional polyethylene particles: relative in vivo inflammatory response’, J. Arthroplasty, 2009, 24, 117–124.
  • Sobieraj MC, Rimnac CM: ‘Ultra high molecular weight polyethylene: mechanics, morphology, and clinical behavior’, J. Mech. Behav. Biomed. Mater., 2009, 2, 433–443.
  • Campbell DG, Field JR, Callary SA: ‘Second-generation highly cross-linked X3 polyethylene wear: a preliminary radiostereometric analysis study’, Clin. Orthop., 2010, 1.
  • Wang W, Ouyang Y, Poh CK: ‘Orthopaedic implant technology: biomaterials from past to future’, Ann. Acad. Med. Singapore, 2011, 40, 237–244.
  • Wolf C, Lederer K, Müller U: ‘Tests of biocompatibility of alpha-tocopherol with respect to the use as a stabilizer in ultrahigh molecular weight polyethylene for articulating surfaces in joint endoprostheses’, J. Mater. Sci., Mater. Med., 2002, 13, 701.
  • Kurtz SM, Dumbleton J, Siskey RS, Wang A, Manley M: ‘Trace concentrations of vitamin E protect radiation crosslinked UHMWPE from oxidative degradation’, J. Biomed. Mater. Res., 2009, 90, 549.
  • Lerf R, Zurbrügg D, Delfosse D: ‘Use of vitamin E to protect cross-linked UHMWPE from oxidation’, Biomaterials, 2010, 31, 3643.
  • Kurtz S, Bracco P, Costa L: ‘Vitamin-E-blended UHMWPE biomaterials’, ‘UHMWPE biomaterials handbook’; 237–247; 2009, New York, Elsevier.
  • Zhang M, Pare P, King R, James S: ‘A novel ultra high molecular weight polyethylene-hyaluronan microcomposite for use in total joint replacements. II. Mechanical and tribological property evaluation’, J. Biomed. Mater. Res. A, 2007, 82A, 18.
  • Borruto A: ‘A new material for hip prosthesis without considerable debris release’, Med. Eng. Phys., 2010, 32, 908–913.
  • Sagomonyants KB, Jarman-Smith ML, Devine JN, Aronow MS, Gronowicz GA: ‘The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium’, Biomaterials, 2008, 29, 1563–1572.
  • Kurtz SM, Devine JN: ‘PEEK biomaterials in trauma, orthopedic, and spinal implants’, Biomaterials, 2007, 28, 4845–4869.
  • Zahiri CA, Schmalzried TP, Ebramzadeh E, Szuszczewicz ES, Salib D, Kim C, Amstutz HC: ‘Lessons learned from loosening of the McKee-Farrar metal-on-metal total hip replacement 1’, J. Arthroplasty, 1999, 14, 326.
  • Anissian HL, Stark A, Gustafson A, Good V, Clarke CI: ‘Metal-on-metal bearing in hip prosthesis generates 100-fold less wear debris than metal-on-polyethylene’, Acta Orthop. Scand., 1999, 70, 578.
  • Goodman SB, Barrena EGomez, Takagi M, Konttinen YT: ‘Biocompatibility of total joint replacements: a review’, J. Biomed. Mater. Res. A, 2009, 90A, 603–618.
  • Nomura N: ‘Artificial organs: recent progress in metals and ceramics’, Int. J. Artif. Organs, 2010, 13, 10.
  • Kurtz SM, Ong K: ‘Contemporary total hip arthroplasty: hard-on-hard bearings and highly crosslinked UHMWPE’, ‘UHMWPE biomaterials handbook’; 55–79; 2009, New York, Elsevier.
  • Papakyriacou M, Mayer H, Pypen C, Plenk H, Stanzl-Tschegg S: ‘Effects of surface treatments on high cycle corrosion fatigue of metallic implant materials’, Int. J. Fatigue, 2000, 22, 873–886.
  • Staiger MP, Pietak AM, Huadmai J, Dias G: ‘Magnesium and its alloys as orthopedic biomaterials: a review’, Biomaterials, 2006, 27, 1728–1734.
  • Niinomi M: ‘Recent metallic materials for biomedical applications’, Metall. Mater. Trans. A, 2002, 33A, 477.
