149
Views
9
CrossRef citations to date
0
Altmetric
Reviews

New frontiers in cell-based immunotherapy of cancer

, &
Pages 623-641 | Published online: 26 Apr 2009

Bibliography

  • Papac RJ. Origins of cancer therapy. Yale J Biol Med 2001;74:391-8
  • Goedert JJ. The epidemiology of acquired immunodeficiency syndrome malignancies. Semin Oncol 2000;27:390-401
  • Zeier M, Hartschuh W, Wiesel M, et al. Malignancy after renal transplantation. Am J Kidney Dis 2002;39:E5
  • Challis GB, Stam HJ. The spontaneous regression of cancer. A review of cases from 1900 to 1987. Acta Oncol 1990;29:545-50
  • Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003;348:203-13
  • Nagorsen D, Scheibenbogen C, Marincola FM, et al. Natural T cell immunity against cancer. Clin Cancer Res 2003;9:4296-303
  • Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004;21:137-48
  • Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006;6:295-307
  • Celluzzi CM, Mayordomo JI, Storkus WJ, et al. Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J Exp Med 1996;183:283-7
  • Krüger C, Greten TF, Korangy F. Immune based therapies in cancer. Histol Histopathol 2007;22:687-96
  • Figdor CG, de Vries IJ, Lesterhuis WJ, et al. Dendritic cell immunotherapy: mapping the way. Nat Med 2004;10:475-80
  • Katholieke Universiteit Nijmegen, Vissers JLM, De Vries IJM, Oosterwijk E, Figdor CG, Adema GJ. Peptides for use in the immunotherapy of renal cell carcinoma. WO2001098363; 2001
  • Baylor Research Institute, Banchereau JF, Berard F, Blanco P, Neidhart-Berard EM, Nouri-Shirazi M, Palucka AK. Use of allogenic cell lines to load antigen-presenting cells to elicit or eliminate immune response. WO2001029192; 2001
  • Ludwing Institute for cancer research. Renal cancer associated antigens and uses therefor. WO2000020586; 2000
  • Boczkowski D, Nair SK, Nam JH, et al. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res 2000;60:1028-34
  • Su Z, Dannull J, Heiser A, et al. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res 2003;63:2127-33
  • Available from: www.mmri.mater.org.au
  • Jocham D, Richter A, Hoffmann L, et al. Adjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: phase III, randomised controlled trial. Lancet 2004;363:594-9
  • Orange JS, Ballas ZK. Natural killer cells in human health and disease. Clin Immunol 2006;118:1-10
  • Kim S, Iizuka K, Aguila HL, et al. In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc Natl Acad Sci USA 2000;97:2731-6
  • Coca S, Perez-Piqueras J, Martinez D, et al. The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 1997;79:2320-8
  • Vetter CS, Lieb W, Brocker EB, et al. Loss of nonclassical MHC molecules MIC-A/B expression during progression of uveal melanoma. Br J Cancer 2004;91:1495-9
  • Sivori S, Parolini S, Marcenaro E, et al. Involvement of natural cytotoxicity receptors in human natural killer cell-mediated lysis of neuroblastoma and glioblastoma cell lines. J Neuroimmunol 2000;107:220-5
  • Fauriat C, Just-Landi S, Mallet F, et al. Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 2007;109:323-30
  • López-Vázquez A, Rodrigo L, Martínez-Borra J, et al. Protective effect of the HLA-Bw4I80 epitope and the killer cell immunoglobulin-like receptor 3DS1 gene against the development of hepatocellular carcinoma in patients with hepatitis C virus infection. J Infect Dis 2005;192:162-5
  • Grimm EA, Mazumder A, Zhang HZ, et al. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 1982;155:1823-41
  • Law TM, Motzer RJ, Mazumdar M, et al. Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer 1995;76:824-32
  • Kammula US, White DE, Rosenberg SA. Trends in the safety of high dose bolus interleukin-2 administration in patients with metastatic cancer. Cancer 1998;83:797-805
  • Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002;295:2097-100
  • Passweg JR, Stern M, Koehl U, et al. Use of natural killer cells in hematopoetic stem cell transplantation. Bone Marrow Transplant 2005;35:637-43
  • Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005;105:3051-7
  • Klingemann HG. Natural killer cell-based immunotherapeutic strategies. Cytotherapy 2005;7:16-22
  • Koh CY, Blazar BR, George T, et al. Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo. Blood 2001;97:3132-7
