1,336
Views
110
CrossRef citations to date
0
Altmetric
Reviews

Biological activities of guanidine compounds

&
Pages 1417-1448 | Published online: 28 Sep 2009

Bibliography

  • Berlinck RGS, Burtoloso ACB, Kossuga MH. The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 2008;25:919-54
  • Mori A, Cohen BD, Lowenthal A. Guanidines, historical, biochemical and clinical aspects of the naturally occurring guanidine compounds. Plenum, New York, 1985
  • Greenhill JV, Lue L. Amidines and guanidines in medicinal chemistry. In: Prog Med Chem 1993;30:203
  • Ishikawa T. Superbases for organic synthesis: guanidines, amidines, phosphazenes and related organocatalysts. J Wiley & Sons, 2009
  • Reetz MT, Bingel C, Harms K. Structure of carbanions having carbocations as counterions. J Chem Soc Chem Commun 1993;1558-60
  • Krygowski TM, Cyranski MK, Anulewicz-Ostrowska R. Guanidine cation – an acyclic analogue of benzene? Pol J Chem 2001;75:1939-42
  • Eckert-Maksic M, Glasovac Z, Troselj P, et al. Basicity of guanidines with heteroalkyl side chains in acetonitrile. Eur J Org Chem 2008:5176-84
  • Brzozowski Z, Saczewski F, Gdaniec M. Synthesis, molecular structure and anticancer activity of 1-allyl-3-amino-2-(4-chloro-2-mercaptobenzenesulfonyl)guanidine derivatives. Eur J Med Chem 2002;37:285-93
  • Saczewski F. Functions containing an iminocarbonyl group and any elements other than a halogen and chalcogen. In: Katritzky AR, Taylor RJK, editors, Comprehensive organic functional group transformations II 6, Chapter 6.21, Elsevier Ltd; 2004. p. 605-60
  • Suhs T, Konig B. Synthesis of guanidines in solution. Mini-Rev Org Chem 2006;3:315-31
  • Katritzky AR, Rogovoy BV. Recent developments in guanylating agents. ARKIVOC 2005;49-87
  • Jensen KB, Braxmeier TM, Demarcus M, et al. Synthesis of guanidinium-derived receptor libraries and screening for selective peptide receptors in water. Eur J Chem 2002;8:1300-09
  • Simoni D, Invidiata FP, Manfredini S, et al. Facile synthesis of 2-nitroalkanes by tetramethylguanidine (TMG) catalyzed addition of primary nitroalkanes to aldehydes and alicyclic ketones. Tetrahedron Lett 1997;38:2749-52
  • Schug KA, Lindner W. Noncovalent binding between guanidinium and ionic groups: focus on biological and synthetic-based arginine/guanidinium interactions with phosph(on)ate and sulf(on)ate residues. Chem Rev 2005;105:67-114
  • Gale PA. Preface and following articles of this special issue devoted to anion complexation. Coord Chem Rev 2006;250:2917
  • Wolfenden R, Andersson L, Cullis PM, et al. Affinities of amino acid side chains for solvent water. Biochemistry 1981;20:849-55
  • Springs B, Haake P. Equilibrium constants for association of guanidinium and ammonium ions with oxyanions. Bioorg Chem 1977;6:181-90
  • Meot-Ner M. The ionic hydrogen bond. Chem Rev 2005;195:213-84
  • Cole SL, Vassar R. BACE-1 structure and function in health and Alzheimer's disease. Curr Alzheimer Res 2008;5:100-20
  • Guo T, Hobbs DW. Development of BACE-1 inhibitors for Alzheimer's disease. Curr Med Chem 2006;13:1811-29
  • Shimizu H, Tosaki A, Kaneko K, et al. Crystal structure of an active form of BACE1, an enzyme responsible for amyloid β protein production. Mol Cell Biol 2008;28:3663-71
  • Garino C, Tomita T, Pietrancosta N, et al. Naphthyl and coumarinyl biarylpiperazine derivatives as highly potent human β-secretase inhibitors. Design, synthesis, and enzymatic BACE-1 and cell assays. J Med Chem 2006;49:4275-85
  • AstraZeneca AB. WO-120096; 2007
  • Gerritz S, Shi S, Zhu S, et al. US-0287287; 2006
  • Bristol-Myers Squibb Company. WO-002220; 2007
  • Bristol-Myers Squibb Company. WO-002214; 2007
  • Gerritz S, Good AC, Thompson III LA, et al. US-0015754; 2007
  • Yong-Jin WU, Gerritz S, Shi S, et al. US-0232581; 2007
