219
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Small molecules for bone diseases

, PhD & , PhD
Pages 563-582 | Published online: 20 Mar 2010

Bibliography

  • Teitelbaum SL. Osteoclasts: what do they do and how they do it? Am J Pathol 2007;170:427-35
  • Fuller K, Kirstein B, Chambers TJ. Regulation and enzymatic basis of bone resorption by human osteoclasts. Clin Sci (Lond) 2007;112:567-75
  • Troen BR. Molecular mechanisms underlying osteoclast formation and activation. Exp Gerontol 2003;38:605-14
  • Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone 2007;40:251-64
  • Blair HC, Robinson LJ, Zaidi M. Osteoclast signaling pathways. Biochem Biophys Res Commun 2005;328:728-38
  • Shinohara M, Takayanagi H. Novel osteoclast signaling mechanisms. Curr Osteoporos Rep 2007;5:67-72
  • Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance. Science 2000;289:1501-4
  • Phan TC, Xu J, Zheng MH. Interaction between osteoblast and osteoclast: impact on bone disease. Histol Histopathol 2004;19:1325-44
  • Sabokbar A, Athanasou NS. Generating human osteoclasts from peripheral blood. Methods Mol Med 2003;80:101-11
  • Sun S. Bone disease drug discovery: examing the interactions between osteoblast and osteoclast. Expert Opin Ther Targets 2008;12(2):239-51
  • Lyles KW, Colon-Emeric CS, Magaziner JS, Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 2007;357:1799-809
  • Neer RM, Arnaud CD, Zanchetta RJ, Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001;344:1434-41
  • Chen P, Miller PD, Recker R, Increases in bone mineral density correlate with improvements in bone microarchitecture with teriparatide treatment in postmenopausal women with osteoporosis. J Bone Miner Res 2007;22:1173-80
  • Uzzan B, Cohen R, Nicolas P, Effects of statins on bone mineral density: a meta-analysis of clinical studies. Bone 2007;40:1581-7
  • Von Baeyer H, Hofmann KS. Acetodiphosphoriga sauer. Ber 1897;30:1973
  • Francis MD, Valent DJ. Historical perspectives on the clinical development of bisphosphonates in the treatment of bone diseases. J Musculoskelet Neuronal Interact 2007;7(1):2-8
  • Fleisch H. Development of bisphosphonates. Breast Cancer Res 2002;4(1):30-4
  • Van Beek ER, Cohen LH, Leroy IM, Differentiating the mechanisms of antiresorptive action of nitrogen containing bisphosphonates. Bone 2003;33(5):805-11
  • Mukherjee S, Huang C, Oldfield E, Thermodynamics of bisphosphonates binding to human bone: a two-site model. J Am Chem Soc 2009;131:8374-5
  • Ebetino HF, Sietsema KW. Bisphosphonates in development for metabolic bone disease. Expert Opin Invest Drugs 1994;3(12):1255-76
  • Benckiser AG. 1-Hydroxy-3-amino-propan-1,1-diphosphonsaeure und Verfahren zu deren Herstellung. DE2130794; 1973
  • Henkel. Verwendung von 3-Amino-1-Hydroxypropan-1,1-diphosphonsaeure oder ihrer wasserloeslichen Salze bei der Beeinflussung von Calciumstoffwechselstoerungen im menschlichen oder tierischen Koerper. DE2405254; 1975
  • Instituto Gentili. Pharmaceutical composition based on diphosphonates for the treatment of arthrosis. EP203649; 1986
  • Procter&Gamble Co. Pharmaceutical compositions containing geminal diphosphonates. EP186405; 1986
  • Boehringer Mannheim. Disphosphonium acid derivatives and midicines containing the same. WO8800590; 1988
  • Novartis AG. Substituted alkanediphosphonic acids and pharmaceutical use. US4939130; 1990
  • Benhamou CL. Effects of osteoporosis medications on bone quality. Joint Bone Spine 2007;74:39-47
  • Close P, Neuprez A, Reginster JY. Developments in the pharmacotherapeutic management of osteoporosis. Expert Opin Pharmacother 2006;7:1603-15
  • Heckbert SR, Li G, Cummings SR, Use of alendronate and risk of incident atrial fibrillation in women. Arch Intern Med 2008;168(8):826-31
  • Takeuchi M, Sakamoto S, Kawamuki K, Studies on novel bone resorption inhibitors. II. Synthesis and pharmacological activities of fused aza-heteroarylbisphosphonate derivatives. Chem Pharm Bull 1998;46(11):1703-9
