308
Views
25
CrossRef citations to date
0
Altmetric
Review

Potential neuroprotection mechanisms in PD: focus on dopamine agonist pramipexole

&
Pages 2977-2987 | Accepted 25 Sep 2009, Published online: 21 Oct 2009

References

  • de Rijk MC, Tzourio C, Breteler MM, et al. Prevalence of parkinsonism and Parkinson's disease in Europe: the EUROPARKINSON Collaborative Study. European community concerted action on the epidemiology of Parkinson's disease. J Neurol Neurosurg Psychiatry 1997;62:10-15
  • von Campenhausen S, Bornschein B, Wick R, et al. Prevalence and incidence of Parkinson's disease in Europe. Eur Neuropsychopharmacol 2005;15:473-90
  • de Lau LM, Breteler MM Epidemiology of Parkinson's disease. Lancet Neurol 2006;5:525-35
  • Braak H, Del Tredici K. Invited Article: Nervous system pathology in sporadic Parkinson disease. Neurology 2008;70:1916-25
  • Hornykiewicz O, Kish SJ Biochemical pathophysiology of Parkinson's disease. Adv Neurol 1987;45:19-34
  • Halliday G, Hely M, Reid W, et al. The progression of pathology in longitudinally followed patients with Parkinson's disease. Acta Neuropathol 2008;115:409-15
  • Spillantini MG, Crowther RA, Jakes R, et al. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 1998;95:6469-73
  • Takahashi H, Wakabayashi K. The cellular pathology of Parkinson's disease. Neuropathology 2001;21:315-22
  • Clarke CE Neuroprotection and pharmacotherapy for motor symptoms in Parkinson's disease. Lancet Neurol 2004;3:466-74
  • Piercey MF Pharmacology of pramipexole, a dopamine D3-preferring agonist useful in treating Parkinson's disease. Clin Neuropharmacol 1998;21:141-51
  • Joyce JN, Woolsey C, Ryoo H, et al. Low dose pramipexole is neuroprotective in the MPTP mouse model of Parkinson's disease, and downregulates the dopamine transporter via the D3 receptor. BMC Biol 2004;2:22
  • Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson's disease. N Engl J Med 1993;328:176-83
  • Olanow CW, Calne D. Does selegiline monotherapy in Parkinson's disease act by symptomatic or protective mechanisms?. Neurology 1992;42(4 Suppl 4):13-26
  • Schapira AH, Olanow CW Neuroprotection in Parkinson disease: mysteries, myths, and misconceptions. JAMA 2004;291:358-64
  • Parkinson Study Group. A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch Neurol 2004;61:561-6
  • Olanow CW, Hauser R, Jankovic J, et al. A randomized, double-blind, placebo-controlled, delayed start study to assess rasagiline as a disease modifying therapy in Parkinson's disease (the ADAGIO study): rationale, design, and baseline characteristics. Mov Disord 2008;23:2194-201
  • Schapira AH, Hsu HH, Scrine K, et al. PROUD: The impact of early vs. delayed treatment with pramipexole on new onset Parkinson's disease. Mov Disord 2008;23(Suppl 1):S194
  • Parkinson Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 2002;287:1653-61
  • Whone AL, Watts RL, Stoessl AJ, et al. Slower progression of Parkinson's disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol 2003;54:93-101
  • Fahn S. Parkinson disease, the effect of levodopa, and the ELLDOPA trial. Earlier vs later L-DOPA. Arch Neurol 1999;56:529-35
  • Jennings DL, Tabamo R, Seibyl JP, et al. InSPECT: investigating the effect of short-term treatment with pramipexole or levodopa on [123I]beta-CIT and SPECT imaging. Mov Disord 2007;22(Suppl 16):S143-4
  • Fahn S and the Parkinson Study Group. Does levodopa slow or hasten the rate of progression of Parkinson's disease?. J Neurol 2005;252(Suppl 4):IV37-42
  • Presgraves SP, Borwege S, Millan MJ, et al. Involvement of dopamine D2/D3 receptors and BDNF in the neuroprotective effects of S32504 and pramipexole against 1-methyl-4-phenylpyridinium in terminally differentiated SH-SY5Y cells. Exp Neurol 2004;190:157-70
  • Iravani MM, Haddon CO, Cooper JM, et al. Pramipexole protects against MPTP toxicity in non-human primates. J Neurochem 2006;00:1315-21