  • Baihua HU. US-0183943; 2006
  • Baihua HU. US 088705; 2006
  • Cole DC, Manas ES, Stock JR, et al. Acylguanidines as small-molecule β-secretase inhibitors. J Med Chem 2006;49:6158-61
  • Jennings LD, Cole DC, Stock JR, et al. Acylguanidine inhibitors of β-secretase: optimization of the pyrrole ring substituents extending into the S`1 substrate binding pocket. Bioorg Med Chem Lett 2008;18:767-71
  • Fobare WF, Solvibile WR, Robichaud AJ, et al. Thiophene substituted acylguanidines as BACE1 inhibitors. Bioorg Med Chem Lett 2007;17:5353-6
  • Edwards PD, Albert JS, Sylvester M, et al. Application of fragment-based lead generation to the discovery of novel, cyclic amidine β-secretase inhibitors with nanomolar potency, cellular activity, and high ligand efficiency. J Med Chem 2007;50:5912-25
  • Goldin SM, Fischer JB, Knapp AG, et al. US-0265348; 2007
  • Yang H-YT, Fratta W, Majane EA, et al. Isolation, sequencing, synthesis, and pharmacological characterization of two brain neuropeptidesthat modulate the action of morphine. Proc Natl Acad Sci USA 1985;82:7757-61
  • Roumy M, Zajac J-M. Neuropeptide FF, pain and analgesia (Review). Eur J Pharmacol 1998;345:1-11
  • Panula P, Aarnisalo AA, Wasowicz K. Neuropeptide FF, a mammalian neuropeptide with multiple functions. Prog Neurobiol 1996;48:461-87
  • Caroff E, Steger M, Valdenaire O, et al. US-0194788; 2006
  • Actelion Pharmaceuticals Ltd. WO-023781; 2005
  • Actelion Pharmaceuticals Ltd. US-0123510; 2007
  • Taktix Corporation. WO-105779; 2003
  • Portoghese PS. Molecular recognition at kappa opioid receptors. Pure Appl Chem 2001;73:1387-91
  • Clark RD, Jahangir A, Severance D, et al. Discovery and SAR development of 2-(phenylamino)imidazolines as prostacyclin receptor antagonists. Bioorg Med Chem Lett 2004;14:1053-6
  • Samad TA, Sapirstein A, Woolf CJ. Prostanoids and pain; unraveling mechanisms and revealing therapeutic targets. Trends Mol Med 2002;8:390-6
  • Nakae K, Saito K, Iino T, et al. A prostacyclin receptor antagonist inhibits the sensitized release of substance P from rat sensory neurons. J Pharmacol Exp Ther 2005;315:1136-42
  • Bley KR, Bhattacharya A, Daniels DV, et al. RO1138452 and RO3244794: characterization of structurally distinct, potent and selective IP (prostacylin) receptor antagonists. Br J Pharmacol 2006;147:335-45
  • Nichols DE, Nichols CD. Serotonin receptors. Chem Rev 2008;108:1614-41
  • Abbott GMBH & CO KG. WO-022964; 2007
  • Abbott GMBH & CO KG. WO-082871; 2005
  • Hoffmann-La F. Roche AG. WO-000392; 2007
  • Peters J-U, Lübbers T, Alanine A, et al. Cyclic guanidines as dual 5-HT5A/5-HT7 receptor ligands: optimising brain penetration. Bioorg Med Chem Lett 2008;18:262-6
  • Lopez-Tudanca PL, Labeaga L, Innerarity A, et al. Synthesis and pharmacological characterization of a new benzoxazole derivative as potent 5-HT3 receptor agonist. Bioorg Med Chem 2003;11:2709-14
  • Glennon RA, Daoud MK, Dukat M, et al. Arylguanidine and arylbiguanide binding at 5-HT3 serotonin receptors: a QSAR study. Bioorg Med Chem 2003;11:4449-54
  • Cone RD. Melanocortins receptors. Humana Press Inc. New Jersey 2000
  • Xiao LL, Xu B, Luo J, et al. US-0004743; 2007
  • Chiron Corporation, Glaxo-Smithkline. US-0059662; 2005
  • Melacure Therapeutics AB. WO-013509; 2003
  • Holder JR, Bauzo RM, Xiang Z, et al. Design and pharmacology of peptoids and peptide-peptoid hybrids based on the melanocortin agonists core tetrapeptide sequence. Bioorg Med Chem Lett 2003;13:4505-9
  • Fotsch C, Smith DM, Adams JA, et al. Design of a new peptidomimetic agonist for the melanocortin receptors based on the solution structure of the peptide ligand, Ac-Nle-cyclo[Asp-Pro-DPhe-Arg-Trp-Lys]-NH2. Bioorg Med Chem Lett 2003;13:2337-40
