534
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Pharmacological modulation of voltage-gated potassium channels as a therapeutic strategy

, PhD
Pages 1471-1503 | Published online: 20 Aug 2010

Bibliography

  • Hille B. Ion channels of excitable membranes. 3rd edition. Sinauer Associates, Sunderland, Massachusetts, United States; 2001
  • Camerino DC, Desaphy JF, Tricarico D, Therapeutic approaches to ion channel diseases. Adv Genet 2008;64:81-145
  • Alexander SP, Mathie A, Peters JA. Guide to receptors and channels (GRAC), 3rd edition. Br J Pharmacol 2008;153(Suppl 2):S1-209
  • Harmar AJ, Hills RA, Rosser EM, IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels. Nucleic Acids Res 2009;37(Database issue):D680-5
  • Long SB, Campbell EB, Mackinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 2005;309(5736):897-903
  • Long SB, Campbell EB, Mackinnon R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 2005;309(5736):903-8
  • Swartz KJ. Towards a structural view of gating in potassium channels. Nat Rev 2004;5(12):905-16
  • Gutman GA, Chandy KG, Grissmer S, International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 2005;57(4):473-508
  • Pongs O, Schwarz JR. Ancillary subunits associated with voltage-dependent K+ channels. Physiol Rev 2010;90(2):755-96
  • Ford JW, Milnes JT. New drugs targeting the cardiac ultra-rapid delayed-rectifier current (I Kur): rationale, pharmacology and evidence for potential therapeutic value. J Cardiovasc Pharmacol 2008;52(2):105-20
  • Perrin MJ, Subbiah RN, Vandenberg JI, Hill AP. Human ether-a-go-go related gene (hERG) K+ channels: function and dysfunction. Prog Biophys Mol Biol 2008;98(2-3):137-48
  • Brown DA, Passmore GM. Neural KCNQ (Kv7) channels. Br J Pharmacol 2009;156(8):1185-95
  • Greenwood IA, Ohya S. New tricks for old dogs: KCNQ expression and role in smooth muscle. Br J Pharmacol 2009;156(8):1196-203
  • Joho RH, Hurlock EC. The role of Kv3-type potassium channels in cerebellar physiology and behavior. Cerebellum 2009;8(3):323-33
  • Tamargo J, Caballero R, Gomez R, Delpon E. I(Kur)/Kv1.5 channel blockers for the treatment of atrial fibrillation. Expert Opin Investig Drugs 2009;18(4):399-416
  • Wickenden AD, McNaughton-Smith G. Kv7 channels as targets for the treatment of pain. Curr Pharm Des 2009;15(15):1773-98
  • Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 2009;8(12):982-1001
  • Stuhmer W, Pardo LA. K+ channels as therapeutic targets in oncology. Future Med Chem 2010;2(5):745-55
  • Coleman SK, Newcombe J, Pryke J, Dolly JO. Subunit composition of Kv1 channels in human CNS. J Neurochem 1999;73(2):849-58
  • Wang FC, Parcej DN, Dolly JO. alpha subunit compositions of Kv1.1-containing K+ channel subtypes fractionated from rat brain using dendrotoxins. Eur J Biochem 1999;263(1):230-7
  • Smart SL, Lopantsev V, Zhang CL, Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron 1998;20(4):809-19
  • Brew HM, Gittelman JX, Silverstein RS, Seizures and reduced life span in mice lacking the potassium channel subunit Kv1.2, but hypoexcitability and enlarged Kv1 currents in auditory neurons. J Neurophysiol 2007;98(3):1501-25
  • Zuberi SM, Eunson LH, Spauschus A, A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. Brain 1999;122(Pt 5):817-25
  • Browne DL, Gancher ST, Nutt JG, Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet 1994;8(2):136-40
  • Bagetta G, Nistico G, Dolly JO. Production of seizures and brain damage in rats by alpha-dendrotoxin, a selective K+ channel blocker. Neurosci Lett 1992;139(1):34-40
  • Nashmi R, Jones OT, Fehlings MG. Abnormal axonal physiology is associated with altered expression and distribution of Kv1.1 and Kv1.2 K+ channels after chronic spinal cord injury. Eur J Neurosci 2000;12(2):491-506
