2,982
Views
205
CrossRef citations to date
0
Altmetric
Original Articles

Production of Hydrogen Peroxide by Polyphenols and Polyphenol-rich Beverages under Quasi-physiological Conditions

, &
Pages 2632-2640 | Received 28 Aug 2003, Accepted 09 Sep 2003, Published online: 22 May 2014

  • 1) Manach, C., Regerat, F., Texier, O., Agullo, G., Demigne, C., and Remesy, C., Bioavailability, metabolism and physiological impact of 4-oxo-flavonoids. Nutr. Res., 16, 517-544 (1996).
  • 2) Bravo, L., Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev., 56, 317-333 (1998).
  • 3) Scalbert, A., and Williamson, G., Dietary intake and bioavailability of polyphenols. J. Nutr., 130, 2073S-2085S (2000).
  • 4) Lin, J. K., Liang, Y. C., and Lin-Shiau, S. Y., Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochem. Pharmacol., 58, 911-915 (1999).
  • 5) Fujiki, H., Suganuma, M., Okabe, S., Sueoka, E., Suga, K., Imai, K., Nakachi, K., and Kimura, S., Mechanistic findings of green tea as cancer preventive for humans. Proc. Soc. Exp. Biol. Med., 220, 225-228 (1999).
  • 6) Conney, A. H., Lu, Y. P., Xie, J. G., and Huang, M. T., Inhibitory effect of green and black tea on tumor growth. Proc. Soc. Exp. Biol. Med., 220, 229-233 (1999).
  • 7) Hanasaki, Y., Ogawa, S., and Fukui, S., The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic. Biol. Med., 16, 845-850 (1994).
  • 8) Rice-Evans, C. A., Miller, N. J., and Paganga, G., Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 20, 933-956 (1996).
  • 9) Cao, G., Sofic, E., and Prior, R. L., Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic. Biol. Med., 22, 749-760 (1997).
  • 10) Sichel, G., Corsaro, C., Scalia, M., Di Bilio, A. J., and Bonomo, R. P., In vitro scavenger activity of some flavonoids and melanins against O2 -. Free Radic. Biol. Med., 11, 1-8 (1991).
  • 11) Hatano, T., Edamatsu, R., Mori, A., Fujita, Y., Yasuhara, T., Yoshida, T., and Okuda, T., Effects of the interaction of tannins with co-existing substances. VI. Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull., 37, 2016-2021 (1989).
  • 12) Nakagawa, T., and Yokozawa, T., Direct scavenging of nitric oxide and superoxide by green tea. Food Chem. Toxicol., 40, 1745-1750 (2002).
  • 13) Nanjo, F., Goto, K., Seto, R., Suzuki, M., Sakai, M., and Hara, Y., Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic. Biol. Med., 21, 895-902 (1996).
  • 14) Brown, J. E., Khodr, H., Hider, R. C., and Rice-Evans, C. A., Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem. J., 330, 1173-1178 (1998).
  • 15) Mira, L., Fernadez, M. T., Santos, M., Rocha, R., Floréncio, M. H., and Junnings, K. R., Interaction of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res., 36, 1199-1208 (2002).
  • 16) Moran, J. F., Klucas, R. V., Grayer, R. J., Abian, J., and Becana, M., Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radic. Biol. Med., 22, 861-870 (1997).
  • 17) Afanas'ev, I. B., Dorozhko, A. I., Brodskii, A. V., Kostyuk, V. A., and Potapovitch, A. I., Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem. Pharmacol., 38, 1763-1769 (1989).
  • 18) Lopes, G. K. B., Schulman, H. M., and Hermes-Lima, M., Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim. Biophys. Acta, 1472, 142-152 (1999).
  • 19) Miller, N. J., Castelluccio, C., Tijburg, L., and Rice-Evans, C., The antioxidant properties of theaflavins and their gallate ester—radical scavengers or metal chelators. FEBS Lett., 392, 40-44 (1996).