  • Mazur AW, Kulesza A, Mishra RK, et al. Novel tetrahydropyran-based peptidomimetics from a bioisosteric transformation of a tripeptide. evidence of their activity at melanocortin receptors. Bioorg Med Chem 2003;11:3053-63
  • Adrian Wai-Hing Cheung, Danho W, Swistok J, et al. Structure-activity relationship of linear peptide Bu-His-DPhe-Arg-Trp-Gly-NH2 at the human melanocortin-1 and -4 receptors: arginine substitution. Bioorg Med Chem Lett 2002;12:2407-10
  • Al-Obedi F, Hadley ME, Pettitt BM, et al. Design of new class of superpotent cyclic α-melanotropins based on quenched dynamic simulations. J Am Chem Soc 1989;111:3413-6
  • Wessells H, Gralnek D, Dorr R, et al. Effect of an alpha-melanocyte stimulating hormone analog on penile erection and sexual desire in men with organic erectile dysfunction. Urologia 2000;56:641-6
  • Stark H. Histamine receptors: review No1. Biotrend Rev 2007;1-9
  • Sheng-Xue xie, Ghorai P, Qi-Zhuang YE, et al. Probing ligand-specific histamine H1- and H2-receptor conformations with NG-acylated imidazolylpropylguanidines. J Pharmacol Exp Ther 2006;317:139-46
  • Ghorai P, Kraus A, Keller M, et al. Acylguanidines as bioisisteres of guanidines: NG-acylated imidazolylpropylguanidines, a new class of histamine H2 receptor agonists. J Med Chem 2008;51:7193-204
  • Igel P, Schneider E, Schnell D, et al. NG-Acylated imidazolylpropylguanidines as potent histamine H4 receptor agonists: selectivity by variation of the NG-substituent. J Med Chem 2009:Article ASAP
  • Bertinaria M. H3 receptor ligands: new imidazole H3-antagonists endowed with NO-donor properties. Il Pharmaco 2003;58:279-83
  • Linney ID, Buck IM, Harper EA, et al. Design, synthesis, and structure-activity relationships of novel non-imidazole histamine H3 receptor antagonists. J Med Chem 2000;43:2362-70
  • Lim HD, Smits RA, Bakker RA, et al. Discovery of S-(2-guanidynylethyl)-isothiourea (VUF 8430) as a potent nonimidazole histamine H4 receptor agonist. J Med Chem 2006;43:6650-1
  • Constanzo MJ, Yabut SC, Almond HR, et al. Potent, small-molecule inhibitors of human mast cell tryptase. antiasthmatic action of a dipeptide-based trasition-state analogue containing a benzothiazole ketone. J Med Chem 2003;46:3865-76
  • Fresno MD, Fernandez-Forner D, Miralpeix M, et al. Combinatorial approaches towards the discovery of new tryptase inhibitors. Bioorg Med Chem Lett 2005;15:1659-64
  • Kanatani A, Ishihara A, Asahi S, et al. Potent Neuropeptide YY1 receptor antagonist, 1229U91: blockade of neuropeptide Y-induced and physiological food intake. Endocrinology 1996;137:3177-82
  • Aquino CJ, Ramanjulu JM, Heyer D, et al. Synthesis and structure activity relationship of guanidines as NPY Y5 antagonists. Bioorg Med Chem 2004;12:2691-708
  • Keana JFW, Weber E. US-5574070
  • AstraZeneca AB. US-7001904; 2006
  • Voet T, Talareva K, Owsianik G, et al. Sensing with TRP channels. Nat Chem Biol 2006;1:85-92
  • Appendino G, Munoz E, Fiebich BL. TRPV1 (vanilloid receptor, capsaicin receptor) agonists and antagonists. Exp Opin Ther Patents 2003;13:1825-37
  • Quintanar-Audelo M, Fernandez-Carvajal A, Nest WVD, et al. Design and synthesis of indole-based peptoids as potent noncompetitive antagonists of transient receptor potential vanilloid 1. J Med Chem 2007;50:6133-43
  • Masereel B, Pochet L, Laeckmann D. An overview of inhibitors of Na+/H+ exchanger. Eur J Med Chem 2003;38:547-54
  • Rui Zhang, Lei L, Yun-Gen Xu, et al. Benzimidazol-2-yl or benzimidazol-2-ylthiomethylbenzoylguanidines as novel Na+/H+ exchanger inhibitors, synthesis and protection against ischemic-reperfusion injury. Bioorg Med Chem Lett 2007;17:2430-3
  • Juno Kim, Yi-Sook Jung, Vonsun Han, et al. Pharmacodynamic characteristics and cardioprotective effects of new NHE1 inhibitors. Eur J Pharmacol 2007;567:131-8
  • Aventis Pharma Deutschland GMBH. WO-101450; 2003