  • Mattei L, Puccio FDi, Piccigallo B, Ciulli E: ‘Lubrication and wear modelling of artificial hip joints: a review’, Tribol. Int., 2011, 44, 532–549.
  • Koseki H, Shindo H, Baba K, Fujikawa T, Sakai N, Sawae Y, Murakami T: ‘Surface-engineered metal-on-metal bearings improve the friction and wear properties of local area contact in total joint arthroplasty’, Surf. Coat. Technol., 2008, 202, 4775.
  • Williams S, Tipper JL, Ingham E, Stone MH, Fisher J: ‘In vitro analysis of the wear, wear debris and biological activity of surface-engineered coatings for use in metal-on-metal total hip replacements’, Proc. Inst. Mech. Eng. H, 2003, 217H, 155–163.
  • Tiainen V: ‘Amorphous carbon as a bio-mechanical coating – mechanical properties and biological applications’, Diamond Relat. Mater., 2001, 10, 153–160.
  • Lappalainen R, Selenius M, Anttila A, Konttinen YT, Santavirta SS: ‘Reduction of wear in total hip replacement prostheses by amorphous diamond coatings’, J. Biomed. Mater. Res. B, 2003, 66B, 410–413.
  • Firkins PJ, Tipper JL, Ingham E, Stone MH, Farrar R, Fisher J: ‘A novel low wearing differential hardness, ceramic-on-metal hip joint prosthesis’, J. Biomech., 2001, 34, 1291–1298.
  • Williams S, Schepers A, Isaac G, Hardaker C, Ingham E, van der Jagt D, Breckon A, Fisher J: ‘The 2007 Otto Aufranc Award: ceramic-on-metal hip arthroplasties: a comparative in vitro and in vivo study’, Clin. Orthop., 2007, 465, 23.
  • McWilliams TG, Parker JR: ‘Alternative bearing surfaces for hip arthroplasty’, Orthopaedics Trauma, 2009, 23, 2.
  • Capello WN, D'Antonio JA, Feinberg JR, Manley MT: ‘Alternative bearing surfaces: alumina ceramic bearings for total hip arthroplasty’, Instrum. Course Lect. (AAOS), 2005, 54, 171–176.
  • Schroder D, Bornstein L, Bostrom MP, Nestor BJ, Padgett DE, Westrich GH: ‘Ceramic-on-ceramic total hip arthroplasty: incidence of instability and noise’, Clin. Orthop. Relat. Res., 2011, 469, 437–442.
  • Piconi C, Maccauro G, Muratori F, Del Prever EBrach: ‘Alumina and zirconia ceramics in joint replacements’, J. Appl. Biomater. Biomech., 2003, 1, 19.
  • Brown SS, Green DD, Pezzotti G, Donaldson TK, Clarke IC: ‘Possible triggers for phase transformation in zirconia hip balls’, J. Biomed. Mater. Res. B, 2008, 85B, 444–452.
  • Howcroft D, Head M, Steele N: ‘Bearing surfaces in the young patient: out with the old and in with the new?’, Curr. Orthopaedics, 2008, 22, 177–184.
  • Geetha M, Singh AK, Asokamani R, Gogia AK: ‘Ti based biomaterials, the ultimate choice for orthopaedic implants – a review’, Prog. Mater. Sci., 2009, 54, 397.
  • Thompson I, Rawlings RD: ‘Mechanical behaviour of zirconia and zirconia-toughened alumina in a simulated body environment’, Biomaterials, 1990, 11, 505.
  • Rahaman MN, Yao A, Sonny Bal B, Garino JP, Ries MD: ‘Ceramics for prosthetic hip and knee joint replacement’, J. Am. Ceram. Soc., 2007, 90, 1965.
  • Chevalier J, Fantozzi G:‘Slow crack propagation in ceramics at the nano- and micro-scale: effect of the microstructure’ in‘Fracture mechanics of ceramics’(, Bradt R C, et al..), 173–190; 2005, New York, Springer.
  • Chevalier J, Gremillard L: ‘Ceramics for medical applications: a picture for the next 20 years’, J. Eur. Ceram. Soc., 2009, 29, 1245–1255.