  • Hagino H, Nishizaki Y, Sone T, A bouble-blinded head-to-head trial of minodronate and alendronate in women with postmenopausal osteoporosis. Bone 2009;44(6):1078-84
  • Matsumoto T, Hagino H, Shiraki M, Effect of daily oral minodronate on vertebral fractures in Japanese postmenopausal women with established osteoporosis: a randomized placebo-controlled double-blind study. Osteoporos Int 2009;20(8):1429-37
  • Martin MB, Grimley JS, Oldfield E, Bisphosphonates inhibit the growth of trypanosoma brucei, trypanosoma cruzi, leishmania donovani, toxoplasma gondii and plasmodium falciparum: a potential route to chemotherapy. J Med Chem 2001;44:909-16
  • Singh US, Shankar R, Hajela K, Synthesis and biological evaluation of indolyl bisphosphonates as anti-bone resorptive and anti-leishmanial agents. Bioorg Med Chem 2008;16:8482-91
  • The Board of Trustees of the University of Illinois. Bisphosphonate compounds and methods. WO07109585; 2007
  • Brown HK, Holen I. Anti-tumour effects of bisphosphonates – what have we learned from in vivo models? Curr Cancer Drug Targets 2009;9:807-23
  • Brounais B, Ruiz VC, Redini F, Novel anti-cancer strategy in bone tumors by targeting molecular and cellular modulators of bone resorption. Recent Pat Anti Cancer Drug Discov 2008;3:178-86
  • Anderson P, Kopp L, Anderson N, Novel bone cancer drugs: investigational agents and control paradigms for primary bone sarcomas (Ewing' sarcoma and osteosarcoma). Expert Opin Investig Drugs 2008;17(11):1703-15
  • Xie Y, Ding H, Qian L, Synthesis and biological evaluation of novel bisphosphonates with dual activities on bone in vitro. Bioorg Med Chem Lett 2005;15:3267-70
  • Sanders JM, Gomez AO, Oldfield E, 3D QSAR investigations of the inhibition of leishmania major farnesyl pyrophosphate synthase by bisphosphonates. J Med Chem 2003;46:5171-83
  • Inaoka T, Bilbe G, Ishibashi O, Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone. Biochem Biophys Res Commun 1995;206(1):89-96
  • Garnero P, Borel O, Byrjalsen I, The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem 1998;273:32347-52
  • Saftig P, Hunziker E, Wehmeyer O, Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 1998;95:13453-8
  • Cai J, Jamieson C, Moir J, Rankovic Z. Cathepsin K inhibitors, 2000-2004. Expert Opin Ther Pat 2005;15(1):33-48
  • Matsumoto K, Mizoue K, Kitamura K, Structural basis of inhibition of cysteine proteases by E-64 and its derivatives. Biopolymers 1999;51(1):99-107
  • Yamashita DS, Dodds RA. Cathepsin K and the design of inhibitiors of cathepsin K. Curr Pharm Des 2000;6(1):1-24
  • Shaw E, Green GD. Inactivation of thiol proteases with peptidyl diazomethyl ketones. J Methods Enzymol 1981;80(Pt C):820-6
  • Shaw E. The selective inactivation of thiol proteases in vitro and in vivo. J Protein Chem 1984;3:109-20
  • Powers JC, Asgian JL, James KE, Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 2002;102:4639-750
  • Leung-Toung R, Li W, Tam TF, Thiol-dependent enzymes and their inhibitors: a review. Curr Med Chem 2002;9:979-1002
  • Rasnick D. Small synthetic inhibitors of cysteine proteases. Perspect Drug Discov Des 1996;6:47-63
  • McKerrow JH, Engel JC, Caffrey CR. Cysteine protease inhibitors as chemotherapy for parasitic infections. Bioorg Med Chem 1999;7:639-44
  • Hanzlik RP, Thompson SA. Vinylogous amino acid esters: a new class of inactivators for thiol proteases. J Med Chem 1984;27:711-12
  • Thompson SA, Andrews PR, Hanzlik RP. Carbonyl-modified amino acids and peptides as protease inhibitors. J Med Chem 1986;29:104-11
  • Kong J-S, Venkatraman S, Furness K, Synthesis and evaluation of peptidyl michael acceptors that inactivate human rhinovirus 3C protease and inhibit virus replication. J Med Chem 1998;41:2579-87
  • Dragovich PS, Webber SE, Babine RE, Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 1. michael acceptor structure-activity studies. J Med Chem 1998;41:2806-18
  • Smithkline Beecham Corp. Novel cathepsin K inhibitors. WO05013909; 2005