  • Novo Nordisk A/S, Innate Pharma, University of Genoa, Moretta A, Della Chiesa M, Andre P, Gauthier L, Romagnè F, Wagtmann PA, Svendsen I, Zahn S, Svensson A, Thòròlfsson M, Spee P, Kjaergaard K, Berg Padkaer S. Antibodies binding to receptors KIR2DL1, -2, 3 but not KIR2DS4 and their therapeutic use. WO2006003179; 2006
  • Sheridan C. First-in-class cancer therapeutic to stimulate natural killer cells. Nat Biotechnol 2006;24:597
  • Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 2002;99:754-8
  • Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol 2006;6:343-57
  • The regents of the University of California, Fox Chase Cancer, Adams GP, Horak EM, Weiner LM, Marks JD. Bispecific single chain antibody molecules and methods of use thereof. WO2007084181; 2007
  • Uherek C, Tonn T, Uherek B, et al. Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood 2002;100:1265-73
  • Arai S, Meagher R, Swearingen M, et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy 2008;10:625-32
  • Fox Chase Cancer, Campbell KS. Genetically modified natural killer cell lines. WO2006023148; 2006
  • Smyth MJ, Takeda K, Hayakawa Y, et al. Nature's TRAIL–on a path to cancer immunotherapy. Immunity 2003;18:1-6
  • Godfrey DI, MacDonald HR, Kronenberg M, et al. NKT cells: what's in a name? Nat Rev Immunol 2004;4:231-7
  • Taniguchi M, Seino K, Nakayama T. The NKT cell system: bridging innate and acquired immunity. Nat Immunol 2003;4:1164-5
  • Kitamura H, Iwakabe K, Yahata T, et al. The natural killer T (NKT. cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 1999;189:1121-8
  • Smyth MJ. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol 2001;13:459-63
  • Gumperz JE, Roy C, Makowska A, et al. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 2000;12:211-21
  • Crowe NY, Coquet JM, Berzins SP, et al. Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 2005;202:1279-88
  • Azuma T, Takahashi T, Kunisato A, et al. Human CD4+CD25+ regulatory T cells suppress NKT cell functions. Cancer Res 2003;63:4516-20
  • Fujii S, Shimizu K, Klimek V, et al. Severe and selective deficiency of interferon-gamma-producing invariant natural killer T cells in patients with myelodysplastic syndromes. Br J Haematol 2003;122:617-22
  • Yanagisawa K, Seino K, Ishikawa Y, et al. Impaired proliferative response of V alpha 24 NKT cells from cancer patients against alpha-galactosylceramide. J Immunol 2002;168:6494-9
  • Seino K, Motohashi S, Fujisawa T, et al. Natural killer T cell-mediated antitumor immune responses and their clinical applications. Cancer Sci 2006;97:807-12
  • Kirin beer kabushiki kaisha, Taniguchi M, Kawano T, Koezuka Y. NKT cell activators containing (a)-Glycosylceramides. WO1998044928; 1998
  • Giaccone G, Punt CJ, Ando Y, et al. A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000. in patients with solid tumors. Clin Cancer Res 2002;8:3702-9
  • Fujii S, Shimizu K, Kronenberg M, et al. Prolonged IFN-gamma producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nat Immunol 2002;3:867-74
  • Motohashi S. Translational research in patients with lung cancer–clinical application of NKT cell immunotherapy. Gan To Kagaku Ryoho 2007;34:550-3
  • Uchida T, Horiguchi S, Tanaka Y, et al. Phase I study of alpha-galactosylceramide-pulsed antigen presenting cells administration to the nasal submucosa in unresectable or recurrent head and neck cancer. Cancer Immunol Immunother 2008;57:337-45
  • Nieda M, Okai M, Tazbirkova A, et al. Therapeutic activation of Valpha24+Vbeta11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 2004;103:383-9
  • Mattarollo SR, Kenna T, Nieda M, et al. Chemotherapy pretreatment sensitizes solid tumor-derived cell lines to V alpha 24+ NKT cell-mediated cytotoxicity. Int J Cancer 2006;119:1630-7
  • The Scripps research Institute, Brigham Young University, The University of Chicago, Savage PB, Teyton L, Bendelac A. Modified-Galactosyl ceramides for staining and stimulating natural killer T cells. WO2007118234; 2007
  • Hayday AC. γδ T cells: a right time and a right placefor a conserved third way of protection. Annu Rev Immunol 2000;18:975-1026
  • Corvaisier M, Moreau-Aubry A, Diez E, et al. Vg9Vy2 T cell response to colon carcinoma cells. J Immunol 2005;175:5481-8
  • Palmetto Health Alliance d/b/a Palmetto Richland Memorial Hospital, Lamb LS Jr. In vitro activated gamma delta lymphocytes. WO2000044893; 2000