  • Fang H.-W, Hsu SM, Sengers JV: ‘Ultra-high molecular weight polyethylene wear particle effects on bioactivity’, National Institute of Standards and Technology Special Publication 100, National Institute of Standards and Technology, Gaithersburg, MD, USA, September 2003.
  • Ingham E, Green TR, Stone MH, Kowalski R, Watkins N, Fisher J: ‘Production of TNF-α and bone resorbing activity by macrophages in response to different types of bone cement particles’, Biomaterials, 2000, 21, 1005–1013.
  • Shi W, Dong H, Bell T: ‘Tribological behaviour and microscopic wear mechanisms of UHMWPE sliding against thermal oxidation-treated Ti6Al4V’, Mater. Sci. Eng. A, 2000, A291, 27–36.
  • Cho HJ, Wei WJ, Kao HC, Cheng CK: ‘Wear behavior of UHMWPE sliding on artificial hip arthroplasty materials’, Mater. Chem. Phys., 2004, 88, 9–16.
  • Firkins PJ, Tipper JL, Saadatzadeh MR, Ingham E, Stone MH, Farrar R, Fisher J: ‘Quantitative analysis of wear and wear debris from metal-on-metal hip prostheses tested in a physiological hip joint simulator’, Biomed. Mater. Eng., 2001, 11, 143–157.
  • Catelas I, Bobyn JD, Medley JB, Krygier JJ, Zukor DJ, Petit A, Huk OL: ‘Effects of digestion protocols on the isolation and characterization of metal–metal wear particles. I. Analysis of particle size and shape’, J. Biomed. Mater. Res., 2001, 55, 320–329.
  • Billi F, Benya P, Ebramzadeh E, Campbell P, Chan F, McKellop HA: ‘Metal wear particles: what we know, what we do not know, and why’, SAS J., 2009, 3, 133–142.
  • Catelas I, Wimmer MA, Utzschneider S: ‘Polyethylene and metal wear particles: characteristics and biological effects’, Semin. Immunopathol., 2011, 33, (3), 257–271.
  • Mostardi RA, Kovacik MW, Finefrock JM, Askew MJ: ‘In vitro response of human fibroblasts to total joint prosthetic metals’, Proc. 51st Annual Meeting of the Orthopaedic Research Society, Washington, DC, USA, February 2005 Orthopaedic Rearch Society, Poster no. 113.
  • Kovacik MW, Mostardi RA, Neal DR, Bear TF, Askew MJ, Bender ET, Walker JI, Ramsier RD: ‘Differences in the surface composition of seemingly similar F75 cobalt–chromium micron-sized particulates can affect synovial fibroblast viability’, Colloids Surf. B, 2008, 65B, 269–275.
  • Naji A, Harmand MF: ‘Study of the effect of the surface state on the cytocompatibility of a Co–Cr alloy using human osteoblasts and fibroblasts’, J. Biomed. Mater. Res., 1990, 24, 861–871.
  • Mostardi RA, Kovacik MW, Ramsier RD, Bender ET, Finefrock JM, Bear TF, Askew MJ: ‘A comparison of the effects of prosthetic and commercially pure metals on retrieved human fibroblasts: the role of surface elemental composition’, Acta Biomater., 2010, 6, 702–707.
  • Tipper JL, Ingham E, Hailey JL, Besong AA, Fisher J, Wroblewski BM, Stone MH: ‘Quantitative analysis of polyethylene wear debris, wear rate and head damage in retrieved Charnley hip prostheses’, J. Mater. Sci. Mater. Med., 2000, 11, 117.
  • Savio J.A., Overcamp L.M., Black J.: ‘Size and shape of biomaterial wear debris’, Clin. Mater., 1994, 15, 101–147.
  • Schmalzried TP, Campbell P, Schmitt AK, Brown IC, Amstutz HC: ‘Shapes and dimensional characteristics of polyethylene wear particles generated in vivo by total knee replacements compared to total hip replacements’, J. Biomed. Mater. Res., 1997, 38, 203.
  • Shanbhag AS, Bailey HO, Hwang DS, Cha CW, Eror NG, Rubash HE: ‘Quantitative analysis of ultrahigh molecular weight polyethylene (UHMWPE) wear debris associated with total knee replacements’, J. Biomed. Mater. Res., 2000, 53, 100.
