608
Views
37
CrossRef citations to date
0
Altmetric
Pain: Commentary

Mechanism- and experience-based strategies to optimize treatment response to the capsaicin 8% cutaneous patch in patients with localized neuropathic pain

, , , , , , , , , , , , , , , , , , , & show all
Pages 527-538 | Accepted 14 Feb 2013, Published online: 21 Mar 2013

References

  • Anand P., Bley K. Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br J Anaesth 2011;107:490-502
  • Nagy I, Santha P, Jancso G, et al. The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur J Pharmacol 2004;500:351-69
  • Lambert DG. Capsaicin receptor antagonists: a promising new addition to the pain clinic. Br J Anaesth 2009;102:153-5
  • Derry S, Lloyd R, Moore RA, et al. Topical capsaicin for chronic neuropathic pain in adults. Cochrane Database Syst Rev 2009;4:CD007393
  • Wallace M, Pappagallo M. Qutenza®: a capsaicin 8% patch for the management of postherpetic neuralgia. Expert Rev Neurother 2011;11:15-27
  • Jones VM, Moore KA, Peterson DM. Capsaicin 8% topical patch (Qutenza) – a review of the evidence. J Pain Palliat Care Pharmacother 2011;25:32-41
  • Qutenza 179mg cutaneous patch - Summary of Product Characteristics (SPC) - (eMC). Available at: http://www.medicines.org.uk/emc/medicine/23156/SPC/qutenza%20179mg%20cutaneous%20patch/ [Last accessed 29 March 2012]
  • Westermann A, Ronnau A-K, Krumova E, et al. Pain-associated mild sensory deficits without hyperalgesia in chronic non-neuropathic pain. Clin J Pain 2011;27:782-9
  • Haanpaa M, Attal N, Backonja M, et al. NeuPSIG guidelines on neuropathic pain assessment. Pain 2011;152:14-27
  • Backonja M, Wallace M, Blonsky E, et al. NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: a randomised, double-blind study. Lancet Neurol 2008;7:1106-12
  • Irving GA, Backonja MM, Dunteman E, et al. A multicenter, randomized, double-blind, controlled study of NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia. Pain Med 2011;12:99-109
  • Irving GA, Backonja M, Rauck R, et al. NGX-4010, a capsaicin 8% dermal patch, administered alone or in combination with systemic neuropathic pain medications, reduces pain in patients with postherpetic neuralgia. Clin J Pain 2012;28(2):101-7
  • Simpson DM, Brown S, Tobias J. Controlled trial of high-concentration capsaicin patch for treatment of painful HIV neuropathy. Neurology 2008;70:2305-13
  • Hansson P, Backonja M, Bouhassira D. Usefulness and limitations of quantitative sensory testing: clinical and research application in neuropathic pain states. Pain 2007;129:256-9
  • Attal N, Bouhassira D, Baron R, et al. Assessing symptom profiles in neuropathic pain clinical trials: can it improve outcome? Eur J Pain 2011;15:441-3
  • Oaklander AL. The density of remaining nerve endings in human skin with and without postherpetic neuralgia after shingles. Pain 2001;92:139-45
  • Petersen K, Rice F, Farhadi M, et al. Natural history of cutaneous innervation following herpes zoster. Pain 2010;150:75-82
  • Rowbotham MC, Yosipovitch G, Connolly MK, et al. Cutaneous innervation density in the allodynic form of postherpetic neuralgia. Neurobiol Dis 1996;3:205-14
  • Rage M, Van A, Knaapen M, et al. Asymptomatic small fiber neuropathy in diabetes mellitus: investigations with intraepidermal nerve fiber density, quantitative sensory testing and laser-evoked potentials. J Neurol 2011;258:1852-64
  • Kennedy WR, Wendelschafer-Crabb G, Johnson T. Quantitation of epidermal nerves in diabetic neuropathy. Neurology 1996;47:1042-8
  • Beiswenger K, Calcutt N, Mizisin A. Epidermal nerve fiber quantification in the assessment of diabetic neuropathy. Acta Histochem 2008;110:351-62