  • Nashmi R, Fehlings MG. Mechanisms of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage-gated potassium channels. Brain Res 2001;38(1-2):165-91
  • Karimi-Abdolrezaee S, Eftekharpour E, Fehlings MG. Temporal and spatial patterns of Kv1.1 and Kv1.2 protein and gene expression in spinal cord white matter after acute and chronic spinal cord injury in rats: implications for axonal pathophysiology after neurotrauma. Eur J Neurosci 2004;19(3):577-89
  • Acorda Therapeutics. Stable oral formulations of aminopyridines and uses thereof. WO4082684; 2004
  • Acorda Therapeutics, Inc. Methods of using sustained release aminopyridine compositions. WO5099701; 2005
  • Acorda Therapeutics, Inc. Methods of using sustained release aminopyridine compositions. WO2010030755; 2010
  • Hayes KC. The use of 4-aminopyridine (fampridine) in demyelinating disorders. CNS Drug Rev 2004;10(4):295-316
  • Goodman AD, Brown TR, Krupp LB, Sustained-release oral fampridine in multiple sclerosis: a randomised, double-blind, controlled trial. Lancet 2009;373(9665):732-8
  • Wyeth. Methods for identifying modulators of N-type ion channel inactivation. US7049083; 2006
  • Wyeth. Methods for identifying modulators of N-type ion channel inactivation. US7049094; 2006
  • Wyeth. Bicyclic derivatives that modulate voltage-gated potassium channels and methods of use thereof. US7179943; 2007
  • Lu Q, Peevey J, Jow F, Disruption of Kv1.1 N-type inactivation by novel small molecule inhibitors (disinactivators). Bioorg Med Chem 2008;16(6):3067-75
  • Zhang ZH, Rhodes KJ, Childers WE, Disinactivation of N-type inactivation of voltage-gated K channels by an erbstatin analogue. J Biol Chem 2004;279(28):29226-30
  • Lectus therapeutics Ltd. Potassium ion channel modulators and uses thereof. WO2008149163; 2008
  • Cahalan MD, Chandy KG. Ion channels in the immune system as targets for immunosuppression. Curr Opin Biotechnol 1997;8(6):749-56
  • Cahalan MD, Chandy KG. The functional network of ion channels in T lymphocytes. Immunol Rev 2009;231(1):59-87
  • Chandy KG, Wulff H, Beeton C, K+ channels as targets for specific immunomodulation. Trends Pharmacol Sci 2004;25(5):280-9
  • Beeton C, Wulff H, Standifer NE, Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci USA 2006;103(46):17414-19
  • Wulff H, Calabresi PA, Allie R, The voltage-gated Kv1.3 K(+) channel in effector memory T cells as new target for MS. J Clin Invest 2003;111(11):1703-13
  • Rangaraju S, Chi V, Pennington MW, Chandy KG. Kv1.3 potassium channels as a therapeutic target in multiple sclerosis. Expert Opin Ther Targets 2009;13(8):909-24
  • Desir G, Xu J, Koni PA, ; inventors. Yale University, Compositions and methods relating to glucose metabolism, weight control, and food intake. US6861405; 2005
  • Tschritter O, Machicao F, Stefan N, A new variant in the human Kv1.3 gene is associated with low insulin sensitivity and impaired glucose tolerance. J Clin Endocrinol Metab 2006;91(2):654-8
  • Xu J, Koni PA, Wang P, The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight. Hum Mol Genet 2003;12(5):551-9
  • Tucker K, Overton JM, Fadool DA. Kv1.3 gene-targeted deletion alters longevity and reduces adiposity by increasing locomotion and metabolism in melanocortin-4 receptor-null mice. Int J Obes (Lond) 2008;32(8):1222-32
  • Helms LM, Felix JP, Bugianesi RM, Margatoxin binds to a homomultimer of K(V)1.3 channels in Jurkat cells. Comparison with K(V)1.3 expressed in CHO cells. Biochemistry 1997;36(12):3737-44
  • Koo GC, Blake JT, Talento A, Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. J Immunol 1997;158(11):5120-8