  • Howling GI, Barnett PI, Tipper JL, Stone MH, Fisher J, Ingham E: ‘Quantitative characterization of polyethylene debris isolated from periprosthetic tissue in early failure knee implants and early and late failure Charnley hip implants’, J. Biomed. Mater. Res., 2001, 58, 415.
  • Endo M, Tipper JL, Barton DC, Stone MH, Ingham E, Fisher J: ‘Comparison of wear, wear debris and functional biological activity of moderately crosslinked and non-crosslinked polyethylenes in hip prostheses’, Proc. Inst. Mech. Eng. B, 2002, 216B, 111.
  • Tipper JL, Firkins PJ, Besong AA, Barbour PSM, Nevelos J, Stone MH, Ingham E, Fisher J: ‘Characterisation of wear debris from UHMWPE on zirconia ceramic, metal-on-metal and alumina ceramic-on-ceramic hip prostheses generated in a physiological anatomical hip joint simulator’, Wear, 2001, 250, 120.
  • Ingham E, Fisher J: ‘The role of macrophages in osteolysis of total joint replacement’, Biomaterials, 2005, 26, 1271–1286.
  • Shea KG, Bloebaum RD, Avent JM, Birk T, Samuelson KA: ‘Analysis of lymph nodes for polyethylene particles in patients who have had a primary joint replacement’, J. Bone Joint Surg. Am., 1996, 78, 497–504.
  • Revell PA: ‘The combined role of wear particles, macrophages and lymphocytes in the loosening of total joint prostheses’, J. R. Soc. Interface, 2008, 5, 1263.
  • Yang J, Shen B, Zhou Z, Pei F, Kang P: ‘Changes in cobalt and chromium levels after metal-on-metal hip resurfacing in young, active Chinese patients’, J. Arthroplasty, 2011, 26, 65–70, 70.e1.
  • MacDonald SJ, Brodner W, Jacobs JJ: ‘A consensus paper on metal ions in metal-on-metal hip arthroplasties’, J. Arthroplasty, 2004, 19, 12–16.
  • Savarino L, Granchi D, Ciapetti G, Cenni E, Pantoli A, Rotini R, Veronesi C, Baldini N, Giunti A: ‘Ion release in patients with metal-on-metal hip bearings in total joint replacement: a comparison with metal-on-polyethylene bearings’, J. Biomed. Mater. Res., 2002, 63, 467–474.
  • De Haan R, Pattyn C, Gill HS, Murray DW, Campbell PA, De Smet K: ‘Correlation between inclination of the acetabular component and metal ion levels in metal-on-metal hip resurfacing replacement’, J. Bone Joint Surg. Br., 2008, 90, 1291–1297.
  • Campbell P, Beaulé PE, Ebramzadeh E, Le Duff M, De Smet K, Lu Z, Amstutz HC: ‘The John Charnley Award: a study of implant failure in metal-on-metal surface arthroplasties’, Clin. Orthop. Relat. Res., 2006, 453, 35–46.
  • Clarke MT, Lee PT, Arora A, Villar RN: ‘Levels of metal ions after small- and large-diameter metal-on-metal hip arthroplasty’, J. Bone Joint Surg. Br., 2003, 85, 913–917.
  • Engh C, MacDonald S, Sritulanondha S, Thompson A, Naudie D, Engh C: ‘2008 John Charnley Award: metal ion levels after metal-on-metal total hip arthroplasty: a randomized trial’, Clin. Orthopaedics Relat. Res., 2009, 467, 101–111.
  • Bernstein M, Walsh A, Petit A, Zukor D, Antoniou J: ‘Femoral head size does not affect ion values in metal-on-metal total hips’, Clin. Orthopaedics Relat. Res., 2011, 469, 1642–1650.
  • Sargeant A, Goswami T: ‘Hip implants: paper V. Physiological effects’, Mater. Eng., 2006, 27, 287.
  • Clarke IC, Good V, Williams P, Schroeder D, Anissian L, Stark A, Oonishi H, Schuldies J, Gustafson G: ‘Ultra-low wear rates for rigid-on-rigid bearings in total hip replacements’, Proc. Inst. Mech. Eng. B, 2000, 214B, 331.