  • Gu M, Iravani MM, Cooper JM, et al. Pramipexole protects against apoptotic cell death by non-dopaminergic mechanisms. J Neurochem 2004;91:1075-81
  • Le WD, Jankovic J, Xie W, et al. Antioxidant property of pramipexole independent of dopamine receptor activation in neuroprotection. J Neural Transm 2000;107:1165-73
  • Vu TQ, Ling ZD, Ma SY, et al. Pramipexole attenuates the dopaminergic cell loss induced by intraventricular 6-hydroxydopamine. J Neural Transm 2000;107:159-76
  • Danzeisen R, Schwalenstoecker B, Gillardon F, et al. Targeted antioxidative and neuroprotective properties of the dopamine agonist pramipexole and its nondopaminergic enantiomer SND919CL2x [(+)2-amino-4,5,6,7-tetrahydro-6-L-propylamino-benzathiazole dihydrochloride]. J Pharmacol Exp Ther 2006;316:189-99
  • Iribe Y, Moore K, Pang KC, et al. Subthalamic stimulation-induced synaptic responses in substantia nigra pars compacta dopaminergic neurons in vitro. J Neurophysiol 1999;82:925-33
  • Hall ED, Andrus PK, Oostveen JA, et al. Neuroprotective effects of the dopamine D2/D3 agonist pramipexole against postischemic or methamphetamine-induced degeneration of nigrostriatal neurons. Brain Res 1996;742:80-8
  • Uberti D, Bianchi I, Olivari L, et al. Pramipexole prevents neurotoxicity by oligomers of beta-amyloid. Eur J Pharmacol 2007;569:194-6
  • Green DR, Reed JC Mitochondria and apoptosis. Science 1998;281:1309-12
  • Tatton NA Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp Neurol 2000;166:29-43
  • Olanow CW, Jankovic J. Neuroprotective therapy in Parkinson's disease and motor complications: a search for a pathogenesis-targeted, disease-modifying strategy. Mov Disord 2005;20(Suppl 11):S3-10
  • Bennett MC, Bishop JF, Leng Y, et al. Degradation of α-synuclein by proteasome. J Biol Chem 1999;274:33855-8
  • McNaught KS, Olanow CW Proteolytic stress: a unifying concept for the etiopathogenesis of Parkinson's disease. Ann Neurol 2003;53(Suppl 3):S73-84
  • Van Kampen JM, Robertson HA A possible role for dopamine D3 receptor stimulation in the induction of neurogenesis in the adult rat substantia nigra. Neuroscience 2005;136:381-6
  • Pan T, Xie W, Jankovic J, et al. Biological effects of pramipexole on dopaminergic neuron-associated genes: relevance to neuroprotection. Neurosci Lett 2005;377:106-9
  • Wang JY, Wen LL, Huang YN, et al. Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharm Des 2006;12:3521-33
  • Mizuno Y, Ohta S, Tanaka M, et al. Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem Biophys Res Commun 1989;163:1450-5
  • Parker WD Jr, Parks JK, Swerdlow RH Complex I deficiency in Parkinson's disease frontal cortex. Brain Res 2008;1189:215-18
  • Dabbeni-Sala F, Di Santo S, Franceschini D, et al. Melatonin protects against 6-OHDA-induced neurotoxicity in rats: a role for mitochondrial complex I activity. FASEB J 2001;15:164-70
  • Jenner P, Dexter DT, Sian J, et al. Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson's Disease Research Group. Ann Neurol 1992;32 Suppl:S82-7
  • Dexter DT, Holley AE, Flitter WD, et al. Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord 1994;9:92-7
  • Ferger B, Teismann P, Mierau J. The dopamine agonist pramipexole scavenges hydroxyl free radicals induced by striatal application of 6-hydroxydopamine in rats: an in vivo microdialysis study. Brain Res 2000;883:216-23
  • Izumi Y, Sawada H, Yamamoto N, et al. Iron accelerates the conversion of dopamine-oxidized intermediates into melanin and provides protection in SH-SY5Y cells. J Neurosci Res 2005;82:126-37
  • Guillot TS, Miller GW Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. Mol Neurobiol 2009;39:149-70
  • Tepper JM, Sun BC, Martin LP, et al. Functional roles of dopamine D2 and D3 autoreceptors on nigrostriatal neurons analyzed by antisense knockdown in vivo. J Neurosci 1997;17:2519-30