  • Merck & Co., Inc. Triterpene derivatives with immunosuppressant activity. US5696156; 1997
  • Merck & Co., Inc. Immunosuppressant tetracyclic triterpenes. US6022890; 2000
  • Bao J, Miao S, Kayser F, Potent Kv1.3 inhibitors from correolide-modification of the C18 position. Bioorg Med Chem Lett 2005;15(2):447-51
  • Koo GC, Blake JT, Shah K, Correolide and derivatives are novel immunosuppressants blocking the lymphocyte Kv1.3 potassium channels. Cell Immunol 1999;197(2):99-107
  • Schmalhofer WA, Bao J, McManus OB, Identification of a new class of inhibitors of the voltage-gated potassium channel, Kv1.3, with immunosuppressant properties. Biochemistry 2002;41(24):7781-94
  • Schmalhofer WA, Slaughter RS, Matyskiela M, Di-substituted cyclohexyl derivatives bind to two identical sites with positive cooperativity on the voltage-gated potassium channel, K(v)1.3. Biochemistry 2003;42(16):4733-43
  • Merck & Co., Inc. Carbocyclic potassium channel inhibitors. US6632836; 2003
  • Hill RJ, Grant AM, Volberg W, WIN 17317-3: novel nonpeptide antagonist of voltage-activated K+ channels in human T lymphocytes. Mol Pharmacol 1995;48(1):98-104
  • Wanner SG, Glossmann H, Knaus HG, WIN 17317-3, a new high-affinity probe for voltage-gated sodium channels. Biochemistry 1999;38(34):11137-46
  • Hanson DC, Nguyen A, Mather RJ, UK-78,282, a novel piperidine compound that potently blocks the Kv1.3 voltage-gated potassium channel and inhibits human T cell activation. Br J Pharmacol 1999;126(8):1707-16
  • Vennekamp J, Wulff H, Beeton C, Kv1.3-blocking 5-phenylalkoxypsoralens: a new class of immunomodulators. Mol Pharmacol 2004;65(6):1364-74
  • Schmitz A, Sankaranarayanan A, Azam P, Design of PAP-1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases. Mol Pharmacol 2005;68(5):1254-70
  • The Regents of the University of California. 5-phenoxyalkoxypsoralens and methods for selective inhibition of the voltage gated Kv1.3 potassium channel. US7557138; 2009
  • Baell JB, Gable RW, Harvey AJ, Khellinone derivatives as blockers of the voltage-gated potassium channel Kv1.3: synthesis and immunosuppressive activity. J Med Chem 2004;47(9):2326-36
  • Cianci J, Baell JB, Flynn BL, Synthesis and biological evaluation of chalcones as inhibitors of the voltage-gated potassium channel Kv1.3. Bioorg Med Chem Lett 2008;18(6):2055-61
  • Harvey AJ, Baell JB, Toovey N, A new class of blockers of the voltage-gated potassium channel Kv1.3 via modification of the 4- or 7-position of khellinone. J Med Chem 2006;49(4):1433-41
  • The Walter and Eliza Hall Institute of Medical Research. Therapeutic ion channel blocking agents and methods of use thereof. US7507839; 2009
  • Bionomics Ltd. Novel aryl potassium channel blockers and uses thereof. WO 2009043117; 2009
  • Bionomics Ltd. Novel benzofuran potassium channel blockers and uses thereof. WO2008040057; 2008
  • Bionomics Ltd. Novel chromenone potassium channel blockers and uses thereof. WO 2008040058; 2008
  • Harvey AJ, Flynn BL, Mould JA, ; inventors. Bionomics Ltd, novel potassium channel blockers and uses thereof. WO2009149508; 2009
  • Gutman GA, Chandy KG, Grissmer S, Voltage-Gated Potassium Channels: Kv1.3. IUPHAR database (IUPHAR-DB) 2010. Available from: http://www.iuphar-db.org/PRODDATABASE/ObjectDisplayForward?objectId=540. [Cited]
  • Kalman K, Pennington MW, Lanigan MD, ShK-Dap22, a potent Kv1.3-specific immunosuppressive polypeptide. J Biol Chem 1998;273(49):32697-707
  • Norton RS, Pennington MW, Wulff H. Potassium channel blockade by the sea anemone toxin ShK for the treatment of multiple sclerosis and other autoimmune diseases. Curr Med Chem 2004;11(23):3041-52