  • Catelas I, Petit A, Marchand R, Zukor DJ, Yahia L'H, Huk OL: ‘Cytotoxicity and macrophage cytokine release induced by ceramic and polyethylene particles in vitro’, J. Bone Joint Surg. Br., 1999, 81, 516.
  • Bhatt H, Goswami T: ‘Implant wear mechanisms-basic approach’, Biomed. Mater., 2008, 3, 042001.
  • Jin Z, Medley J, Dowson D:‘Fluid film lubrication in artificial hip joints’ in‘Tribology and interface engineering series’(, Dowson D, et al..), 237–256; 2003, New York, Elsevier.
  • Nevelos JE, Ingham E, Doyle C, Fisher J, Nevelos AB: ‘Analysis of retrieved alumina ceramic components from Mittelmeier total hip prostheses’, Biomaterials, 1999, 20, 1833–1840.
  • Nevelos J, Ingham E, Doyle C, Streicher R, Nevelos A, Walter W, Fisher J: ‘Microseparation of the centers of alumina-alumina artificial hip joints during simulator testing produces clinically relevant wear rates and patterns’, J. Arthroplasty, 2000, 15, 793–795.
  • Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S, Fisher J, Ingham E, Case CP: ‘The effect of nano-and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro’, Biomaterials, 2007, 28, 2946.
  • Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM: ‘The effect of particle design on cellular internalization pathways’, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 11613.
  • Lewis AC, Ladon D, Heard PJ, Peto L, Learmonth I: ‘The role of the surface chemistry of CoCr alloy particles in the phagocytosis and DNA damage of fibroblast cells’, J. Biomed. Mater. Res. A, 2007, 82A, 363.
  • Ruan G, Agrawal A, Marcus AI, Nie S: ‘Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding’, J. Am. Chem. Soc., 2007, 129, 14759–14766.
  • Tian T, Wang Y, Wang H, Zhu Z, Xiao Z: ‘Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy’, J. Cell. Biochem., 2010, 111, 488.
  • Lockyer NP, Vickerman JC: ‘Progress in cellular analysis using ToF-SIMS’, Appl. Surf. Sci., 2004, 231, 377.
  • Springer A, Pompe W, Bastian S, Iwe M, Ikonomidou H, Busch W, Kühnel D, Pothoff A, Richter V, Gelinsky M: ‘Visualisation of the attachment, possible uptake and distribution of technical nanoparticles in cells with electron microscopy methods’, Mol. Biol., 2001, 24, 2.
  • Ishihara R, Ide-Ektessabi A, Kitamura N, Fujita Y, Mizuno Y, Ohta T: ‘Investigation of interactions of nano-particles within cells using micro-beam imaging techniques’, X-Ray Spectrom., 2003, 32, 418.
  • Milosev I, Remskar M: ‘In vivo production of nanosized metal wear debris formed by tribochemical reaction as confirmed by high-resolution TEM and XPS analyses’, J. Biomed. Mater. Res., 2009, 91, 1100.
  • Brandenberger C, Clift MJD, Vanhecke D, Muhlfeld C, Stone V, Gehr P, Rothen-Rutishauser B: ‘Intracellular imaging of nanoparticles: is it an elemental mistake to believe what you see?’, Part. Fibre Toxicol., 2010, 7, (1), 15.
  • Maitra R, Clement CC, Scharf B, Crisi GM, Chitta S, Paget D, Purdue PE, Cobelli N, Santambrogio L: ‘Endosomal damage and TLR2 mediated inflammasome activation by alkane particles in the generation of aseptic osteolysis’, Mol. Immunol., 2009, 47, 175.
  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A: ‘Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage’, Environ. Health Perspect., 2003, 111, 455.
  • Goodman SB, Ma T, Chiu R, Ramachandran R, Smith RLane: ‘Effects of orthopaedic wear particles on osteoprogenitor cells’, Biomaterials, 2006, 27, 6096–6101.
  • Bostrom M., O’Keefe R. and Implant Wear Symposium 2007 Biologic Work Group: ‘What experimental approaches (eg, in vivo, in vitro, tissue retrieval) are effective in investigating the biologic effects of particles?’, J. Am. Acad. Orthop. Surg., 2008, 16, (Suppl 1), S63–7.