  • Nicholas Piramal India Limited. WO-051476; 2006
  • Sunkyung Lee, Kyu Yang YI, Sun Kyung Hwang, et al. (5-Arylfuran-2-ylcarbonyl)guanidines as cardioprotectives through the inhibition of Na+/H+ exchanger isoform-1. J Med Chem 2005;48:2882-91
  • Kwang-Seok OH, Ho Won Seo, Kyu Yang YI, et al. Effects of KR-33028, a novel Na+/H+ exchanger-1 inhibitor, on ischemia and reperfusion-induced myocardial infarction in rats and dogs. Fundam Clin Pharmacol 2007;21:255-63
  • Mi Jeong Kim, Chang-Hyun Moon, Mi-Young Kim, et al. KR-32570, a novel Na+/H+ exchanger-1 inhibitor, attenuates hypoxia-induced cell death through inhibition of intracellular Ca2+ overload and mitochondrial death pathway in H9c2 cells. Eur J Pharmacol 2005;525:1-7
  • Bao Xin-Hua, Lu Wen-Cong, Liu Liang, Chen Nian-Yi. Hyper-polyhedron model applied to molecular screening of guanidines as Na/H exchange inhibitors. Acta Pharmacol Sin 2003;24:472-6
  • Wen-Ting Xu, Ning Jin, Jing Xu, et al. Design, synthesis and biological evaluation of novel substituted benzoylguanidine derivatives as potent Na+/H+ exchanger inhibitors. Bioorg Med Chem Lett 2009;19:3283-7
  • Rui Zhang, Lin Lei, Yun-Gen XU, et al. Benzimidazol-2-ylthiomethyl benzoylguanidines as novel Na+/H+ exchanger inhibitors, synthesis and protection against ischemic-reperfusion injury. Bioorg Med Chem Lett 2007;17:2430-3
  • Hobbs AJ, Higgs A, Moncada S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu Rev Pharmacol Toxicol 1999;39:191-220
  • Kerwin JF, Lancaster JR, Feldman PL. Nitric oxide: a new paradigm for second messengers. J Med Chem 1995;38:4343-62
  • Martin NI, Beeson WT, Woodward JJ, Marletta MA. NG-Aminoguanidines from primary amines and the preparation of nitric oxide synthase inhibitors. J Med Chem 2008;51:924-31
  • Cesnek M, Holý A, Masojídková M, Zídek Z. Synthesis of 9-alkyl nad 9-heteroalkyl substituted 2-amino-6-guanidinopurines and their influence on the NO-production in macrophages. Bioorg Med Chem 2005;13:2917-26
  • Bertinaria M, Stilo AD, Tosco P, et al. 3-(1H-Imidazol-4-yl)propylguanidines containing furoxan moieties: a new class of H3-antagonists endowed with NO-donor properties. Bioorg Med Chem 2003;11:1197-205
  • Fishlock D, Perdicakis B, Montgomery HJ, et al. Synthesis and evaluation of trans 3,4-cyclopropyl L-arginine analogues as isoform selective inhibitors of nitric oxide synthase. Bioorg Med Chem 2003;11:869-73
  • Rossiter S, Smith CL, Malaki M, et al. Selective substrate-based inhibitors of mammalian dimethylarginine dimethylaminohydrolase. J Med Chem 2005;48:4670-8
  • UCL Biomedica PLC. WO-051314; 2006
  • UCL Business PLC. AU-303610; 2006
  • Vlasuk GP. In new therapeutic agents in thrombosis and thrombolysis. In: Sasahara AA, Loscalzo J, editors, Marcel Dekker; Chapter 15. New York, 1997
  • Coburn CA. Small-molecule direct thrombin inhibitors: 1997–2000. Exp Opin Ther Pat 2001;11:721-38
  • Simone GD, Menchise V, Omaggio S, et al. Design of weakly basic thrombin inhibitors incorporating novel P1 binding functions: molecular and X-ray crystallographic studies. Biochemistry 2003;42:9013-21
  • Aventis Pharma Deutschland GMBH. US-0143419; 2005
  • Novo Nordisk Healthcare A/G. US-0205648; 2006
  • Wei BI, Cai J, Liu S, et al. Design, synthesis and cardioprotective effect of a new class of dual-acting: Phenolic tetrahydro-β-carboline RDG peptidomimetic conjugates. Bioorg Med Chem 2007;15:6909-19
  • Polla MO, Tottie L, Norden C, et al. Design and synthesis of potent, orally active, inhibitors of carboxypeptidase U (TAFIa). Bioorg Med Chem 2004;12:1151-75
  • Bosemberg LH, Zyl DGV. The mechanism of action of oral antidiabetic drugs: a review of recent literature. JEMDSA 2008;13:80-6
  • AstraZeneca AB. US-0149614; 2007
  • Merck Patent GMBH. WO-076963; 2002