  • Pennington MW, Beeton C, Galea CA, Engineering a stable and selective peptide blocker of the Kv1.3 channel in T lymphocytes. Mol Pharmacol 2009;75(4):762-73
  • Beeton C, Barbaria J, Giraud P, Selective blocking of voltage-gated K+ channels improves experimental autoimmune encephalomyelitis and inhibits T cell activation. J Immunol 2001;166(2):936-44
  • Beeton C, Chandy KG. Potassium channels, memory T cells, and multiple sclerosis. Neuroscientist 2005;11(6):550-62
  • Beeton C, Wulff H, Barbaria J, Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci USA 2001;98(24):13942-7
  • Amgen, Inc. Toxin peptide therapeutic agents. WO2008088422; 2008
  • Xention Ltd. Novel potassium channel blockers. WO2010023448; 2010
  • Xention Ltd. Novel potassium channel blockers. WO2010023446; 2010
  • Wang Z, Fermini B, Nattel S. Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circ Res 1993;73(6):1061-76
  • Merck & Co., Inc. Methods of treating or preventing cardiac arrhythmia. US5969017; 1999
  • Merck & Co., Inc. Methods of treating or preventing cardiac arrhythmia. US6214810; 2001
  • Lagrutta A, Wang J, Fermini B, Salata JJ. Novel, potent inhibitors of human Kv1.5 K+ channels and ultrarapidly activating delayed rectifier potassium current. J Pharmacol Exp Ther 2006;317(3):1054-63
  • Stump GL, Wallace AA, Regan CP, Lynch JJ Jr. In vivo antiarrhythmic and cardiac electrophysiologic effects of a novel diphenylphosphine oxide IKur blocker (2-isopropyl-5-methylcyclohexyl) diphenylphosphine oxide. J Pharmacol Exp Ther 2005;315(3):1362-7
  • Regan CP, Wallace AA, Cresswell HK, In vivo cardiac electrophysiologic effects of a novel diphenylphosphine oxide IKur blocker, (2-Isopropyl-5-methylcyclohexyl) diphenylphosphine oxide, in rat and nonhuman primate. J Pharmacol Exp Ther 2006;316(2):727-32
  • Merck & Co., Inc. Isoquinolinone potassium channels inhibitors. US6870055; 2005
  • Merck Sharp & Dohme Corp. Isoquinoline potassium channel inhibitors. US7691879; 2010
  • Trotter BW, Nanda KK, Kett NR, Design and synthesis of novel isoquinoline-3-nitriles as orally bioavailable Kv1.5 antagonists for the treatment of atrial fibrillation. J Med Chem 2006;49(24):6954-7
  • Regan CP, Kiss L, Stump GL, Atrial antifibrillatory effects of structurally distinct IKur blockers 3-[(dimethylamino)methyl]-6-methoxy-2-methyl-4-phenylisoquinolin-1(2H)-one and 2-phenyl-1,1-dipyridin-3-yl-2-pyrrolidin-1-yl-ethanol in dogs with underlying heart failure. J Pharmacol Exp Ther 2008;324(1):322-30
  • Regan CP, Stump GL, Wallace AA, In vivo cardiac electrophysiologic and antiarrhythmic effects of an isoquinoline IKur blocker, ISQ-1, in rat, dog, and nonhuman primate. J Cardiovasc Pharmacol 2007;49(4):236-45
  • Beshore DC, Liverton NJ, McIntyre CJ, Discovery of triarylethanolamine inhibitors of the Kv1.5 potassium channel. Bioorg Med Chem Lett 2010;20(8):2493-6
  • Merck & Co., Inc. Potassium channel inhibitors. US7569589; 2009
  • Merck & Co., Inc. Potassium channel inhibitors. US20090069283; 2009
  • Merck & Co., Inc. Potassium channel inhibitors. US20090233897; 2009
  • Merck & Co., Inc. Potassium channel inhibitors. US20090124665; 2009
  • Nanda KK, Nolt MB, Cato MJ, Potent antagonists of the Kv1.5 potassium channel: synthesis and evaluation of analogous N,N-diisopropyl-2-(pyridine-3-yl)acetamides. Bioorg Med Chem Lett 2006;16(22):5897-901
  • Gross MF, Beaudoin S, McNaughton-Smith G, Aryl sulfonamido indane inhibitors of the Kv1.5 ion channel. Bioorg Med Chem Lett 2007;17(10):2849-53
  • Icagen, Inc., Eli Lilly & Company. Potassium channel inhibitors. US6083986; 2000
  • Gross MF, Castle NA, Zou A, Aryl sulfonamido tetralin inhibitors of the Kv1.5 ion channel. Bioorg Med Chem Lett 2009;19(11):3063-6
  • Icagen, Inc. Potassium channel inhibitors. US6333337; 2001