  • McCarthy BG, Hsieh ST, Stocks A, et al. Cutaneous innervation in sensory neuropathies: evaluation by skin biopsy. Neurology 1995;45:1848-55
  • Skopelitis E, Aroni K, Kontos AN, et al. Early detection of subclinical HIV sensory polyneuropathy using intraepidermal nerve fibre density quantification: association with HIV stage and surrogate markers. Int J STD AIDS 2007;18:856-60
  • Fields HL, Rowbotham M, Baron R. Postherpetic neuralgia: irritable nociceptors and deafferentation. Neurobiol Dis 1998;5:209-27
  • Baron R. Peripheral neuropathic pain: from mechanisms to symptoms. Clin J Pain 2000;16:S12-20
  • Serra J, Sola R, Aleu J, et al. Double and triple spikes in C-nociceptors in neuropathic pain states: an additional peripheral mechanism of hyperalgesia. Pain 2011;152:343-53
  • Schmelz M, Schmidt R, Bickel A, et al. Specific C-receptors for itch in human skin. J Neurosci 1997;17:8003-8
  • Bostock H. Temperature-dependent double spikes in C-nociceptors of neuropathic pain patients (21 February 2012)
  • Orstavik K, Weidner C, Schmidt R, et al. Pathological C-fibres in patients with a chronic painful condition. Brain 2003;126:567-78
  • Schmidt R, Kleggetveit I, Namer B, et al. Double spikes to single electrical stimulation correlates to spontaneous activity of nociceptors in painful neuropathy patients. Pain 2012;153:391-8
  • Anand P. Neurotrophic factors and their receptors in human sensory neuropathies. Prog Brain Res 2004;146:477-92
  • Cheng H, Dauch J, Hayes J, et al. Nerve growth factor/p38 signaling increases intraepidermal nerve fiber densities in painful neuropathy of type 2 diabetes. Neurobiol Dis 2012;45:280-7
  • Griffin JW. The roles of growth factors in painful length dependent axonal neuropathies. In: Campbell JN Emerging Strategies for the Treatment of Neuropathic Pain. Seattle: IASP Press, 2006:271-90
  • Evans L, Andrew D, Robinson P, et al. Increased cutaneous NGF and CGRP-labelled trkA-positive intra-epidermal nerve fibres in rat diabetic skin. Neurosci Lett 2012;506:59-63
  • Jankowski M, Koerber H. Frontiers in neuroscience. Neurotrophic factors and nociceptor sensitization. Translational pain research: from mouse to man. In: Kruger L, Light AR (eds). Frontiers in Neuroscience. Boca Raton, FL: CRC Press; 2010
  • Quarta S, Vogl C, Constantin C, et al. Genetic evidence for an essential role of neuronally expressed IL-6 signal transducer gp130 in the induction and maintenance of experimentally induced mechanical hypersensitivity in vivo and in vitro. Mol Pain 2011;7:73
  • Okamoto K, Martin DP, Schmelzer JD, et al. Pro- and anti-inflammatory cytokine gene expression in rat sciatic nerve chronic constriction injury model of neuropathic pain. Exp Neurol 2001;169:386-91
  • Opree A, Kress M. Involvement of the proinflammatory cytokines tumor necrosis factor-alpha, IL-1 beta, and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked calcitonin gene-related peptide release from rat skin. J Neurosci 2000;20:6289-93
  • Li D, Ren Y, Xu X, et al. Sensitization of primary afferent nociceptors induced by intradermal capsaicin involves the peripheral release of calcitonin gene-related peptide driven by dorsal root reflexes. J Pain 2008;9:1155-68
  • Campbell J, Meyer R. Mechanisms of neuropathic pain. Neuron 2006;52:77-92
  • Wang T, Molliver D, Jing X, et al. Phenotypic switching of nonpeptidergic cutaneous sensory neurons following peripheral nerve injury. PLoS One 2011;6:e28908
  • Zhu Y, Colak T, Shenoy M, et al. Nerve growth factor modulates TRPV1 expression and function and mediates pain in chronic pancreatitis. Gastroenterology 2011;141:370-7
  • Schumacher M. Transient receptor potential channels in pain and inflammation: therapeutic opportunities. Pain Pract 2010;10:185-200