  • University of Bern, Moser B, Brandes M. Preparation of antigen-presenting human γδ T cells and use in immunotherapy. WO2006017954; 2006
  • Groh V, Rhinehart R, Secrist H, et al. Broad tumor-associated expression and recognition by tumor-derived gy T cells of MIC-A and MIC-B. Proc Natl Acad Sci USA 1999;96:6879-84
  • Bonneville M, Scotet E. Human Vg9Vy2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol 2006;18:1-8
  • Gober HJ, Kistowska M, Angman L, et al. Human T cell receptor γδ T cell recognize endogenous? mevalonate metabolites in tumor cells. J Exp Med 2003;197:163-8
  • Kunzmann V, Bauer F, Feurle J, et al. Stimulation of ?? T cell by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 2000;86:384-92
  • The Board of Trustees of the University of Illinois, Oldfied E, Song Y, Zhang Y, Sanders JM. Bisphosphonate compounds and methods. WO2007109585; 2007
  • Rincon-Orozco B, Kunzmann V, Wrobel P, et al. Activation of Vg9Vy2 T cells by NKG2D. J Immunol 2005;175:2144-51
  • Kabelitz D, Pitters E, Wesch D, et al. Characterization of tumor reactivity of human Vg9Vy2 γδ T-cells in vitro and in severe combined immunodeficiency mice in vivo. J Immunol 2004;173:67-76
  • Viey E, Laplace C, Escudier B. Peripheral γδ T lymphocytes as an innovative tool in? immunotherapy for metastatic renal cell carcinoma. Expert Rev Anticancer Ther 2005;5:973-86
  • Gober HJ, Kistowska M, Angman L, et al. Human T cell receptor γδ T cells recognize endogenous? mevalonate metabolites in tumor cells. J Exp Med 2003;197:163-8
  • Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006;6:295-307
  • Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006;313:1960-4
  • Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002;298:850-4
  • Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001;61:4766-72
  • June CH. Principles of adoptive T cell cancer therapy. J Clin Invest 2007;117:1204-12
  • Johannes Gutenberg-Universitat Mainz, Eberts D, Fatho M, Lennerz V, Schmidt C, Van Der Bruggen P, Wolfel C, Wolfel T. Melanoma-associated Mhc Class I associated oligopeptides and the uses thereof. WO2007025760; 2007
  • Argonex Pharmaceuticals. Cytotoxic T Lymphocyte-stimulation peptides for prevention, tretment, and diagnosis of melanoma. WO2001032193; 2001
  • Yee C, Thompson JA, Byrd D, et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 2002;99:16168-73
  • Mackensen A, Meidenbauer N, Vogl S, et al. Phase I study of adoptive T-cell therapy using antigen-specific CD8(+) T cells for the treatment of patients with metastatic melanoma. J Clin Oncol 2006;24:5060-9
  • Marincola FM, Jaffee EM, Hicklin DJ, et al. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000;74:181-273
  • Vignard V, Lemercier B, Lim A, et al. Adoptive transfer of tumor reactive Melan-A-specific CTL clones in melanoma patients is followed by increased frequencies of additional Melan-A-specific T cells. J Immunol 2005;175:4797-805
  • The Government of the united states of America represented by the secretary department of Health and Human service, Liu K, Rosenberg SA. Methods of preparing lymphocytes that express Interleukin-2 and their use in the treatment of cancer. WO2004034789; 2004
  • Centre Hospitalier Universitaire de Nantes, Dreno B, Bercegeay S, Saiagh S. Method for the in vitro culture of T cells, in particular T cells infiltrating the so-called TIL tumors. WO2008099088; 2008
  • Alexander RB, Rosenberg SA. Longterm survival of adoptively transferred tumor infiltrating lymphocytes in mice. J Immunol 1990;145:1615-20
  • Kono K, Takahashi A, Ichihara F, et al. Prognostic significance of adoptive immunotherapy with tumor-associated lymphocytes in patients with advanced gastric cancer: a randomized trial. Clin Cancer Res 2002;8:1767-71
  • Rosenberg SA, Yannelli JR, Yang JC, et al. Treatment of patients with metastatic melanoma with autologous tumor infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst 1994;86:1159-66
  • The government of the United States of America, represented by the Secretary, department of Health and Human service, Dudley ME, Rosenberg SA, Wunderlich JR. Immunotherapy with in vitro-selected antigen-specific lymphocytes after nonmyeloablative lymphodepleting chemotherapy. WO2004021995; 2004
  • Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002;298:850-4
  • Wrzesinski C, Paulos CM, Gattinoni L, et al. Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8 T cells. J Clin Invest 2007;117:492-501
  • Holmberg L, Kikuchi K, Gooley TA, et al. Gastrointestinal graft versus-host disease in recipients of autologous hematopoietic stem cells: incidence, risk factors, and outcome. Biol Blood Marrow Transplant 2006;12:226-34
  • Dudley ME, Wunderlich JR, Shelton TE, et al. Generation of tumor infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 2003;26:332-42
  • Tomsová M, Melichar B, Sedálková I, et al. Prognostic significance of CD3+ tumor-infiltrating lymphocytes in ovarian carcinoma. Gynecol Oncol 2008;108:415-20
  • Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006;313:1960-4
  • Amedei A, Niccolai E, Della Bella C, et al. Characterization of tumor antigen peptide-specific T cells isolated from the neoplastic tissue of patients with gastric adenocarcinoma. Cancer Immunology Immunotherapy (in revision)
  • Ho WY, Blattman JN, Dossett ML, et al. Adoptive immunotherapy: engineering T cell responses as biologic weapons for tumor mass destruction. Cancer Cell 2003;3:431-7
  • Harousseau JL. Role of stem cell transplantation. Hematol Oncol Clin North Am 2007;21:1157-74
  • Appelbaum FR. What is the impact of hematopoietic cell transplantation (HCT) for older adults with acute myeloid leukemia (AML)? Best Pract Res Clin Haematol 2008;21:667-75
  • Molmed SPA, Traversari C, Bordignon C. Antigen transduced T cells used as a delivery system for antigens. WO2004035768; 2004
  • Bonini C, Ferrari G, Verzeletti S, et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 1997;276:1719-24
  • Ciceri F, Bonini C, Marktel S, et al. Antitumor effects of HSV-TK engineered donor lymphocytes after allogeneic stem cell transplantation. Blood 2007;109:4698-707
  • Berger C, Flowers ME, Warren EH, et al. Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 2006;107:2294-302
  • Clackson T, Yang W, Rozamus LW, et al. Redesigning an FKBPligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci USA 1998;95:10437-42
  • Ariad Gene Therapeutics, Inc, Holt DA, Keenan TP, Guo T, Laborde E, Yang W. Sinthetic derivatives of rapamycin as multimerizing agents for chimeric proteins with immunophilin-derived domains. WO1997031898; 1997
  • Straathof KC, Spencer DM, Sutton RE, et al. Suicide genes as safety switches in T lymphocytes. Cytotherapy 2003;5:227-30
  • Yeda Research and development co, LTD, Eshhar Z, Schindler D, Waks T, Gross G. Chimeric receptor genes and cells transformed therewith. WO1993019163; 1993
  • Kershaw MH, Westwood JA, Parker LL, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006;12:6106-15
  • Park JR, Digiusto DL, Slovak M, et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 2007;15:825-33
  • Lamers CH, Sleijfer S, Vulto AG, et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 2006;24:e20-2
  • Riley JL, June CH. The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood 2005;105:13-21
  • Loskog A, Giandomenico V, Rossig C, et al. Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. Leukemia 2006;20:1819-28
  • Government of the United States of America, represented by the secretary, Department of Health and human services, Restifo NP, Cassard L, Yu Z, Rosenberg SA. GP100-specific T cell receptors and related materials and methods of use. WO2008089053; 2008
  • Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006;314:126-9
  • Fred Hutchinson cancer research center, Greenberg PD, Nelson BH. Chimeric cytokine receptors in lymphocytes. WO1994022914; 1994
  • Topp MS, Riddell SR, Akatsuka Y, et al. Restoration of CD28 expression in CD28- CD8+ memory effector T cells reconstitutes antigen-induced IL-2 production. J Exp Med 2003;198:947-55
  • Sierra Sciences, Inc, Andrews WH, Foster CA, Fraser S, Mohammadpour H Methods and compositions for modulating telomerase reverse transcriptase (Tert) expression. WO2002016658; 2002
  • Universite de Liege, Ravet E, Brule-Ravet F, Khatissian E, Piette J. A self-inactivating recombinant lentiviral vector for the inhibition of HIV replication. WO2007104633; 2007