  • Lloyd J, Atwal KS, Finlay HJ, Benzopyran sulfonamides as KV1.5 potassium channel blockers. Bioorg Med Chem Lett 2007;17(12):3271-5
  • Bristol-Myers Squibb Company. Potassium channel inhibitors and method. US6150356; 2000
  • Icagen, Inc. & Eli Lilly. Potassium channel inhibitors. US6174908; 2001
  • Icagen, Inc. & Eli Lilly. Potassium channel inhibitors. US6395730; 2002
  • Matzner N, Zemtsova IM, Nguyen TX, Ion channels modulating mouse dendritic cell functions. J Immunol 2008;181(10):6803-9
  • Icagen, Inc. Potassium channel inhibitors. US6566380; 2003
  • Icagen, Inc. Potassium channel inhibitors. US6620849; 2003
  • Icagen, Inc. Potassium channel inhibitors. US6858611; 2005
  • Bristol-Myers Squibb Company. Potassium channel inhibitors and method. US6511977; 2003
  • Bristol-Myers Squibb Company. Potassium channel inhibitors and method. US6784189; 2004
  • Bristol-Myers Squibb Company. Potassium channel inhibitors and method. US6881753; 2005
  • Matsuda T, Masumiya H, Tanaka N, Inhibition by a novel anti-arrhythmic agent, NIP-142, of cloned human cardiac K+ channel Kv1.5 current. Life Sci 2001;68(17):2017-24
  • Nissan Chemical Industries, Ltd. 4-oxybenzopyran derivative. US6555574; 2003
  • Nissan Chemical Industries, Ltd. 4-oxybenzopyran derivative. US6677371; 2004
  • Solvay Pharmaceuticals GmbH. Amidomethyl-substituted 2-(4-sulfonylamino)-3-hydroxy-3,4-dihydro-2H-chromen-6-yl compounds, a process and intermediates for their production, and pharmaceutical compositions containing them. US7368582; 2008
  • SSolvay Pharmaceuticals GmbH. Use of amidomethyl-substituted 2-(4-sulfonylamino)-3-hydroxy-3,4-dihydro-2H-chromen-6-yl-compounds in the treatment of cardiac arrhythmia and other disease states. US7534903; 2009
  • Jackson CM, Blass B, Coburn K, Evolution of thiazolidine-based blockers of human Kv1.5 for the treatment of atrial arrhythmias. Bioorg Med Chem Lett 2007;17(1):282-4
  • Blass BE, Coburn K, Lee W, Synthesis and evaluation of (2-phenethyl-2H-1,2,3-triazol-4-yl)(phenyl)methanones as Kv1.5 channel blockers for the treatment of atrial fibrillation. Bioorg Med Chem Lett 2006;16(17):4629-32
  • Wu S, Fluxe A, Sheffer J, Discovery and in vitro/in vivo studies of tetrazole derivatives as Kv1.5 blockers. Bioorg Med Chem Lett 2006;16(24):6213-18
  • Fluxe A, Wu S, Sheffer JB, Discovery and synthesis of tetrahydroindolone-derived carbamates as Kv1.5 blockers. Bioorg Med Chem Lett 2006;16(22):5855-8
  • Wu S, Fluxe A, Janusz JM, Discovery and synthesis of tetrahydroindolone derived semicarbazones as selective Kv1.5 blockers. Bioorg Med Chem Lett 2006;16(22):5859-63
  • Wyeth. Kv1.5 potassium channel inhibitors. US7504517; 2009
  • Bristol-Myers Squibb Company/Icagen, Inc. Prodrugs of potassium channel inhibitors. US7435824; 2008
  • Bristol Myers Squibb Company/Icagen, Inc. Heterocyclo inhibitors of potassium channel function. US 7005436; 2006
  • Bristol-Myers Squibb Company/Icagen, Inc. Cycloalkyl inhibitors of potassium channel function. US7202253; 2007
  • Bristol-Myers Squibb Company/Icagen, Inc. Heterocyclo inhibitors of potassium channel function. US7582654; 2009
  • Bristol-Myers Squibb Company. Heterocyclic dihydropyrimidine compounds. US6706720; 2004
  • Bristol-Myers Squibb Company. Heterocyclic dihydropyrimidine compounds. US7541362; 2009
  • Finlay HJ, Lloyd J, Nyman M, Pyrano-[2,3b]-pyridines as potassium channel antagonists. Bioorg Med Chem Lett 2008;18(8):2714-18
  • Lloyd J, Finlay HJ, Atwal K, Dihydropyrazolopyrimidines containing benzimidazoles as K(V)1.5 potassium channel antagonists. Bioorg Med Chem Lett 2009;19(18):5469-73