  • Bowles W, Sabino M, Harding-Rose C, et al. Chronic nerve growth factor administration increases the peripheral exocytotic activity of capsaicin-sensitive cutaneous neurons. Neurosci Lett 2006;403:305-8
  • Ji R-R, Samad T, Jin S-X, et al. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 2002;36:57-68
  • Schumacher M, Eilers H. TRPV1 splice variants: structure and function. Front Biosci 2010;15:872-82
  • Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997;389:816-24
  • Szallasi A, Blumberg PM. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev 1999;51:159-212
  • Gallego-Sandin S, Rodriguez-Garcia A, Alonso M, Garcia-Sancho J. The endoplasmic reticulum of dorsal root ganglion neurons contains functional TRPV1 channels. J Biol Chem 2009;284:32591-601
  • Rosenbaum T, Simon S. Frontiers in Neuroscience. TRPV1 receptors and signal transduction. TRP ion channel function in sensory transduction and cellular signaling cascades. In: Liedtke WB, Heller S (eds). Frontiers in Neuroscience. Boca Raton (FL): CRC Press; 2007
  • Chung M-K, Guler A, Caterina M. TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat Neurosci 2008;11:555-64
  • Pingle SC, Matta JA, Ahern GP. Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb Exp Pharmacol 2007;179:155-171
  • Cortright D, Szallasi A. TRP channels and pain. Curr Pharm Des 2009;15:1736-49
  • Ma W, Quirion R. Inflammatory mediators modulating the transient receptor potential vanilloid 1 receptor: therapeutic targets to treat inflammatory and neuropathic pain. Expert Opin Ther Targets 2007;11:307-20
  • Planells-Cases R, Garcia-Sanz N, Morenilla-Palao C, et al. Functional aspects and mechanisms of TRPV1 involvement in neurogenic inflammation that leads to thermal hyperalgesia. Pflugers Arch 2005;451:151-9
  • Jain A, Bronneke S, Kolbe L, et al. TRP-channel-specific cutaneous eicosanoid release patterns. Pain 2011;152:2765-72
  • Goswami C, Schmidt H, Hucho F. TRPV1 at nerve endings regulates growth cone morphology and movement through cytoskeleton reorganization. FEBS J 2007;274:760-72
  • Xu H, Tian W, Fu Y, et al. Functional effects of nonsynonymous polymorphisms in the human TRPV1 gene. Am J Physiol Renal Physiol 2007;293:F1865-76
  • Xu X, Wang P, Zou X, et al. The effects of sympathetic outflow on upregulation of vanilloid receptors TRPV(1) in primary afferent neurons evoked by intradermal capsaicin. Exp Neurol 2010;222:93-107
  • Binder A, May D, Baron R, et al. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients. PLoS One 2011;6:e17387
  • Stander S, Moormann C, Schumacher M, et al. Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp Dermatol 2004;13:129-39
  • Fernandes ES, Fernandes MA, Keeble JE. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol 2012;166(2):510-21
  • Denda M, Tsutsumi M. Roles of transient receptor potential proteins (TRPs) in epidermal keratinocytes. Adv Exp Med Biol 2011;704:847-60
  • Denda S, Denda M, Inoue K, et al. Glycolic acid induces keratinocyte proliferation in a skin equivalent model via TRPV1 activation. J Dermatol Sci 2010;57:108-13
  • Moran M, McAlexander M, Biro T, Szallasi A. Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 2011;10:601-20
  • Radtke C, Sinis N, Sauter M, et al. TRPV channel expression in human skin and possible role in thermally induced cell death. J Burn Care Res 2011;32:150-9
  • Schmelz M. Neuronal sensitivity of the skin. Eur J Dermatol 2011;21(Suppl 2):43-7
  • Huang S, Lee H, Chung MK, et al. Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J Neurosci 2008;28:13727-37
  • Aubdool A, Brain S. Neurovascular aspects of skin neurogenic inflammation. J Investig Dermatol Symp Proc 2011;15:33-9