  • Venkateswarlu Y. US-0222168; 2005
  • Merrer YL, Gauzy L, Gravier-Pelletier C, et al. Synthesis of C2-symmetric guanidino-sugars as potent inhibitors of glycosidases. Bioorg Med Chem 2000;8:307-20
  • Parmee ER. US-0105930; 2007
  • Nitto Denko Corporation. WO-044063; 2006
  • Karageozian VH. US-0105950; 2007
  • Tassoni E, Giannessi F, Brunetti T, et al. Novel substituted aminoalkylguanidines as potential antihyperglycemic and food intake-reducing agents. J Med Chem 2008;51:3073-6
  • Bahekar RH, Jain MR, Goel A, et al. Design, synthesis, and biological evaluation of substituted-N-(thieno[2,3-b]pyridin-3-yl)-guanidines, N-(1H-pyrrolo[2,3-b]pyridin-3-yl)-guanidines, and N-(1H-indol-3-yl)-guanidines. Bioorg Med Chem 2007;15:3248-65
  • Mousa SA, Cheresh DA. Recent advances in cell adhesion molecules and extracellular matrix proteins: potential clinical implications. Drug Discov Today 1997;2:187-99
  • Wiesner S, Legate KR, Fässler R. Review. Integrin-acting interactions. Cell Mol Life Sci 2005;62:1081-99
  • Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002;110:673-87
  • Massia SP, Ehteshami G. US-0246104; 2006
  • Carron CP, Meyer DM, Pegg JA, et al. A peptidomimetic antagonist of the integrin αv β 3 inhibits leydig cell tumor growth and the development of hypercalcemia of malignancy. Cancer Res 1998;58:1930-5
  • Penning TD, Russell MA, Chen BB, et al. Synthesis of cinnamic acids and related isosteres as potent and selective αvβ3 receptor antagonists. Bioorg Med Chem Lett 2004;14:1471-6
  • Dechantsreiter MA, Planker E, Matha B, et al. N-Methylated cyclic RGD peptides as highly active and selective αVβ3 integrin antagonists. J Med Chem 1999;42:3033-40
  • McCusker CF, Kocienski PJ, Boyle T, et al. Solid-phase synthesis of c(RGDfK) derivatives: on-resin cyclisation and lysine functionalisation. Bioorg Med Chem Lett 2002;12:547-9
  • Banfi L, Basso A, Damonte G, et al. Synthesis and biological evaluation of new conformationally biased integrin ligands based on tetrahydroazoninone scaffold. Bioorg Med Chem Lett 2007;17:1341-5
  • Peyman A, Wehner V, Knolle J, et al. RDG mimetics containing a central hydantoin scaffold: αVβ3 vs αIIbβ3 selectivity requirements. Bioorg Med Chem Lett 2000;10:179-82
  • Bubenik M, Meerovitch K, Bergeron F, et al. Thiophene-based vitronectin receptor antagonists. Bioorg Med Chem Lett 2003;13:503-6
  • Burdick DJ, Stanley MS, Oare D, et al. US-6667318; 2003
  • The Ohio State University Research Foundation. WO-044130; 2005
  • Kulp SK, Ya-Ting Yang, Chin-Chun Hung, et al. 3-Phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res 2004;15:1444-51
  • Rockway TW. Selective urokinase inhibitors based on substituted aryl guanidines. Exp Opin Ther Pat 2001;11:1975-7
  • Rosenberg S. Modulators of the urokinase-type plasminogen activation system for cancer. Exp Opin Ther Pat 2000;10:1843-52
  • Wilex AG. US-7.049.460 B1; 2006
  • Fish PV, Barber CG, Brown DG, et al. Selective urokinase-type plasminogen activator inhibitors 4 1-(7-Sulfonamidoisoquinolinyl)guanidines. J Med Chem 2007;50:2341-51
  • Joossens J, Ali OM, El-Sayed I, et al. Small, potent, and selective diaryl phosphonate inhibitors for urokinase-type plasminogen activator with in vivo antimetastatic properties. J Med Chem 2007;50:6638-46
  • Ohara K, Smietana M, Restouin A, et al. Amine-guanidine switch: a promising approach to improve DNA binding and antiproliferative activities. J Med Chem 2007;50:6465-75
  • Park M, Toporowski JW, Bruice TC. Ribonucleic guanidine demonstrates an unexpected marked preference for complementary DNA rather than RNA. Bioorg Med Chem 2006;14:1743-9
  • Dempcy RO, Browne KA, Bruice TC. Synthesis of a thymidyl pentamer of deoxiribonucleic guanidine and binding studies with DNA homopolynucleotides. Proc Natl Acad Sci USA 1995;92:6097-101