  • Wolf ME, Galloway MP, Roth RH Regulation of dopamine synthesis in the medial prefrontal cortex: studies in brain slices. J Pharmacol Exp Ther 1986;236:699-707
  • Lindgren N, Xu ZQ, Herrera-Marschitz M, et al. Dopamine D(2) receptors regulate tyrosine hydroxylase activity and phosphorylation at Ser40 in rat striatum. Eur J Neurosci 2001;13:773-80
  • Izumi Y, Sawada H, Yamamoto N, et al. Novel neuroprotective mechanisms of pramipexole, an anti-Parkinson drug, against endogenous dopamine-mediated excitotoxicity. Eur J Pharmacol 2007;557:132-40
  • Izumi Y, Yamamoto N, Kume T, et al. Regulation of intracellular dopamine levels by dopaminergic drugs: involvement of vesicular monoamine transporter. Eur J Pharmacol 2008;582:52-61
  • Cohen G. Monoamine oxidase, hydrogen peroxide, and Parkinson's disease. Adv Neurol 1987;45:119-25
  • Abramova NA, Cassarino DS, Khan SM, et al. Inhibition by R(+) or S(–) pramipexole of caspase activation and cell death induced by methylpyridinium ion or beta amyloid peptide in SH-SY5Y neuroblastoma. J Neurosci Res 2002;67:494-500
  • Murphy MP Targeting lipophilic cations to mitochondria. Biochim Biophys Acta 2008;1777:1028-31
  • Rodriguez MC, Obeso JA, Olanow CW Subthalamic nucleus-mediated excitotoxicity in Parkinson's disease: a target for neuroprotection. Ann Neurol 1998;44(3 Suppl 1):S175-88
  • Galzigna L, Schiappelli MP, Rigo A, et al. A rat brain fraction and different purified peroxidases catalyzing the formation of dopaminochrome from dopamine. Biochim Biophys Acta 1999;1427:329-36
  • Hartmann A, Hunot S, Michel PP, et al. Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proc Natl Acad Sci USA 2000;97:2875-80
  • Mogi M, Harada M, Kondo T, et al. bcl-2 protein is increased in the brain from parkinsonian patients. Neurosci Lett 1996;215:137-9
  • Kitamura Y, Taniguchi T, Shimohama S, et al. Neuroprotective mechanisms of antiparkinsonian dopamine D2-receptor subfamily agonists. Neurochem Res 2003;28:1035-40
  • Kitamura Y, Kosaka T, Kakimura JI, et al. Protective effects of the antiparkinsonian drugs talipexole and pramipexole against 1-methyl-4-phenylpyridinium-induced apoptotic death in human neuroblastoma SH-SY5Y cells. Mol Pharmacol 1998;54:1046-54
  • Cassarino DS, Fall CP, Smith TS, et al. Pramipexole reduces reactive oxygen species production in vivo and in vitro and inhibits the mitochondrial permeability transition produced by the parkinsonian neurotoxin methylpyridinium ion. J Neurochem 1998;71:295-301
  • Kakimura J, Kitamura Y, Takata K, et al. Release and aggregation of cytochrome c and alpha-synuclein are inhibited by the antiparkinsonian drugs, talipexole and pramipexole. Eur J Pharmacol 2001;417:59-67
  • Sayeed I, Parvez S, Winkler-Stuck K, et al. Patch clamp reveals powerful blockade of the mitochondrial permeability transition pore by the D2-receptor agonist pramipexole. FASEB J 2006;20:556-8
  • Mouradian MM Recent advances in the genetics and pathogenesis of Parkinson disease. Neurology 2002;58:179-85
  • Betarbet R, Sherer TB, Greenamyre JT Ubiquitin-proteasome system and Parkinson's diseases. Exp Neurol 2005;191(Suppl 1):S17-27
  • Giasson BI, Duda JE, Murray IV, et al. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 2000;290:985-9
  • Iravani MM, Sadeghian M, Leung CCM, et al. Continuous subcutaneous infusion of pramipexole protects against lipopolysaccharide-induced dopaminergic cell death without affecting the inflammatory response. Exp Neurol 2008;212:522-31
  • Imamura K, Takeshima T, Nakaso K, et al. Pramipexole has astrocyte-mediated neuroprotective effects against lactacystin toxicity. Neurosci Lett 2008;440:97-102
  • Betarbet R, Sherer TB, MacKenzie G, et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 2000;3:1301-6