  • Yamashita DS, Marquis RW, Xie R, Structure activity relationships of 5-, 6-, and 7-methyl-substituted azepan-3-one cathepsin K inhibitors. J Med Chem 2006;49:1597-612
  • Wang H, Matsuhashi H, Doan DB, Large-scale synthesis of SB-462795, a cathepsin K inhibitor: the RCM-based approaches. Tetrahedron 2009;65:6291-303
  • Medivir AB. Furanone derivatives as cysteine protease inhibitors. EP1916248; 2008
  • Medivir AB. Cysteine protease inhibitors. WO09000877; 2009
  • Amura Therapeutics Ltd. Biologically active compounds. WO04007501; 2004
  • Amura Therapeutics Ltd. Compounds. WO09087379; 2009
  • Novartis AG. Dipeptide nitrile cathepsin K inhibitors. WO01058886; 2001
  • Novartis AG. Use of cathepsin K inhibitors in severe bone loss diseases. WO05049028; 2005
  • Altmann E, Aichholz R, Betchart C, Dipeptide nitrile inhibitors of cathepsin K. Bioorg Med Chem Lett 2006;16:2549-54
  • Adami S, Effect of one year treatment with the cathepsin-K inhibitor, balicatib, on bone mineral density (BMD) in postmenopausal woman with osteopenia/osteoporosis. American Society for Bone and Mineral Research, Washington, DC; 17 September 2006
  • Gauthier JY, Chauret N, Cromlish W, The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett 2008;18:923-8
  • Rodan SB, Duong LT. Cathepsin K – A new molecular target for osteoporosis. IBMS BoneKEy 2008;5:16-24
  • Stoch SA, Zajic S, Stone J, Effect of the cathepsin K inhibitor odanacatib on bone resorption biomarkers in healthy postmenopausal women: two double-blind, randomized, placebo-controlled phase i studies. Clin Pharmacol Ther 2009;86(2):175-82
  • Merck Frosst Canada Ltd. Cathepsin cysteine protease inhibitors. WO07003056; 2007
  • Robichaud J, Black WC, Crane SN, Identification of a nonbasic, nitrile-containing cathepsin K inhibitor (MK-1256) that is efficausious in a monkey model of osteoporosis. J Med Chem 2008;51:6410-20
  • Merck Frosst Canada Ltd. Cathepsin cysteine protease inhibitors. WO08116302; 2008
  • F. Hoffmann-La Roche AG. Cathepsin K inhibitors. WO07014839; 2007
  • Astrazeneca AG. Cyanocyclopropylcarboxamides as cathepsin inhibitors. WO09001127; 2009
  • Astrazeneca AG. 1,2-Cyclohexane dicarboxamides as cathepsin inhibitors. WO09001128; 2009
  • Astrazeneca AG. 1-Cyanocyclopropyl-derivatives as cathepsin K inhibitors. WO09001129; 2009
  • Sanofi-Aventis. Spirocyclic nitriles as protease inhibitors. WO07137738; 2007
  • Novartis AG. Cysteine protease inhibitors with 2-cyano-4-amino-pyrimidine structure and cathepsin K inhibitory activity for the treatment of inflammations and other diseases. WO03020278; 2003
  • Novartis AG. Spiro-substituted pyrrolopyrimidines. WO04076455; 2004
  • Teno N, Masuya K, Ehara T, Effect of cathepsin K inhibitors on bone resorption. J Med Chem 2008;51:5459-62
  • Astrazeneca AG. Pteridine derivatives and their use as cathepsin inhibitors. WO07148064; 2007
  • Ono Pharmaceutical Co., Ltd. Nitriles and medicinal compositions containing the same as the active ingredient. WO05085210; 2005
  • Glaxo Group Ltd. 2,4-Substituted pyrimidines as cysteine protease inhibitors. WO06027211; 2006
  • Glaxo Group Ltd. Novel substituted pyrimidines as cysteine protease inhibitors. WO08052934; 2008
  • N.V Organon. 2-Cyano-1,3,5-triazine-4,6-diamine derivatives. WO05011703; 2005
  • N.V Organon. Preparation of 6-phenyl-1H-imidazo[4,5-c]pyridine-4-carbonitrile derivatives as cathepsin inhibitors. WO09010491; 2009
  • Merck Frosst, Axys Pharma, Inc and Banyu Pharma Co, Ltd. Cathepsin cysteine protease inhibitors. WO01077073; 2001
  • Korea Research Institute of Chemical Technology. Preparation of hexahydropyridazine-carbonitriles and related compounds as cathepsin K inhibitors. KR0769467; 2007
  • Kim SH, Jhon DJ, Kang NS, Effect of novel N-cyano-tetrahydro-pyridazine compounds, a class of cathepsin K inhibitors, on the bone resorptive activity of mature osteoclasts. Bioorg Med Chem Lett 2008;18:3988-91
  • Duong LT, Rodan GA. Integrin-mediated signaling in the regulation of osteoclast adhesion and activation. Front Biosci 1998;3:d757-68