  • Linkletter BA, Szabo IE, Bruice TC. Solid-phase synthesis of oligopurine deoxynucleic guanidine (DNG) and analysis of binding with DNA oligomers. Nucleic Acids Res 2001;29:2370-6
  • Szabo IE, Bruice TC. DNG cytidine: synthesis and binding properties of octameric guanidinium-linked deoxycytidine oligomer. Bioorg Med Chem 2004;12:4233-44
  • Xiaohua Zhang, Bruice TC. Complexation of single strand telomere and telomerase RNA template polyanions by deoxyribonucleic guanidine (DNG) polycations: plausible anticancer agents. Bioorg Med Chem Lett 2008;18:665-9
  • Toporowski JW, Reddy SY, Bruice TC. Comparison of positively charged DNG with DNA duplexes: a computational approach. Bioorg Med Chem 2005;13:3691-8
  • Challa H, Bruice T. Deoxynucleic guanidine: synthesis and incorporation of purine nucleosides into positively charged DNG oligonucleotides. Bioorg Med Chem 2004;12:1475-81
  • Alarcon K, Demeunynck M, Lhomme J, et al. Potentiation of BCNU cytotoxicity by molecules targeting abasic lesions in DNA. Bioorg Med Chem 2001;9:1901-10
  • Geopharma Produktions GMBH. EP-1734064; 2004
  • Zhidong MA, Saluta G, Kucera GL, Bierbach U. Effect of linkage geometry on biological activity in thiourea- and guanidine-substituted acridines and platinium acridines. Bioorg Med Chem Lett 2008;18:3799-801
  • Lafrate AL, Gunther JR, Carlson KE, Katzenellenbogen JA. Synthesis and biological evaluation of guanylhydrazone coactivator binding inhibitors for the estrogen receptor. Bioorg Med Chem 2008;16:10075-84
  • Shao D, Berrodin TJ, Manas E, et al. Identification of novel estrogen receptor α antagonists. J Steroid Biochem Mol Biol 2004;88:351-60
  • Jieying Zhong, Ying Chau. Antitumor activity of a membrane lytic peptide cyclized with a linker sensitive to membrane type 1-matrix metalloproteinase. Mol Cancer Ther 2008;7:2933-40
  • Mader JS, Hoskin DW. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs 2006;15:933-46
  • Brown JR, Nishimura Y, Esko JD. Synthesis and biological evaluation of gem-diamine 1-N-iminosugars related to L-iduronic acid as inhibitors of heparan sulfate 2-O-sulfotransferase. Bioorg Med Chem Lett 2006;16:532-6
  • Raffel DM, Jung Y-W, Gildersleeve DL, et al. Radiolabeled phenethylguanidines: novel imaging agents for cardiac sympathetic neurons and adrenergic tumors. J Med Chem 2007;50:2078-88
  • Chen XI, Liu C, Thurkauf A, Louise-May S. US-0100225; 2006
  • Achillion Pharmaceuticals, Inc. WO-095345; 2005
  • The Regents of the University of California. WO-016343; 2005
  • Olszewski A, Sato K, Aron ZD, et al. Guanidine alkaloid analogs as inhibitors of HIV-1 Nef interactions with p53, actin, and p56lck. Proc Natl Acad Sci USA 2004;101:14079-84
  • Itzstein MV, Wen-Yang WU, KOK GB, et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 1993;363:418-23
  • Xiang YI, Zongru GUO, Chu FM. Study on molecular mechanism and 3D-QSAR of influenza neuraminidase inhibitors. Bioorg Med Chem 2003;11:1465-74
  • Goodman M, Tar Y, Baker T, et al. US-6525182; 2003
  • Chand P, Bantia S, Kotian PL, et al. Comparison of the anti-influenza virus activity of cyclopentane derivatives with oseltamivir and zanamivir in vivo. Bioorg Med Chem 2005;13:4071-7
  • Babu YS. WO-095218; 2007
  • Masuda T, Shibuya S, Arai M, et al. Synthesis and anti-influenza evaluation of orally active bicyclic ether derivatives related to zanamivir. Bioorg Med Chem Lett 2003;13:669-73
  • Warda M, Lindhardt RJ, Marks RM. Patents related to dengue virus infection. Exp Opin Ther Patents 2002;12:1127-43
  • Woodmansee AN, Shi P-Y. Recent developments in West Nile virus vaccine and antiviral therapy. Exp Opin Ther Patents 2003;13:1113-25
  • Ganesh VK, Muller N, Judge K, et al. Identification and characterisation of nonsubstrate based inhibitors of the essential dengue and West Nile virus proteases. Bioorg Med Chem 2005;13:257-64