  • Betarbet R, Canet-Aviles RM, Sherer TB, et al. Intersecting pathways to neurodegeneration in Parkinson's disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis 2006;22:404-20
  • Wahner AD, Bronstein JM, Bordelon YM, et al. Nonsteroidal anti-inflammatory drugs may protect against Parkinson disease. Neurology 2007;69:1836-42
  • Iravani MM, Leung CC, Sadeghian M, et al. The acute and the long-term effects of nigral lipopolysaccharide administration on dopaminergic dysfunction and glial cell activation. Eur J Neurosci 2005;22:317-30
  • Lara J, Kusano K, House S, et al. Interactions of cyclic adenosine monophosphate, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor treatment on the survival and growth of postnatal mesencephalic dopamine neurons in vitro. Exp Neurol 2003;180:32-45
  • Gill SS, Patel NK, Hotton GR, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003;9:589-95
  • Nutt JG, Burchiel KJ, Comella CL, et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 2003;60:69-73
  • Du F, Li R, Huang Y, et al. Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons. Eur J Neurosci 2005;22:2422-30
  • Saucedo-Cardenas O, Quintana-Hau JD, Le WD, et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci USA 1998;95:4013-18
  • Hermanson E, Joseph B, Castro D, et al. Nurr1 regulates dopamine synthesis and storage in MN9D dopamine cells. Exp Cell Res 2003;288:324-34
  • Jacobsen KX, MacDonald H, Lemonde S, et al. A Nurr1 point mutant, implicated in Parkinson's disease, uncouples ERK1/2-dependent regulation of tyrosine hydroxylase transcription. Neurobiol Dis 2008;29:117-22
  • Le W, Pan T, Huang M, et al. Decreased NURR1 gene expression in patients with Parkinson's disease. J Neurol Sci 2008;273:29-33
  • Luskin MB Neuroblasts of the postnatal mammalian forebrain: their phenotype and fate. J Neurobiol 1998;36:221-33
  • Lie DC, Dziewczapolski G, Willhoite AR, et al. The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 2002;22:6639-49
  • Winner B, Couillard-Despres S, Geyer M, et al. Dopaminergic lesion enhances growth factor-induced striatal neuroblast migration. J Neuropathol Exp Neurol 2008;67:105-16
  • Freundlieb N, Francois C, Tande D, et al. Dopaminergic substantia nigra neurons project topographically organized to the subventricular zone and stimulate precursor cell proliferation in aged primates. J Neurosci 2006;26:2321-5
  • Hoglinger GU, Rizk P, Muriel MP, et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 2004;7:726-35
  • Van Kampen JM, Hagg T, Robertson HA Induction of neurogenesis in the adult rat subventricular zone and neostriatum following dopamine D3 receptor stimulation. Eur J Neurosci 2004;19:2377-87
  • Winner B, Desplats P, Hagl C, et al. Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model. Exp Neurol 2009;219:543-52
  • Pilon C, Levesque D, Dimitriadou V, et al. Functional coupling of the human dopamine D3 receptor in a transfected NG 108-15 neuroblastoma-glioma hybrid cell line. Eur J Pharmacol 1994;268:129-39
  • Van Kampen JM, Eckman CB Dopamine D3 receptor agonist delivery to a model of Parkinson's disease restores the nigrostriatal pathway and improves locomotor behavior. J Neurosci 2006;26:7272-80
  • Biglan KM, Ravina B. Neuroprotection in Parkinson's disease: an elusive goal. Semin Neurol 2007;27:106-12
  • Iida M, Miyazaki I, Tanaka K, et al. Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist. Brain Res 1999;838:51-9
  • Tanaka K, Miyazaki I, Fujita N, et al. Molecular mechanism in activation of glutathione system by ropinirole, a selective dopamine D2 agonist. Neurochem Res 2001;26:31-6
  • Chen S, Zhang X, Yang D, et al. D2/D3 receptor agonist ropinirole protects dopaminergic cell line against rotenone-induced apoptosis through inhibition of caspase- and JNK-dependent pathways. FEBS Lett 2008;582:603-10