  • 20) Morel, I., Lescoat, G., Cogrel, P., Sergent, O., Pasdeloup, N., Brissot, P., Cillard, P., and Cillard, J., Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin, and diosmetin of iron-loaded rat hepatocyte cultures. Biochem. Pharmacol., 45, 13-19 (1993).
  • 21) Hayakawa, F., Kimura, T., Hoshino, N., and Ando, T., DNA cleavage activities of (−)-epigallocatechin, (−)-epicatechin, (+)-catechin, and (−)-epigallocatechin gallate with various kinds of metal ions. Biosci. Biotechnol. Biochem., 63, 1654-1656 (1999).
  • 22) Yamanaka, N., Oda, O., and Nagao, S., Green tea catechins such as (−)-epicatechin and (−)-epigallocatechin accelerate Cu2+-induced low-density lipoprotein oxidation in propagation phase. FEBS Lett., 401, 230-234 (1997).
  • 23) Singh, V., Ahmad, S., and Rao, G. S., Prooxidant and antioxidant properties of iron-hydroquinone and iron-1,2,4-benzenetriol complex. Implications for benzene toxicity. Toxicology, 89, 25-33 (1994).
  • 24) Hayakawa, F., Kimura, T., Maeda, T., Fujita, M., Sohmiya, H., Fujii, M., and Ando, T., DNA cleavage reaction and linoleic acid peroxidation induced by tea catechins in the presence of cupric ion. Biochim. Biophys. Acta, 1336, 123-131 (1997).
  • 25) Sahu, S. C., and Gray, G. C., Interactions of flavonoids, trace metals, and oxygen: nuclear DNA damage and lipid peroxidation induced by myricetin. Cancer Lett., 70, 73-79 (1993).
  • 26) Cao, G., Sofic, E., and Prior, R. L., Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic. Biol. Med., 22, 749-760 (1997).
  • 27) Mochizuki, M., Yamazaki, S., Kano, K., and Ikeda, T., Kinetic analysis and mechanistic aspects of autoxidation of catechins. Biochim. Biophys. Acta, 1569, 35-44 (2002).
  • 28) Roques, S. C., Landrault, N., Teissédre, P.-L., Laurent, C., Besancon, P., Rouanet, J.-M., and Caporiccio, B., Hydrogen peroxide generation in Caco-2 cell culture medium by addition of phenolic compounds: effect of ascorbic acid. Free Radic. Res., 36, 593-599 (2002).
  • 29) Dashwood, W.-M., Orner, G. A., and Dashwood, R. H., Inhibition of β-catenin/Tcf activity by white tea, green tea, and epigallocatechi-3-gallate (EGCG): Minor contribution of H2O2 at physiologically relevant EGCG concentrations. Biochem. Biophys. Res. Commun., 296, 584-588 (2002).
  • 30) Long, L. H., Clement, M. V., and Halliwell, B., Artifacts in cell culture: rapid generation of hydrogen peroxide on addition of (−)-epigallocatechin, (−)-epigallocatechin gallate, (+)-catechin, and quercetin to commonly used cell culture media. Biochem. Biophys. Res. Commun., 273, 50-53 (2000).
  • 31) Nakayama, T., Ichiba, M., Kuwabara, M., Kajiya, K., and Kumazawa, S., Mechanisms and structural specificity of hydrogen peroxide formation during oxidation of catechins. Food Sci. Technol. Res., 8, 261-267 (2002).
  • 32) Miura, Y. H., Tomita, I., Watanabe, T., Hirayama, T., and Fukui, S., Active oxygens generation by flavonoids. Biol. Pharm. Bull., 21, 93-96 (1998).
  • 33) Long, L. H., Lan, A. N. B., Hsuan, F. T. Y., and Halliwell, B., Generation of hydrogen peroxide by “antioxidant” beverages and the effect of milk addition. Is cocoa the best beverage? Free Radic. Res., 31, 67-71 (1999).
  • 34) Nakagawa, H., Wachi, M., Woo, J.-T., Kato, M., Kasai, S., Takahashi, F., Lee, I.-I., and Nagai, K., Fenton reaction is primarily involved in a mechanism of (−)-epigallocatechin-3-gallate to induce osteoclastic cell death. Biochem. Biphys. Res. Commun., 292, 94-101 (2002).