  • Li J, Lim SP, Beer D, et al. Functional profiling of recombinant NS3 proteases from all four serotypes of dengue virus using tetrapeptide and octapeptide substrate libraries. J Biol Chem 2005;280:28766-74
  • Zheng Yin, Patel SJ, Wei-Ling Wang, et al. Peptide inhibitors of dengue virus NS3 protease. Part 2: SAR study of tetrapeptide aldehyde inhibitors. Bioorg Med Chem Lett 2006;16:40-3
  • Wei RG, Arnaiz DO, Chou Y-L, et al. CCR5 receptor antagonists: discovery and SAR study of guanylhydrazone derivatives. Bioorg Med Chem Lett 2007;17:231-4
  • Hensler ME, Bernstein G, Nizet V, Nefzi A. Pyrrolidine bis-cyclic guanidines with antimicrobial activity against drug-resistant Gram-positive pathogens identified from a mixture-based combinatorial library. Bioorg Med Chem Lett 2006;16:5073-9
  • Chang-Hyun OH, Jung-Hyuck CHO. Synthesis and biological evaluation of 1β-methylcarbapenems having guanidino moieties. Eur J Med Chem 2006;41:50-5
  • Yoshizawa H, Kubota T, Itani H, et al. New broad-spectrum parenteral cephalosporins exhibiting potent activity against both methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Part 3: 7β-[2-(5-Amino-1,2,4-thiadiazol-3-yl)-2-ethoxyiminoacetamido] cephalosporins bearing 4-[3-(aminoalkyl)-ureido]-1-pyridinium at C-3′. Bioorg Med Chem 2004;12:4221-31
  • Glukhov E, Stark M, Burrows LL, Deber CM. Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. J Biol Chem 2005;280:33960-7
  • De Yang, Biragyn A, Hoover DM, et al. Multiple roles of antimicrobial defensis, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 2004;22:181-245
  • Tomasinsig L, Zanetti M. The cathelicidins – structure, function and evolution. Curr Protein Pept Sci 2005;6:23-34
  • Haug BE, Strom MB, Svendsen JS. The medicinal chemistry of short lactoferricin-based antibacterial peptides. Curr Med Chem 2007;14:1-8
  • Haug BE, Stensen W, Kalaaji M, et al. Synthetic antimicrobial peptidomimetics with therapeutic potential. J Med Chem 2008;51:4306-14
  • Lindgren M, Hallbrink M, Prochiantz A, Langel Ü. Cell-penetrating peptides. Trends Pharmacol Sci 2000;21:99-103
  • Nekhotiaeva N, Elmquist A, Rajarao GK, et al. Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides. FASEB J 2004;18:394-6
  • Schröder T, Schmitz K, Schepers UTE, et al. Solid-phase synthesis, bioconjugation, and toxicology of novel cationic oligopeptoids for cellular drug delivery. Bioconjug Chem 2007;18:342-54
  • Schröder T, Niemeier N, Afonin S, et al. Peptoidic amino- and guanidinium-carrier systems: targeted drug delivery into the cell cytosol or the nucleus. J Med Chem 2008;51:376-9
  • Qian L, Guan Y, Xiao H, et al. Modified guanidine polymers: synthesis and antimicrobial mechanism revealed by AFM. Polymer 2008;49:2471-5
  • Kratzer C, Tobudic S, MacFelda K, et al. In vivo activity of a novel polymeric guanidine in experimental skin infection with methicilin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2007;51:3437-9
  • Wu W, Sil D, Szostak ML, et al. Structure-activity relationships of lipopolysaccharide sequestration in guanylhydrazone-bearing lipopolyamides. Bioorg Med Chem 2009;17:709-15
  • Sokolov VV, Kozhushkov SI, Nikolskaya S, et al. Total synthesis of TAN-1057 A/B, a new dipeptide antibiotic from Flexibacter sp. PK-74. Eur J Org Chem 1998;777-83
  • Brands M, Endermann R, Gahlmann R, et al. Dihydropyrimidinones-A new class of anti-staphylococcal antibiotics. Bioorg Med Chem Lett 2003;13:241-5
  • Whitaker BI, Busnel R-G. US-0053516; 2005
  • General Electric Company (US). CA-2528009; 2005
  • Pavlovna AZ, Mitrofanovna BE, Nikolaevich VG, et al. RU-2275193; 2006
  • Bode Chemie GMBH & CO. EP-1661586; 2005
  • Lowe CR, Lawden KH. US-0014678; 2005