  • Aumailley M, Gurrath M, Muller G, Arg-Gly-Asp constrained within cyclic pentapoptides Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett 1991;291:50-4
  • Bach AC, Espina JR, Type II to type I beta-turn swap changes specificity for integrins. J Am Chem Soc 1996;118:293-4
  • Burgess K, Lim D, Mousa SA. Synthesis and solution conformation of cyclo[RGDRGD]: a cyclic peptide with selectivity for the alphavbeta3 receptor. J Med Chem 1996;39:4520-6
  • Gatto AD, Zaccaro L, Grieco P, Novel and selective alphavbeta3 receptor peptide antagonist: design, synthesis, and biological behavior. J Med Chem 2006;49:3416-20
  • Zanardi F, Burreddu P, Rassu G, Discovery of subnanomolar arginine-glycine-aspartate-based alphaVbeta3/alphaVbeta5 integrin binders embedding 4-aminoproline residues. J Med Chem 2008;51:1771-82
  • Indrevoll B, Kindberg GM, Solbakken M, NC-100717: a versatile RGD peptide scaffold for angiogenesis imaging. Bioorg Med Chem Lett 2006;16:6190-3
  • Banfi L, Basso A, Damonte G, Synthesis and biological evaluation of new conformationally biased integrin ligands based on tetrahydroazoninone scaffold. Bioorg Med Chem Lett 2007;17:1341-5
  • Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Cyclopeptide derivatives with anti-integrin activity. WO05111064; 2005
  • Universite' Degli Studi Milano. Peptidomimetic compounds and preparation of biologically active derivatives. WO06092722; 2006
  • Del Gatto A, Zaccaro L, Pedone C, Selective alphavbeta3 receptor peptide antagonist for therapeutic and diagnostic application. WO07042241; 2007
  • Keenan RM, Milller WH, Kwon C, Discovery of potent nonpeptide vitronectin receptor (alphavbeta3) antagonists. J Med Chem 1997;40:2289-92
  • Kling A, Backfisch G, Delzer J, Synthesis and SAR of N-substituted dibenzazepinone derivatives as novel potent and selective alphavbeta3 antagonists. Bioorg Med Chem Lett 2002;12:441-6
  • Corbett JW, Graciani NR, Mousa S, Solid-phase synthesis of a selective alphavbeta3 integrin antagonist library. Bioorg Med Chem Lett 1997;7:1371-6
  • Pitts WJ, Wityak J, Smallheer JM, Isoxazolines as potent antagonists of the integrin alphavbeta3. J Med Chem 2000;43:27-40
  • Penning TD, Khilevich A, Chen BB, Synthesis of pyrazoles and isoxazoles as potent alphavbeta3 receptor antagonists. Bioorg Med Chem Lett 2006;16:3156-61
  • Batt DG, Petraitis JJ, Houghton GC, Disubstituted indazoles as potent antagonists of the integrin alphavbeta3. J Med Chem 2000;43:41-58
  • Duggan ME, Duong LT, Fisher JE, Nonpeptide alphavbeta3 antagonists. 1. Transformation of a potent, integrin-selective alphaIIbbeta3 antagonist into a potent alphavbeta3 antagonist. J Med Chem 2000;43:3736-45
  • Gopalsamy A, Yang H, Ellingboe JW, Parallel solid-phase synthesis of vitronectin receptor (alphavbeta3) inhibitors. Bioorg Med Chem Lett 2000;10:1715-8
  • Meissner RS, Perkins JJ, Duong LT, Nonpeptide alphavbeta3 antagonists. Part 2: constrained glycyl amides derived from the RGD tripeptide. Bioorg Med Chem Lett 2002;12:25-9
  • Perkins JJ, Duong LT, Fernandez-Metzler C, Non-peptide alphavbeta3 Antagonists: identification of potent, chain-shortened RGD mimetics that incorporate a central pyrrolidinone constraint. Bioorg Med Chem Lett 2003;13:4285-8
  • Hutchinson JH, Halczenko W, Brashear KM, Nonpeptide alphavbeta3 Antagonists. 8. In vitro and in vivo evaluation of a potent alphavbeta3 antagonist for the prevention and treatment of osteoporosis. J Med Chem 2003;46:4790-8
  • Coleman PJ, Brashear KM, Askew BC, Nonpeptide alphavbeta3 antagonists. part 11: discovery and preclinical evaluation of potent alphavbeta3 antagonists for the prevention and treatment of osteoporosis. J Med Chem 2004;47:4829-37
  • Lange UEW, Backfisch G, Elzer J, Synthesis of highly potent and selective hetaryl ureas as integrin alphavbeta3-Receptor antagonists. Bioorg Med Chem Lett 2002;12:1379-82
  • Zechel C, Backfisch G, Delzer J, T. Highly potent and selective alphaVbeta3-receptor antagonists: solid-phase synthesis and SAR of 1-substituted 4-amino-1H-pyrimidin- 2-ones. Bioorg Med Chem Lett 2003;13:165-9