  • Stander S, Schneider S, Weishaupt C, et al. Putative neuronal mechanisms of sensitive skin. Exp Dermatol 2009;18:417-23
  • Pecze L, Szabo K, Szell M, et al. Human keratinocytes are vanilloid resistant. PLoS One 2008;3:e3419
  • Szolcsanyi J. Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptides 2004;38:377-84
  • Spitzer MJS, Reeh PW, Sauer SK. Mechanisms of potassium- and capsaicin-induced axonal calcitonin gene-related peptide release: involvement of L- and T-type calcium channels and TRPV1 but not sodium channels. Neuroscience 2008;151:836-42
  • Han P, McDonald H, Bianchi B, et al. Capsaicin causes protein synthesis inhibition and microtubule disassembly through TRPV1 activities both on the plasma membrane and intracellular membranes. Biochem Pharmacol 2007;73:1635-45
  • Shimomura Y, Kawada T, Suzuki M. Capsaicin and its analogs inhibit the activity of NADH-coenzyme Q oxidoreductase of the mitochondrial respiratory chain. Arch Biochem Biophys 1989;270:573-7
  • Simone DA, Nolano M, Johnson T, et al. Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers: correlation with sensory function. J Neurosci 1998;18:8947-59
  • Nolano M, Simone DA, Wendelschafer-Crabb G, et al. Topical capsaicin in humans: parallel loss of epidermal nerve fibers and pain sensation. Pain 1999;81:135-45
  • Gibbons CH, Wang N, Freeman R. Capsaicin induces degeneration of cutaneous autonomic nerve fibers. Ann Neurol 2010;68:888-98
  • Kennedy WR, Vanhove GF, Lu S-P, et al. A randomized, controlled, open-label study of the long-term effects of NGX-4010, a high-concentration capsaicin patch, on epidermal nerve fiber density and sensory function in healthy volunteers. J Pain 2010;11:579-87
  • Ragé M, van Acker N, Facer P, et al. The time course of CO2 laser-evoked responses and of skin nerve fibre markers after topical capsaicin in human volunteers. Clin Neurophysiol 2010;121:1256-66
  • Magerl W, Fuchs PN, Meyer RA, et al. Roles of capsaicin-insensitive nociceptors in cutaneous pain and secondary hyperalgesia. Brain 2001;124:1754-64
  • Kasting GB. Kinetics of finite dose absorption through skin 1. Vanillylnonanamide. J Pharm Sci 2001;90:202-12
  • Babbar S, Chanda S, Bley K, et al. Pharmacokinetic analysis of capsaicin after topical administration of a high-concentration capsaicin patch to patients with peripheral neuropathic pain. Ther Drug Monit 2009;31:502-10
  • Babbar S, Chanda S, Bley K. Inhibition and induction of human cytochrome P450 enzymes in vitro by capsaicin. Xenobiotica 2010;40:807-16
  • Reilly C, Yost G. Metabolism of capsaicinoids by P450 enzymes: a review of recent findings on reaction mechanisms, bio-activation, and detoxification processes. Drug Metab Rev 2006;38:685-706
  • Chanda S, Bashir M, Babbar S, et al. In vitro hepatic and skin metabolism of capsaicin. Drug Metab Dispos 2008;36:670-5
  • England J, Wagner T, Kern K-U, et al. The capsaicin 8% patch for peripheral neuropathic pain. Br J Nurs 2011;20:926-31
  • Backonja MM, Malan TP, Vanhove GF, et al. NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: a randomized, double-blind, controlled study with an open-label extension. Pain Med 2010;11:600-8
  • Webster LR, Malan TP, Tuchman MM, et al. A multicenter, randomized, double-blind, controlled dose finding study of NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia. J Pain 2010;11:972-82
  • Clifford DB, Simpson, DM Brown S, et al. A randomized, double-blind, controlled study of NGX-4010, a capsaicin 8% dermal patch, for the treatment of painful HIV-associated distal sensory polyneuropathy. J Acquir Immune Defic Syndr 2011;59(2):126-33
  • Attal N, Cruccu G, Baron R, et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol 2010;17:1113-e88
