360
Views
81
CrossRef citations to date
0
Altmetric
Original Articles

Transepithelial Transport of Ferulic Acid by Monocarboxylic Acid Transporter in Caco-2 Cell Monolayers

&
Pages 856-862 | Received 13 Nov 2002, Accepted 25 Dec 2002, Published online: 22 May 2014

  • 1) Smith, M. M., and Hartley, R. D., Occurrence and nature of ferulic acid substitution of cell wall polysaccharides in gramineous plants. Carbohydr. Res., 118, 65-80 (1983).
  • 2) Fry, S. C., Polysaccharide-modifying enzymes in the plant cell wall. Annu. Rev. Plant Physiol. Mol. Biol., 46, 497-520 (1995).
  • 3) Iiyama, K., Lam, T. B. T., and Stone, B. A., Covalent cross-links in the cell wall. Plant Physiol., 104, 315-320 (1994).
  • 4) Bolwell, G. P., Dynamic aspects of the plant extracellular matrix. Int. Rev. Cytol., 146, 261-324 (1993).
  • 5) Lempereur, I., Rouau, X., and Abecassis, J., Genetic and agronomic variation in arabinoxylan and ferulic acid contents of durum wheat (Triticum durum L.) grain and its milling fractions. J. Cereal Sci., 25, 103-110 (1997).
  • 6) Graf, E., Antioxidant potential of ferulic acid. Free Radic. Biol. Med., 13, 435-448 (1992).
  • 7) Castelluccio, C., Bolwell, G. P., Gerrish, C., and Rice-Evans, C., Differential distribution of ferulic acid to the major plasma constituents in relation to its potential as an antioxidant. Biochem. J., 316, 691-694 (1996).
  • 8) Pannala, A., Razaq, R., Halliwell, B., Singh, S., and Rice-Evans, C., Inhibition of peroxynitrite dependent tyrosine nitration by hydroxycinnametes:nitration or electron donation? Free Radic. Biol. Med., 24, 594-606 (1998).
  • 9) Scalbert, A., and Williamson, G., Dietary intake and bioavailability of polyphenols. J. Nutr., 130, 2073S-2085S (2000).
  • 11) Hidalgo, I. J., Raub, T. J., and Borchardt, R. T., Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology, 96, 736-749 (1989).
  • 12) Hilgers, A. R., Conradi, R. A., and Burton, P. S., Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res., 7, 902-910 (1990).
  • 13) Artursson, P., and Karlsson, J., Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun., 175, 880-885 (1991).
  • 14) Hidalgo, I. J., and Borchardt, R. T., Transport of a large neutral amino acid (phenylalanine) in a human intestinal epithelial cell line, Caco-2. Biochim. Biophys. Acta, 1028, 25-30 (1990).
  • 15) Hidalgo, I. J., and Borchardt, R. T., Transport of bile acids in a human intestinal epithelial cell line, Caco-2. Biochim. Biophys. Acta, 1035, 97-103 (1990).
  • 16) Dantzig, A. H., and Bergin, L., Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Biochim. Biophys. Acta, 1027, 211-217 (1990).
  • 17) Guo, C., Cao, G., Sofic, E., and Prior, R. L., High-performance liquid chromatography coupled with coulometric array detection of electroactive components in fruits and vegetables: relationship to oxygen radical absorbance capacity. J. Agric. Food Chem., 45, 1787-1796 (1997).
  • 18) Yamaoka, K., Tanigawara, Y., Nakagawa, T., and Uno, T., A pharmacokinetic analysis program (MULTI) for microcomputer. J. Pharmacobio-Dyn., 4, 879-885 (1981).
  • 19) Terao, T., Hisanaga, E., Sai, Y., Tamai, I., and Tsuji, A., Active secretion of drugs from the small intestinal epithelium in rats by P-glycoprotein functioning as an absorption barrier. J. Pharm. Pharmacol., 48, 1083-1089 (1996).
  • 20) Price, N. T., Jackson, V. N., and Halestrap, A. P., Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem. J., 329, 321-329 (1998).
  • 21) Rahman, B., Schneider, H. P., Broer, A., Deitmer, J. W., and Broer, S., Helix 8 and Helix 10 are involved in substrate recognition in the rat monocarboxylate transporter MCT1. Biochemistry, 38, 11577-11584 (1999).
  • 22) Wolffram, S., Weber, T., Grenacher, B., and Scharrer, E., A Na+-dependent mechanism is involved in mucosal uptake of cinnamic acid across the jejunal brush border in rats. J. Nutr., 125, 1300-1308 (1995).
  • 23) Bourne, L. C., and Rice-Evans, C., Bioavailability of ferulic acid. Biochem. Biophys. Res. Commun., 253, 222-227 (1998).
  • 24) Bourne, L., Paganga, G., Baxter, D., Hughes, P., and Rice-Evans, C., Absorption of ferulic acid from low-alcohol beer. Free Rad. Res., 32, 273-280 (2000).
  • 25) Adam, A., Crespy, V., Levrat-Verny, M. A., Leenhardt, F., Leuillet, M., Demigne, C., and Remesy, C., The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. J. Nutr., 132, 1962-1968 (2002).
  • 10) Konishi, Y., Hagiwara, K., and Shimizu, M., Transepithelial transport of fluorescein in Caco-2 cell monolayers and its use in in vitro evaluation of phenolic acids availability. Biosci. Biotechnol. Biochem., 66, 2449-2457 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.