  • Urbahns K, Harter M, Albers M, Biphenyls as potent vitronectin receptor antagonists. Bioorg Med Chem Lett 2002;12:205-8
  • Urbahns K, Harter M, Albers M, Biphenyls as potent vitronectin receptor antagonists. Part 3: squaric acid amides. Bioorg Med Chem Lett 2007;17:6151-4
  • Seitz W, Geneste H, Backfisch G, Design and synthesis of novel potent and selective integrin alphavbeta3 antagonists—Novel synthetic routes to isoquinolinone, benzoxazinone, and quinazolinone acetates. Bioorg Med Chem Lett 2008;18:527-31
  • Raboisson P, DesJarlais RL, Reed R, Identification of novel short chain 4-substitute indoles as potent alphavbeta3 antagonists using structure based drug design. Eur J Med Chem 2007;42:334-43
  • The Government of the United State, As Represented by the Secretary of Health and Human service, National Institutes of Health. Integrin alphavbeta3 antagonists for use in imaging and therapy. WO06015382; 2006
  • Ube Industries, Ltd. Benzazepinone compound. WO09063990; 2009
  • Pharmacopeia Drug Discovery, Inc. Nitrogen heterocycle biaryls for osteoporosis and other diseases. WO07001249; 2007
  • Pharmacopeia, Inc. Nitrogen heterocycle biaryls for osteoporosis and other diseases. US05022q2203; 2005
  • Pharmacia Corporation. Biphenyl integrin antagonists. WO06043930; 2006
  • Zeng G-Z, Tan N-H, Hao X-J, Natural inhibitors targeting osteoclast-mediated bone resorption. Bioorg Med Chem Lett 2006;16:6178-80
  • Eliceiri BP, Cheresh DA. The role of Rv integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 1999;103:1227-30
  • Kumar CC. Integrin alphavbeta3 as a therapeutic target for blocking tumor induced angiogenesis. Curr Drug Targets 2003;4:123-31
  • Clezardin P. Recent insights into the role of integrins in cancer metastasis. Cell Mol Life Sci 1998;54:541-8
  • Letourneau JJ, Liu J, Ohlmeyer MHJ, Synthesis and initial evaluation of novel, non-peptidic antagonists of the alphav-integrins alphavbeta3 and alphavbeta5. Bioorg Med Chem Lett 2009;19:352-5
  • Huxley-Jones J, Foord SM, Barnes MR. Drug discovery in the extracellular matrix. Drug Discovery Today 2008;13:685-94
  • Rowan AD, Litherland GJ, Hui M, Metalloproteases as potential therapeutic targets in arthritis treatment. Expert Opin Ther Targets 2008;12:1-18
  • Hu J, Van den Steen PE, Sang Q-X A, Opdenakker G. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 2007;6:480-98
  • Roach HI. Potential directions for drug development for osteoarthritis. Expert Opin Drug Discov 2008;3:475-86
  • MacPherson LJ, Bayburt EK, Capparelli MP, Discovery of CGS27023A, a nonpeptidic, potent, and orally active stromelysin inhibitor that blocks cartilage degradation in rabbits. J Med Chem 1997;40:2525-32
  • Walker K. Activity of a selective inhibitor of collagenase-3 in models of arthritis. First Annual International Conference on Orthopaedic Biomaterials, San Diego, CA, December 11-12, 1997. Campbell, J. A. Discovery of RS-130830, a potent and selective MMP inhibitor for osteoarthritis. Book of Abstracts, 216th ACS National Meeting; American Chemical Society. Washington, DC, 1998; MEDI-004
  • Chau T, Jolly G, Plym JM, Inhibition of articular cartilage degradation in dog and guinea pig models of osteoarthritis by the stromelysin inhibitor BAY 12-9566. Arthritis Rheum 1998;41:S300
  • Lorenz H-M. Ro-32-3555 Roche Holding. Curr Opin Anti Inflamm Immunol Invest Drugs 2000;2:47-52
  • Rhomberg W. Marimastat (British Biotech plc.). Curr Opin Oncol Endocrinol Metab Invest Drugs 1999;1:507-24
  • Griffioen AW. AG-334. IDrugs 2000;3:336-45
  • Levin JI. The design and synthesis of aryl hydroxamic acid inhibitors of MMPs and TACE. Curr Top Med Chem 2004;4:1289-310
  • Cherney RJ, Mo R, Meyer DT, Sultam hydroxamates as novel matrix metalloproteinase inhibitors. J Med Chem 2004;47:2981-3
  • Rossello A, Nuti E, Carelli P, N-i-Propoxy-N-biphenylsulfonylaminobutylhydroxamic acids as potent and selective inhibitors of MMP-2 and MT1-MMP. Bioorg Med Chem Lett 2005;15:1321-6