  • Lotze MT, Line BR, Mathisen DJ, et al. The in vivo distribution of autologous human and murine lymphoid cells grown in T cell growth factor (TCGF): implications for the adoptive immunotherapy of tumors. J Immunol 1980;125:1487-93
  • Heslop HE, Rooney CM. Adoptive cellular immunotherapy for EBV lymphoproliferative disease. Immunol Rev 1997;157:217-22
  • O'Reilly RJ, Small TN, Papadopoulos E, et al. Biology and adoptive cell therapy of Epstein-Barr virus-associated lymphoproliferative disorders in recipients of marrow allografts. Immunol Rev 1997;157:195-216
  • Takayama T, Sekine T, Makuuchi M, et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 2000;356:802-7
  • Kircher MF, Allport JR, Graves EE, et al. In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 2003;63:6838-46
  • Lake RA, Robinson BW. Immunotherapy and chemotherapy — a practical partnership. Nat Rev Cancer 2005;5:397-405
  • June CH. Adoptive T cell therapy for cancer in the clinic. J Clin Invest 2007;117:1466-76
  • Kernan NA, Collins NH, Juliano L, et al. Clonable T lymphocytes in T cell-depleted bone marrow transplants correlate with development of graft-v-host disease. Blood 1986;68:770-3
  • Mackinnon S, Papadopoulos EB, Carabasi MH, et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versusleukemia responses from graft-versus-host disease. Blood 1995;86:1261-8
  • Klebanoff CA, Khong HT, Antony PA, et al. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol 2005;26:111-7
  • Edinger M, Hoffmann P, Ermann J, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 2003;9:1144-50
  • Godfrey WR, Ge YG, Spoden DJ, et al. In vitro expanded human CD4+CD25+ T regulatory cells markedly inhibit allogeneic dendritic cell stimulated MLR cultures. Blood 2004;104:453-61
  • van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991;254:1643-7
  • Parmiani G, De Filippo A, Novellino L, et al. Unique human tumor antigens: immunobiology and use in clinical trials. J Immunol 2007;178:1975-9
  • Sjöblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006;314:268-74
  • Hanson HL, Donermeyer DL, Ikeda H, et al. Eradication of established tumors by CD8+ T cell adoptive immunotherapy. Immunity 2000;13:265-76
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004;10:909-15
  • Parviz M, Chin CS, Graham LJ, et al. Successful adoptive immunotherapy with vaccine-sensitized T cells, despite no effect with vaccination alone in a weakly immunogenic tumor model. Cancer Immunol Immunother 2003;52:739-50
  • Neelapu SS, Munshi NC, Jagannath S, et al. Tumor antigen immunization of sibling stem cell transplant donors in multiple myeloma. Bone Marrow Transplant 2005;36:315-23
  • Laport GG, Levine BL, Stadtmauer EA, et al. Adoptive transfer of costimulated T cells induces lymphocytosis in patients with relapsed/refractory non-Hodgkin lymphoma following CD34+-selected hematopoietic cell transplantation. Blood 2003;102:2004-13
  • Levine BL, Bernstein WB, Connors M, et al. Effects of CD28 costimulation on long term proliferation of CD4+ T cells in the absence of exogenous feeder cells. J Immunol 1997;159:5921-30
  • Rapoport AP, Stadtmauer EA, Aqui N, et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med 2005;11:1230-7
  • Shu SY, Chou T, Sakai K. Lymphocytes generated by in vivo priming and in vitro sensitization demonstrate therapeutic efficacy against a murine tumor that lacks apparent immunogenicity. J Immunol 1989;143:740-8
  • Yoshizawa H, Chang AE, Shu S. Specific adoptive immunotherapy mediated by tumordraining lymph node cells sequentially activated with anti-CD3 and IL-2. J Immunol 1991;147:729-37
  • Chang AE, Aruga A, Cameron MJ, et al. Adoptive immunotherapy with vaccine-primed lymph node cells secondarily activated with anti-CD3 and interleukin-2. J Clin Oncol 1997;15:796-807
  • Mitchison NA. Studies on the immunological response to foreign tumor transplants in the mouse. The role of lymph node cells in confering immunity by adoptive transfer. J Exp Med 1955;102:157-77
  • Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. Adv Immunol 2000;90:297-339
  • van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF) producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 1999;190:355-66
  • Gerber DE, Chan TA. Recent advances in radiation therapy. Am Fam Physician 2008;78:1254-62

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.