  • Bromberg L, Hatton TA. Poly(N-vinylguanidine): characterization, and catalytic and bactericidal properties. Polymer 2007;48:7490-8
  • David L. WO-135380; 2007
  • Hui-Hang Hua, Peng J, Fronczek MTFR, et al. Crystallographic and NMR studies of antiinfective tricyclic guanidine alkaloids from the sponge Monanchora unguifera. Bioorg Med Chem 2004;12:6461-4
  • Rodrìguez F, Rozas I, Kaiser M, et al. New bis(2-aminoimidazoline) and bisguanidine DNA minor groove binders with potent in vivo antitrypanosomal and antiplasmodial activity. J Med Chem 2008;51:909-23
  • Bakunova SM, Bakunov SA, Patrick DA, et al. Structure-activity study of pentamidine analogues as antiprotozoal agents. J Med Chem 2009;52:2016-35
  • Dardonville C, Barrett MP, Brun R, et al. DNA binding affinity of bisguanidine and bis(2-aminoimidazoline) derivatives with in vivo antitrypanosomal activity. J Med Chem 2006;49:3748-52
  • Guetzoyan L, Ramiandrasoa F, Dorizon H, et al. In vitro efficiency of new acridyl derivatives against Plasmodium falciparum. Bioorg Med Chem 2007;15:3278-89
  • Guan J, Zhang Q, Montip G, et al. Structure identification and prophylactic antimalarial efficacy of 2-guanidinoimidazolidinedione derivatives. Bioorg Med Chem 2005;13:699-704
  • Jian Guan, Xihong Wang, Smith K, et al. Malaria causal prophylactic activity of imidazolidinedione derivatives. J Med Chem 2007;50:6226-31
  • Solomon VR, Puri SK, Srivastava K, Katti SB. Design and synthesis of new antimalarial agents from 4-aminoquinoline. Bioorg Med Chem 2005;13:2157-65
  • Bossche HV. Echinocandins – an update. Exp Opin Ther Patents 2002;12:151-67
  • Weibo Wang, Qun Li, Hasvold L, et al. Discovery, SAR, synthesis, pharmacokinetic and biochemical characterization of A-192411: a novel fungicidal lipopeptide-(I). Bioorg Med Chem Lett 2003;13:489-93
  • Sakuda S, Isogaim A, Suzuki A, Yamada Y. Chemistry and biochemistry of the chitinase inhibitors, allosamidins. Actinomycetol 1993;7:50-7
  • Omura S, Arai N, Yamaguchi Y, et al. Argifin, a new chitinase inhibitor, produced by Gliocladium sp. FTD-0668 - I. Taxonomy, fermentation, and biological activities. J Antibiot 2000;53:603-8
  • Gouda H, Sunazuka T, Iguchi K, et al. Computer-aided rational molecular design of argifin-derivatives with increased inhibitory activity against chitinase B from Serratia marcescens. Bioorg Med Chem Lett 2009;19:2630-3
  • Braunerovà G, Buchta V, Palàt K Jr, et al. Synthesis and in vitro antifungal activity of 4-substituted phenylguanidinium salts. Il Farmaco 2004;59:443-50
  • Maiti KK, Lee WS, Takeuchi T, et al. Guanidine-containing molecular transporters: Sorbitol-based transporters show high intracellular selectivity toward mitochondria. Angew Chem 2007;119:5984-8
  • Wender AP, Christopher L, Deusen V, et al. US-7067698; 2006
  • Rothbard BJ, Wender AP, et al. US-7169814; 2007
  • Tor Y, Luedtke N. US-0185040; 2007
  • Maiti KK, Ock-Youm Jeon, Woo Sirl Lee, Sung-Kee Chung. Design, synthesis, and delivery properties of novel guanidine-containing molecular transporters built on dimeric inositol scaffolds. Chem Eur J 2007;13:762-75
  • Mizuki Kitamatsu, Takanori Kubo, Rino Matsuzaki, et al. Carrier PNA for sarna delivery into cells. Bioorg Med Chem Lett 2009;19:3410-3
  • Zuhorn IS, Engberts JBFN, Hoekstra D. Gene delivery by cationic lipid vectors: overcoming cellular. Eur Biophys J 2007;36:349-62
  • Martin B, Sainlos M, Aissaoui A, et al. The design of cationic lipids for gene delivery. Curr Pharm Des 2005;11:375-94
  • Uddin SN. Cationic lipids used in non-viral gene delivery systems. Biotechnol Mol Biol Rev 2007;2:58-67
  • Ilies M, Seitz WA, Balaban AT. Cationic lipids in gene delivery: Principles, vector design and therapeutical applications. Curr Pharm Des 2002;8:2441-73

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.