  • Biasone A, Tortorella P, Campestre C, alpha-Biphenylsulfonylamino 2-methylpropyl phosphonates: enantioselective synthesis and selective inhibition of MMPs. Bioorg Med Chem 2007;15:791-9
  • Moroy G, Denhez C, Mourabit HE, Simultaneous presence of unsaturation and long alkyl chain at P'1 of Ilomastat confers selectivity for gelatinase A (MMP-2) over gelatinase B (MMP-9) inhibition as shown by molecular modelling studies. Bioorg Med Chem 2007;15:4753-66
  • Gilbert AM, Bursavich MG, Lombardi S, N-((8-Hydroxy-5-substituted-quinolin-7-yl)-(phenyl)methyl)-2-phenyloxy/amino-acetamide inhibitors of ADAMTS-5 (Aggrecanase-2). Bioorg Med Chem Lett 2008;18:6454-7
  • Wada CK. The evolution of the matrix metalloproteinase inhibitor drug discovery program at Abbott laboratories. Curr Top Med Chem 2004;4:1255-67
  • Hanessiana S, Moitessier N. Sulfonamide-based acyclic and conformationally constrained MMP inhibitors: from computer-assisted design to nanomolar compounds. Curr Top Med Chem 2004;4:1269-87
  • Sang Q-X A, Jin Y, Newcomer RG, Matrix metalloproteinase inhibitors as prospective agents for the prevention and treatment of cardiovascular and neoplastic diseases. Curr Top Med Chem 2006;6:289-316
  • Vernalis (Oxford) Limited and Laboratories Serono S.A. Derivatives of hydroxamic acid as metalloproteinase inhibitors. WO05019194; 2005
  • Applied Research Systems Ars Holding N.V. N-Hydroxyamide derivatives and use thereof. WO07060132; 2007
  • Galapagos NV. Imidazolopyridine compounds useful for the treatment of degenerative and inflammatory diseases. WO08065199; 2008
  • Takaishi H, Kimura T, Delal S, Joint diseases and matrix metalloproteinases: a role for MMP-13. Curr Pharm Biotechnol 2008;9:47-54
  • Monovich LG, Tommasi RA, Fujimoto RA, Discovery of potent, selective, and orally active carboxylic acid based inhibitors of matrix metalloproteinase-13. J Med Chem 2009;52:3523-38
  • Reiter LA, Freeman-Cook KD, Jones CS, Potent, selective pyrimidinetrione-based inhibitors of MMP-13. Bioorg Med Chem Lett 2006;16:5822-6
  • Li J, Rush TS III, Li W, Synthesis and SAR of highly selective MMP-13 inhibitors. Bioorg Med Chem Lett 2005;15:4961-6
  • Noe MC, Natarajan V, Snow SL, Discovery of 3,3-dimethyl-5-hydroxypipecolic hydroxamate-based inhibitors of aggrecanase and MMP-13. Bioorg Med Chem Lett 2005;15:2808-11
  • Skotnicki JS, DiGrandi MJ, Levin JI. Design strategies for the identification of MMP-13 and TACE inhibitors. Curr Opin Drug Discov Dev 2003;6:742-59
  • Novartis AG. Selective hydroxamate based MMP inhibitors. WO07117981; 2007
  • Warner-Lambert Company LLC. Thiazine and oxazine derivatives as MMP-13 inhibitors for treating arthritis. WO04000321; 2004
  • Warner-Lambert Company LLC. 5, 6-Fused 3, 4-dihydropyrimidine-2-one derivatives as matrix metalloproteinase inhibitors. WO04014869; 2004
  • Aventis Pharma Deutschland GMBH. Novel pyrimidine-4, 6-dicarboxamides for the selective inhibition of collagenases. WO04041788; 2004
  • Ishibashi O, Niwa S, Kadoyama K, MMP-9 antisense oligodeoxynucleotide exerts an inhibitory effect on osteoclastic bone resorption by suppressing cell migration. Life Sci 2006;79:1657-60
  • Liu X, Wu H, Byrne M, A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodelling. J Cell Biol 1995;130:227-37
  • Lind T, McKie N, Wendel M, The hyalectan degrading ADAMTS-1 enzyme is expressed by osteoblasts and upregulated at regions of new bone formation. Bone 2005;36:408-17
  • Narumiya S, Sugimoto Y, Ushikubi F. Prostanoid receptors: structures, properties, and functions. Physiol Rev 1999;79:1193-226
  • Takahashi S, Takeuchi K, Okabe S. EP4 receptor mediation of prostaglandin E2-stimulated mucus secretion by rabbit gastric epithelial cells. Biochem Pharmacol 1999;58:1997-2002
  • Graham S, Gamie Z, Polyzois I, Prostaglandin EP2 and EP4 receptor agonists in bone formation and bone healing: In vivo and in vitro evidence. Expert Opin Investig Drugs 2009;18:749-66