  • Cho DR, Shanbhag AS, Hong C, Baran GR, Goldring SR: ‘The role of adsorbed endotoxin in particle-induced stimulation of cytokine release’, J. Orthopaedic Res., 2002, 20, 704–713.
  • Faure E, Thomas L, Xu H, Medvedev AE, Equils O, Arditi M: ‘Bacterial lipopolysaccharide and IFN-γ induce toll-like receptor 2 and toll-like receptor 4 expression in human endothelial cells: role of NF-kB activation’, J. Immunol., 2001, 166, 2018–2024.
  • Brooks RA, Wimhurst JA, Rushton N: ‘Endotoxin contamination of particles produces misleading inflammatory cytokine responses from macrophages in vitro’, J. Bone Joint Surg. Br., 2002, 84, 295–299.
  • Daniels AU, Barnes FH, Charlebois SJ, Smith RA: ‘Macrophage cytokine response to particles and lipopolysaccharide in vitro’, J. Biomed. Mater. Res., 2000, 49, 469–478.
  • Ingram JH, Stone M, Fisher J, Ingham E: ‘The influence of molecular weight, crosslinking and counterface roughness on TNF-alpha production by macrophages in response to ultra high molecular weight polyethylene particles’, Biomaterials, 2004, 25, 3511.
  • Xia Z, Triffit JT: ‘A review on macrophage responses to biomaterials’, Biomed. Mater., 2006, 1, R1.
  • Endres S, Bartsch I, Stürz S, Kratz M, Wilke A: ‘Polyethylene and cobalt-chromium molybdenium particles elicit a different immune response in vitro’, J. Mater. Sci., Mater. Med., 2008, 19, 1209.
  • Green TR, Fisher J, Matthews JB, Stone MH, Ingham E: ‘Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles’, J. Biomed. Mater. Res., 2000, 53, 490.
  • Fang HW, Yang CB, Chang CH, Huang CH, Liu HL, Fang SB: ‘The potential role of phagocytic capacity in the osteolytic process induced by polyethylene wear particles’, J. Int. Med. Res., 2006, 34, 655–664.
  • Mailander V, Landfester K: ‘Interaction of nanoparticles with cells’, Biomacromolecules, 2009, 10, 2379.
  • Illgen RL, Forsythe TM, Pike JW, Laurent MP, Blanchard CR: ‘Highly crosslinked vs conventional polyethylene particles – an in vitro comparison of biologic activities’, J. Arthroplasty, 2008, 23, 721–731.
  • Richards L, Brown C, Stone MH, Fisher J, Ingham E, Tipper JL: ‘Identification of nanometre-sized ultra-high molecular weight polyethylene wear particles in samples retrieved in vivo’, J. Bone Joint Surg., 2008, 90, 1106.
  • Tipper J: ‘The biological response to nanometer-sized particles’, Proc. Trans. 4th UHMWPE Int. Meet. on ‘UHMWPE for arthroplasty: from powder to debris’, Torino, Italy, September 16–17, 2009, http://www.uhmwpe.org/pub_reports/view/2119.
  • Zhu L, Chang DW, Dai L, Hong Y: ‘DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells’, Nano Lett., 2007, 7, 3592.
  • Reis J, Kanagaraj S, Fonseca A, Mathew MT, Capela-Silva F, Potes J, Pereira A, Oliveira MSA, Simões JA: ‘In vitro studies of multiwalled carbon nanotube/ultrahigh molecular weight polyethylene nanocomposites with osteoblast-like MG63 cells’, Braz. J. Med. Biol. Res., 2010, 43, 476.
  • Smart SK, Cassadyb AI, Lua GQ, Martin DJ: ‘The biocompatibility of carbon nanotubes’, Carbon, 2006, 44, 1034.
  • Tipper JL, Matthews JB, Ingham E, Stewart TD, Fisher J, Stone MH: ‘Wear and functional biological activity of wear debris generated from UHMWPE-on-zirconia ceramic, metal-on-metal and alumina ceramic-on-ceramic hip prostheses during hip simulator testing’, in ‘Friction, lubrication and wear of artificial joints’, (ed. , Hutchings I M, ed); Professional Engineering Publishing, Suffolk, 2002.