  • 35) Yang, G.-Y., Liao, J., Li, C., Chung, J., Yurkow, E. J., Ho, C.-T., and Yang, C. S., Effect of black and green tea polyphenols on c-jun phosphorylation and H2O2 production in transformed and non-transformed human bronchial cell lines: Possible mechanisms of cell growth inhibition and apoptosis induction. Carcinogenesis, 21, 2035-2039 (2000).
  • 36) Fujita, Y., Wakabayashi, K., Nagao, M., and Sigimura, T., Implication of H2O2 in the mutagenicity of coffee. Mutation Res., 144, 227-230 (1985).
  • 37) Alejandre-Duran, E., Alonso-Moraga, A., and Pueyo, C., Implication of active oxygen species in the direct-action mutagenicity of tea. Mutation Res., 188, 251-257 (1987).
  • 38) Long, L. H., and Halliwell, B., Coffee drinking increases levels of urinary hydrogen peroxide detected in healthy human volunteers. Free Radic. Res., 32, 463-467 (2000).
  • 39) Hiramoto, K., Kida, T., and Kikugawa, K., Increased urinary hydrogen peroxide levels caused by coffee drinking. Biol. Pharm. Bull., 25, 1467-1471 (2002).
  • 40) Suganuma, M., Okabe, S., Oniyama, M., Tada, T., Ito, H., and Fujiki, H., Wide distribution of [3H](−)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis, 19, 1771-1776 (1998).
  • 41) Morrice, P. C., Wood, S. G., and Duthie, G. G., High-performance liquid chromatographic determination of quercetin and isorhamnetin in rat tissues using β-glucuronidase and acid hydrolysis. J. Chromatogr. B, 738, 413-417 (2000).
  • 42) Vinson, J. A., Proch, J., and Bose, P., Determination of quantity and quality of polyphenol antioxidants in foods and beverages. Methods Enzymol., 335, 103-114 (2001).
  • 43) Rinaldi, A. C., Porcu, C. M., Curreli, N., Rescigno, A., Finazzi-Agrò, A., Pedersen, J. Z., Rinaldi, A., and Sanjust, E., Autoxidation of 4-methylcatechol: A model for the study of the biosynthesis of copper amine oxidases quinonoid cofactor. Biochem. Biophys. Res. Commun., 214, 559-567 (1995).
  • 44) Rojkind, M., Dominguez-Rosales, J.-A., Nieto, N., and Greenwel, P., Role of hydrogen peroxide and oxidative stress in healing responses. Cell. Mol. Life Sci., 59, 1872-1891 (2002).
  • 45) Akagawa, M., and Suyama, K., Oxidative deamination by hydrogen peroxide in the presence of metals. Free Radic. Res., 36, 13-21 (2002).
  • 46) Li, Y., Biological properties of peroxide-containing tooth whiteners. Food Chem. Toxicol., 34, 887-904 (1996).
  • 47) Mi, H., Hiramoto, K., Kujirai, K., Ando, K., Ikarashi, Y., and Kikugawa, K., Effect of fool reductones, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) and hydroxyhydroquinone (HHQ), on lipid peroxidation and type IV and I allergy responses of mouse. J. Agric. Food Chem., 49, 4950-4955 (2001).
  • 48) Kolachana, P., Subrahmanyam, V. V., Meyer, K. B., Zhang, L., and Smith, M. T., Benzene and its phenolic metabolites produce oxidative DNA damage in HL60 cells in vitro and in the bone marrow in vivo. Cancer Res., 53, 1023-1026 (1993).
  • 49) Young, J. F., Nielsen, S. E., Haraldsdóttir, J., Daneshvar, B., Lauridsen, S. T., Knuthsen, P., Crozier, A., Sandström, B., and Dragsted, L. O., Effects of fruit juice intake on urinary quercetin excretion and biomarkers of antioxidative status. Am. J. Clin. Nutr., 69, 87-94 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.