  • Maruyama T, Asada M, Shiraishi T, Design and synthesis of a selective EP-4 receptor agonists. Part 13: 16-Phenyl-5-thiaPGE1 and 9-beta-halo derivatives with improved stability. Bioorg Med Chem 2002;10:1743-59
  • Yoshida K, Oida H, Kobayashi T, Stimulation of bone formation and prevention of bone loss by prostaglandin E E4 receptor activation. Proc Natl Acad Sci USA 2000;99:4580-5
  • Hagino H, Kuraoka M, Kameyama Y, Effect of a selective agonist for prostaglandin E receptor subtype EP4 (ONO-4819) on the cortical bone response to mechanical loading. Bone 2005;36:444-53
  • Toyoda H, Terai H, Sasaoka R, Augmentation of bone morphogenetic protein-induced bone mass by local delivery of a prostaglandin E EP4 receptor agonist. Bone 2005;37:555-62
  • Nakagawa K, Imai Y, Ohta Y, Prostaglandin E2 EP4 agonist (ONO-4819) accelerates BMP-induced osteoblastic differentiation. Bone 2007;41:543-8
  • Ono Pharmaceutical Co., Ltd. 5-Thia-ω-substituted phenyl-prostaglandin E derivatives, process for producing the same and drugs containing the same as the active ingredient. WO0003980; 2000
  • Elworthy TR, Brill ER, Chiou S-S, Lactams as EP4 prostanoid receptor agonists. 3. Discovery of N-ethylbenzoic acid 2-pyrrolidines as subtype selective agents. J Med Chem 2004;47:6124-7
  • Elworthy TR, Kertesz DJ, Kim W, Lactams as EP4 prostanoid receptor subtype selective agonists. Part 1: 2-Pyrrolidinones-stereochemical and lower side-chain optimization. Bioorg Med Chem Lett 2004;14:1655-9
  • Elworthy TR, Brill ER, Caires CC, Lactams as prostanoid receptor ligands. Part 4: 2-Piperidones as selective EP4 receptor agonists. Bioorg Med Chem Lett 2005;15:2523-6
  • Cameron KO, Lefker BA, Chu-Moyer MY, Discovery of highly selective EP4 receptor agonists that stimulate new bone formation and restore bone mass in ovariectomized rats. Bioorg Med Chem Lett 2006;16:1799-802
  • Xiao Y, Araldi GL, Zhao Z, Discovery of novel prostaglandin analogs of PGE2 as potent and selective EP2 and EP4 receptor agonists. Bioorg Med Chem Lett 2007;17:4323-7
  • Xiao Y, Araldi GL, Zhao Z, Synthesis and evaluation of a gamma-lactam as a highly selective EP2 and EP4 receptor agonist. Bioorg Med Chem Lett 2008;18:821-4
  • Xiao Y, Araldi GL, Synthesis and evaluation of a gamma-lactam as a highly selective EP2 and EP4 receptor agonist. Bioorg Med Chem Lett 2008;18:821-4
  • Merck Frosst Canada Ltd. Indoline amide derivatives as EP4 receptor ligands. WO07143825; 2007
  • Glaxo Group Ltd. Benzo [F] isoindoles as EP4 receptor agonists. WO08012347; 2008
  • Glaxo Group Ltd. Isoindol derivatives as EP4 receptor agonists. WO08046798; 2008
  • Glaxo Group Ltd. Benzoisoindole derivatives and their as EP4 receptor agonists. WO08061955; 2008
  • Janssen Pharmaceutica N.V. Benzamide derivatives as EP4 receptor agonists. WO08092860; 2008
  • Janssen Pharmaceutica N.V. Bicyclic derivatives as EP4 agonists. WO08092861; 2008
  • Janssen Pharmaceutica N.V. Bicyclic derivatives as EP4 agonists. WO08092862; 2008
  • Bowmann EJ, Siebers A, Altendorf K. Bafilomycine: a class of inhibitors of membrane ATPase from microorganism, animal cells, and plant cells. Proc Natl Acad Sci USA 1988;85:7972-6
  • Drose S, Bindseil KU, Bowman EJ, Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry 1993;32:3902-6
  • Sundquist K, Lakkakorpi P, Wallmark B, Inhibition of osteoclast proton transport by bafilomycin A1 abolishes bone resorption. Biochem Biophys Res Commun 1990;168:309-13
  • Farina C, Gagliardi S. Selective inhibitors of vacuolar H+-ATPase of osteoclasts with bone antiresorptive activity. Exp Opin Ther Patents 1999;9:157-68
  • Mizunashi K, Furukawa Y, Katano K, Effect of omeprazole, an inhibitor of H+, K+-ATPase, on bone resorption in humans. Calcif Tissue 1993;53:21-5
  • Beutler AJ, Mckee TC. Novel marine and microbial natural product inhibitors of vacuolar ATPase. Curr Med Chem 2003;10:787-96
  • Astrazeneca AB. Novel trisubstituted pyridine compounds. WO01025204; 2001
  • Astrazeneca AB. Novel nicotinonitrile compounds. WO01025207; 2001