  • Shimmin A, Beaule PE, Campbell P: ‘Metal-on-metal hip resurfacing arthroplasty’, J. Bone Joint Surg. Am., 2008, 90, 637–654.
  • Kwon YM, Xia Z, Glyn-Jones S, Beard D, Gill HS, Murray DW: ‘Dose-dependent cytotoxicity of clinically relevant cobalt nanoparticles and ions on macrophages in vitro’, Biomed. Mater., 2009, 4, 025018.
  • Sargeant A, Goswami T: ‘Hip implants – Paper VI – ion concentrations’, Mater. Des., 2007, 28, 155–171.
  • Ladon D, Doherty A, Newson R, Turner J, Bhamra M, Case CP: ‘Changes in metal levels and chromosome aberrations in the peripheral blood of patients after metal-on-metal hip arthroplasty* 1’, J. Arthroplasty, 2004, 19, 78.
  • Caicedo M, Jacobs JJ, Reddy A, Hallab NJ: ‘Analysis of metal ion-induced DNA damage, apoptosis, and necrosis in human (Jurkat) T-cells demonstrates Ni2 and V3 are more toxic than other metals: Al3, Be2, Co2, Cr3, Cu2, Fe3, Mo5, Nb5, Zr2’, J. Biomed. Mater. Res., 2008, 86, 905.
  • Hallab N: ‘Hypersensitivity to metallic biomaterials: a review of leukocyte migration inhibition assays’, Biomaterials, 2000, 21, 1301.
  • Willert HG, Buchhorn GH, Fayyazi A, Flury R, Windler M, Koster G, Lohmann CH: ‘Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study’, J. Bone Joint Surg. Am., 2005, 87, 28–36.
  • Thyssen JP, Jakobsen SS, Engkilde K, Johansen JD, Soballe K, Menne T: ‘The association between metal allergy, total hip arthroplasty, and revision’, Acta Orthop., 2009, 80, 646–652.
  • Campbell P, Shimmin A, Walter L, Solomon M: ‘Metal sensitivity as a cause of groin pain in metal-on-metal hip resurfacing’, J. Arthroplasty, 2008, 23, 1080–1085.
  • Hallab N: ‘Metal sensitivity in patients with orthopedic implants’, J. Clin. Rheumatol., 2001, 7, 215.
  • Malviya A, Holland JP: ‘Pseudotumours associated with metal-on-metal hip resurfacing: 10-year Newcastle experience’, Acta Orthop. Belg., 2009, 75, 477.
  • Pandit H, Glyn-Jones S, McLardy-Smith P, Gundle R, Whitwell D, Gibbons CLM, Ostlere S, Athanasou N, Gill HS, Murray DW: ‘Pseudotumours associated with metal-on-metal hip resurfacings’, J. Bone Joint Surg., 2008, 90, 847.
  • Hinuber C, Kleemann C, Friederichs RJ, Haubold L, Scheibe HJ, Schuelke T, Boehlert C, Baumann MJ: ‘Biocompatibility and mechanical properties of diamond-like coatings on cobalt-chromium-molybdenum steel and titanium-aluminum-vanadium biomedical alloys’, J. Biomed. Mater. Res. A, 2010, 95A, 388–400.
  • Balla VK, Bose S, Davies NM, Bandyopadhyay A, Tantalum.: ‘A bioactive metal for implants’, JOM, 2010, 62, 61.
  • Lerouge S, Huk O, Yahia L, Witvoet J, Sedel L: ‘Ceramic–ceramic and metal–polyethylene total hip replacements: comparison of pseudomembranes after loosening’, J. Bone Joint Surg., 1997, 79, 135.
  • Hernigou P, Zilber S, Filippini P, Poignard A: ‘Ceramic–ceramic bearing decreases osteolysis: a 20-year study versus ceramic-polyethylene on the contralateral hip’, Clin. Orthop., 2009, 467, 2274.