  • Kern, U. Hochdosiertes Capsaicin-Pflaster in der Behandlung peripherer neuropathischer Schmerzen. Ein Erfahrungsbericht mit 58 Patienten. Psychopharmakotherapie 2012;19:72-5
  • Wagner T, Roth-Daniek A, Sell A, et al. Capsaicin 8% patch for peripheral neuropathic pain: review of treatment best practice from ‘real-world’ clinical experience. Pain Management 2012;2:239-50
  • Baron R, Binder A. How neuropathic is sciatica? The mixed pain concept. Orthopade 2004;33:568-75
  • Moore RA, Derry S, McQuay HJ, et al. Clinical effectiveness: an approach to clinical trial design more relevant to clinical practice, acknowledging the importance of individual differences. Pain 2010;149:173-6
  • Dworkin R, Turk D, McDermott M, et al. Interpreting the clinical importance of group differences in chronic pain clinical trials: IMMPACT recommendations. Pain 2009;146:238-44
  • Farrar JT, Portenoy RK, Berlin JA, et al. Defining the clinically important difference in pain outcome measures. Pain 2000;88:287-94
  • Dworkin RH, Turk DC, Peirce-Sandner S, et al. Research design considerations for confirmatory chronic pain clinical trials: IMMPACT recommendations. Pain 2010;149:177-93
  • Rolke R, Baron R, Maier C, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain 2006;123:231-43
  • Geber C, Klein T, Azad S, et al. Test-retest and interobserver reliability of quantitative sensory testing according to the protocol of the German Research Network on Neuropathic Pain (DFNS): a multi-centre study. Pain 2011;152:548-56
  • Backonja M-M, Walk D, Edwards R, et al. Quantitative sensory testing in measurement of neuropathic pain phenomena and other sensory abnormalities. Clin J Pain 2009;25:641-7
  • Bouhassira D, Attal N, Fermanian J, et al. Development and validation of the Neuropathic Pain Symptom Inventory. Pain 2004;108:248-57
  • Sommer C, Richter H, Rogausch J, et al. A modified score to identify and discriminate neuropathic pain: a study on the German version of the Neuropathic Pain Symptom Inventory (NPSI). BMC Neurol 2011;11:104
  • Freynhagen R, Baron R, Gockel U, Tolle T. painDETECT: a new screening questionnaire to identify neuropathic components in patients with back pain. Curr Med Res Opin 2006;22:1911-20
  • Baron R, Tolle T, Gockel U, et al. A cross-sectional cohort survey in 2100 patients with painful diabetic neuropathy and postherpetic neuralgia: differences in demographic data and sensory symptoms. Pain 2009;146:34-40
  • Mahn F, Hullemann P, Gockel J, et al. Sensory symptom profiles and co-morbidities in painful radiculopathy. PLoS One 2011;6:e18018
  • Tampin B, Briffa NK, Slater H. Self-reported sensory descriptors are associated with quantitative sensory testing parameters in patients with cervical radiculopathy, but not in patients with fibromyalgia. Eur J Pain 2012preprint
  • Maier C, Baron R, Tolle TR, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 2010;150:439-50
  • Mythili A, Kumar K, Subrahmanyam KA, et al. A comparative study of examination scores and quantitative sensory testing in diagnosis of diabetic polyneuropathy. Int J Diabetes Dev Ctries 2010;30:43-8
  • Baron R, Forster M, Binder A. Subgrouping of patients with neuropathic pain according to pain-related sensory abnormalities: a first step to a stratified treatment approach. Lancet Neurol 2012;11:999-1005
  • von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 2012;73:638-52
  • Baumgartner U, Greffrath W, Treede R-D. Contact heat and cold, mechanical, electrical and chemical stimuli to elicit small fiber-evoked potentials: merits and limitations for basic science and clinical use. Neurophysiol Clin 2012;42:267-80

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.