  • Astrazeneca AB. Novel imidazopyridine carbonitrile compounds. WO01025237; 2001
  • Edvinsson KM, Herslof M, Holm P, Solid phase synthesis of diamines as potential bone resorption inhibitors. Bioorg Med Chem Lett 2000;10:503-7
  • Fujisawa Pharma Co., Ltd. Benzimidazole derivatives and their use in the prevention and/or the treatment of bone dieseas. WO9710219; 1997
  • Niikura K, Nakajima S, Takano M, FR177995, a novel vacuolar ATPase inhibitor, exerts not only an inhibitory effect on bone destruction but also anti-immunoinflammatory effects in adjuvant-induced arthritic rats. Bone 2007;40:888-94
  • Holliday LS, Lu M, Lee BS, The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J Biol Chem 2000;275:32331-7
  • Chen SH, Bubb MR, Yarmola EG, Vacuolar H+-ATPase binding to microfilaments: regulation in response to phosphatidylinositol 3-kinase activity and detailed characterization of the actin-binding site in subunit B. J Biol Chem 2004;279:7988-98
  • Ostrov DA, Magis AT, Wronski TJ, Identification of enoxacin as an inhibitor of osteoclast formation and bone resorption by structure-based virtual screening. J Med Chem 2009;52:5144-51
  • Pinson KI, Brennan J, Monkley S, An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 2000;407:535-8
  • Roman-Roman S, Shi D-L, Stiot V, Murine frizzled-1 behaves as an antagonist of the canonical Wnt/b-catenin signaling. J Biol Chem 2004;279:5725-33
  • Bodine PVN, Billiard J, Moran RA, The Wnt antagonist secreted frizzledrelated protein-1 controls osteoblast and osteocyte apoptosis. J Cell Biochem 2005;96:1212-30
  • Bodine PVN, Zhao W, Kharode YP, The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol 2004;18:1222-37
  • Neer RM, Arnaud CD, Zanchetta JR, Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001;344:1434-41
  • Hoeppner LH, Secreto FJ, Westendorf JJ. Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther Targets 2009;13:485-96
  • Bodine PVN, Seestaller-Wehr L, Kharode YP, Bone anabolic effects of parathyroid hormone are blunted by deletion of the Wnt antagonist secreted frizzled-related protein-1. J Cell Phys 2007;210:352-7
  • Gopalsamy A, Shi M, Stauffe B, Identification of diarylsulfone sulfonamides as secreted Frizzled Related Protein-1 (sFRP-1) inhibitors. J Med Chem 2008;51:7670-2
  • Moore WJ, Kern JC, Bhat R, Modulation of Wnt signaling through inhibition of secreted Frizzled-Related Protein I (sFRP-1) with N-substituted piperidinyl diphenylsulfonyl sulfonamides. J Med Chem 2009;52:105-16
  • Wyeth. Preparation of diarylsulfone sulfonamides and their use as secreted frizzled related protein-1 modulators for bone disorders such as osteoporosis. US060276464; 2006
  • Wyeth. Piperidinyl arylsulfone derivatives as modulators of secreted frizzled-related protein-1. WO08060999; 2008
  • Wyeth. Iminothiazolidinone derivatives as sFRP-1 antagonists. WO06124887; 2006
  • Wyeth. Indole sulfonamides as sFRP-1 modulators. WO08060998; 2008
  • Wyeth. Substituted inden-2-yl, tetrahydronaphthalen-2yl, or dihydro-2H-chromen-3-yl arylsulfonamides and methods of their use. WO08061006; 2008
  • Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 2006;6:764-75
  • Gall CL, Bellahcène A, Bonnelye E, Cathepsin K inhibitor reduces breast cancer-induced osteolysis and skeletal tumor burden. Cancer Res 2007;67:9894-902
  • Gibofsky A. Clinical profiles of celecoxib and rofecoxib in the rheumatic diseases. J Hypertens 2002;20:S25-30
  • Simon LS, Weaver AL, Graham DY, Anti-inflammatory and upper gastrointestinal effects of celecoxib in rheumatoid arthritis: a randomized controlled trial. JAMA 1999;282:1921-8
  • Konstantin C, Loretta L, Paolo T, NO-Donor COX-2 inhibitors. New nitrooxy-substituted 1,5-diarylimidazoles endowed with COX-2 inhibitory and vasodilator properties. J Med Chem 2007;50:1449-57
  • Laboratories del Dr. Esteve SA. Preparartion of substituted azetidines as cyclooxygenase-1 and cyclooxygenase-2 inhibitors. US2007093469; 2007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.