  • Granchi D, Ciapetti G, Amato I, Pagani S, Cenni E, Savarino L, Avnet S, Peris JL, Pellacani A, Baldini N, Giunti A: ‘The influence of alumina and ultra-high molecular weight polyethylene particles on osteoblast-osteoclast cooperation’, Biomaterials, 2004, 25, 4037.
  • Hatton A, Nevelos JE, Matthews JB, Fisherand J, Ingham E: ‘Effects of clinically relevant alumina ceramic wear particles on TNF-[alpha] production by human peripheral blood mononuclear phagocytes’, Biomaterials, 2003, 24, 1193.
  • Nkamgueu EM, Adnet JJ, Bernard J, Zierold K, Kilian L, Jallot E, Benhayoune H, Bonhomme P: ‘In vitro effects of zirconia and alumina particles on human blood monocyte-derived macrophages: X-ray microanalysis and flow cytometric studies’, J. Biomed. Mater. Res., 2000, 52, 587.
  • Lohmann CH, Dean DD, Köster G, Casasola D, Buchhorn GH, Fink U, Schwartz Z, Boyan BD: ‘Ceramic and PMMA particles differentially affect osteoblast phenotype’, Biomaterials, 2002, 23, 1855.
  • Santos C, Teixeira LHP, Daguano JKMF, Rogero SO, Strecker K, Elias CN: ‘Mechanical properties and cytotoxicity of 3Y-TZP bioceramics reinforced with Al2O3 particles’, Ceram. Int., 2009, 35, 709.
  • Mazzocchi M, Gardini D, Traverso PL, Faga MG, Bellosi A: ‘On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part I: processing, microstructure, mechanical properties, cytotoxicity’, J. Mater. Sci., Mater. Med., 2008, 19, 2881.
  • Sohrabi A, Holland C, Kue R, Nagle D, Hungerford DS, Frondoza CG: ‘Proinflammatory cytokine expression of IL-1B and TNF-a by human osteoblast-like MG-63 cells upon exposure to silicon nitride in vitro’, J. Biomed. Mater. Res., 2000, 50, 43.
  • Alvarez MLopez, de Carlos A, González P, Serra J, León B: ‘Cytocompatibility of bio-inspired silicon carbide ceramics’, J. Biomed. Mater. Res. B, 2010, 95B, 177.
  • Cappi B, Neuss S, Salber J, Telle R, Knüchel R, Fischer H: ‘Cytocompatibility of high strength non-oxide ceramics’, J. Biomed. Mater. Res., 2010, 93, 67.
  • Savarino L, Greco M, Cenni E, Cavasinni L, Rotini R, Baldini N, Giunti A: ‘Differences in ion release after ceramic-on-ceramic and metal-on-metal total hip replacement: medium-term follow-up’, J. Bone Joint Surg., 2006, 88, 472.
  • Covacci V, Bruzzese N, Maccauro G, Andreassi C, Ricci GA, Piconi C, Marmo E, Burger W, Cittadini A: ‘In vitro evaluation of the mutagenic and carcinogenic power of high purity zirconia ceramic’, Biomaterials, 1999, 20, 371.
  • Takami Y, Nakazawa T, Makinouchi K, Glueck J, Nosé Y: ‘Biocompatibility of alumina ceramic and polyethylene as materials for pivot bearings of a centrifugal blood pump’, J. Biomed. Mater. Res., 1997, 36, 381.
  • Esposito C, Walter WL, Campbell P, Roques A: ‘Squeaking in metal-on-metal hip resurfacing arthroplasties’, Clin. Orthop., 2010, 468, 2333.
  • Walter W, Waters T, Gillies M, Donohoo S, Kurtz S, Ranawat A, Hozack W, Tuke M: ‘Squeaking hips’, J. Bone Joint Surg., 2008, 90, (Suppl 4), 102.
  • Manley MT, Sutton K: ‘Bearings of the future for total hip arthroplasty’, J. Arthroplasty, 2008, 23, 47.
  • Elsharkawy K, Higuera CA, Klika A, Barsoum WK: ‘Evolution of bearing surfaces in total hip arthroplasty: a review’, Curr. Orthopaedic Pract., 2010, 21, 198.
  • Balasundaram G, Webster TJ: ‘A perspective on nanophase materials for orthopedic implant applications’, J. Mater. Chem., 2006, 16, 3737.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.