  • Weinreb O, Amit T, Bar-Am O, et al. Novel neuroprotective mechanism of action of rasagiline is associated with its propargyl moiety: interaction of Bcl-2 family members with PKC pathway. Ann N Y Acad Sci 2005;1053:348-55
  • Sagi Y, Mandel S, Amit T, et al. Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism. Neurobiol Dis 2007;25:35-44
  • Parkinson Study Group. A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch Neurol 2002;59:1937-43
  • Fahn S, Elton RL, UPDRS Development Committee. Unified Parkinson's Disease Rating Scale. In: Fahn S, Marsden CD, Calne DB, Goldstein M, eds. Recent Developments in Parkinson's Disease. Florham Park, NJ: Macmillan; 1987:153-63
  • Hauser RA, Lew MF, Hurtig HI, et al. TEMPO Open-label Study Group. Long-term outcome of early versus delayed rasagiline treatment in early Parkinson's disease. Mov Disord 2009;24:564-73
  • Suchowersky O, Gronseth G, Perlmutter J, et al.; Quality Standards Subcommittee of the American Academy of Neurology. Practice Parameter: neuroprotective strategies and alternative therapies for Parkinson disease (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2006;66:976-82
  • Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson's disease. N Engl J Med 2004;351:2498-508
  • Ravina B, Eidelberg D, Ahlskog JE, et al. The role of radiotracer imaging in Parkinson disease. Neurology 2005;64:208-15
  • Morrish PK, Sawle GV, Brooks DJ An [18F]dopa-PET and clinical study of the rate of progression in Parkinson's disease. Brain 1996;119:585-91
  • Nurmi E, Ruottinen HM, Bergman J, et al. Rate of progression in Parkinson's disease: a 6-[18F]fluoro-L-dopa PET study. Mov Disord 2001;16:608-15
  • Langston JW The Parkinson's complex: parkinsonism is just the tip of the iceberg. Ann Neurol 2006;59:591-96
  • Siderowf A, Stern MB Premotor Parkinson's disease: clinical features, detection, and prospects for treatment. Ann Neurol 2008;64(Suppl 2):S139-47
  • Mandel S, Grunblatt E, Riederer P, et al. Neuroprotective strategies in Parkinson's disease: an update on progress. CNS Drugs 2003;17:729-62
  • Fleming SM, Fernagut PO, Chesselet MF Genetic mouse models of parkinsonism: strengths and limitations. NeuroRx 2005;2:495-503
  • Presgraves SP, Achmed T, Borwege S, et al. Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists. Neurotox Res 2004;5:579-98
  • Anderson DW, Bradbury KA, Schneider JS Neuroprotection in Parkinson models varies with toxin administration protocol. Eur J Neurosci 2006;24:3174-82
  • Schneider JS, DiStefano L. LIGA 20 increases striatal dopamine levels in aged MPTP-treated mice refractory to GM1 ganglioside treatment. Neuroreport 1993;5:103-4
  • Yang J, Klaidman LK, Chang ML, et al. Nicotinamide therapy protects against both necrosis and apoptosis in a stroke model. Pharmacol Biochem Behav 2002;73:901-10
  • Furuya T, Hayakawa H, Yamada M, et al. Caspase-11 mediates inflammatory dopaminergic cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. J Neurosci 2004;24:1865-72
  • Jackson-Lewis V, Jakowec M, Burke RE, et al. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 1995;4:257-69
  • Gupta A, Dawson VL, Dawson TM What causes cell death in Parkinson's disease?. Ann Neurol 2008;64(Suppl 2):S3-15
  • Olanow CW, Jankovic J. Neuroprotective therapy in Parkinson's disease and motor complications: a search for a pathogenesis-targeted, disease-modifying strategy. Mov Disord 2005;20 (Suppl 11):S3-10
  • Schapira AH, Obeso J. Timing of treatment initiation in Parkinson's disease: a need for reappraisal?. Ann Neurol 2006;59:559-62
  • Siderowf A, Stern MB Preclinical diagnosis of Parkinson's disease: are we there yet?. Curr Neurol Neurosci Rep 2006;6:295-301
  • Olanow CW Can we achieve neuroprotection with currently available anti-parkinsonian interventions?. Neurology 2009;72(7 Suppl):S59-64

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.