  • Lloyd J, Finlay HJ, Vacarro W, Pyrrolidine amides of pyrazolodihydropyrimidines as potent and selective KV1.5 blockers. Bioorg Med Chem Lett 2010;20(4):1436-9
  • Vaccaro W, Huynh T, Lloyd J, Dihydropyrazolopyrimidine inhibitors of K(V)1.5 (I(Kur)). Bioorg Med Chem Lett 2008;18(24):6381-5
  • Lloyd J, Atwal K, Vacarro W, Discovery of pyrazolodihydropyrimidine Kv1.5 blockers. American Chemical Society 236th National Meeting 2008; 17 – 21 August 2008; Philadelphia, PA
  • Xing D, Sun H, Zhu J, A selective IKur blocker, BMS-394136 selectively prolongs atrial APD and refractoriness in beagles and rabbits. Circulation 2009;120:S654
  • Aventis Pharma Deutschland GmbH. 2′-Substituted 1,1′-biphenyl-2-carboxamides, processes for their preparation, their use as medicaments, and pharmaceutical preparations comprising them. US6531495; 2003
  • Aventis Pharma Deutschland GmbH. Ortho, ortho-substituted nitrogen-containing bisaryl compounds, processes for their preparation, their use as medicaments, and pharmaceutical preparation comprising them. US6794377; 2004
  • Aventis Pharma Deutschland GmbH. Ortho, meta-substituted bisaryl compounds, processes for their preparation, their use as medicaments, and pharmaceutical preparations comprising them. US6924392; 2005
  • Sanofi-Aventis Deutschland GmbH. Anthranilamides with heteroarylsulfonyl side chain, process of preparation, and use. US7235664; 2007
  • Aventis Pharma Deutschland GmbH. Anthranilamides with heteroarylsulfonyl side chain, process of preparation, and use. US6903216; 2005
  • Sanofi-Aventis Deutschland GmbH. Anthranilamides and methods of their use. US7332608; 2008
  • Sanofi-Aventis Deutschland GmbH. Anthranilamides and methods of their use. US7235690; 2007
  • Sanofi-Aventis Deutschland GmbH. Substituted pyrroidin-2-ones, piperidin-2-ones and isothiazolidine-1, 1-dioxides, their use as Kv1.5 potassium channel blockers and pharmaceutical preparations comprising them. WO6136305; 2006
  • Gogelein H, Brendel J, Bleich M, Novel atrial K channel blockers AVE3295 and AVE1231 for prevention of recurrence of atrial fibrillation. Heart Rhythm 2004;1:S103
  • Wettwer E, Hala O, Christ T, Role of IKur in controlling action potential shape and contractility in the human atrium: influence of chronic atrial fibrillation. Circulation 2004;110(16):2299-306
  • Blaauw Y, Gogelein H, Tieleman RG, “Early” class III drugs for the treatment of atrial fibrillation: efficacy and atrial selectivity of AVE0118 in remodeled atria of the goat. Circulation 2004;110(13):1717-24
  • de Haan S, Greiser M, Harks E, AVE0118, blocker of the transient outward current (I(to)) and ultrarapid delayed rectifier current (I(Kur)), fully restores atrial contractility after cardioversion of atrial fibrillation in the goat. Circulation 2006;114(12):1234-42
  • Knobloch K, Brendel J, Peukert S, Electrophysiological and antiarrhythmic effects of the novel I(Kur) channel blockers, S9947 and S20951, on left vs. right pig atrium in vivo in comparison with the I(Kr) blockers dofetilide, azimilide, d,l-sotalol and ibutilide. Naunyn Schmiedebergs Arch Pharmacol 2002;366(5):482-7
  • Peukert S, Brendel J, Pirard B, Pharmacophore-based search, synthesis, and biological evaluation of anthranilic amides as novel blockers of the Kv1.5 channel. Bioorg Med Chem Lett 2004;14(11):2823-7
  • Ehrlich JR, Hoche C, Coutu P, Properties of a time-dependent potassium current in pig atrium: evidence for a role of kv1.5 in repolarization. J Pharmacol Exp Ther 2006;319(2):898-906
  • Wirth KJ, Paehler T, Rosenstein B, Atrial effects of the novel K(+)-channel-blocker AVE0118 in anesthetized pigs. Cardiovasc Res 2003;60(2):298-306
  • Wirth KJ, Brendel J, Steinmeyer K, In vitro and in vivo effects of the atrial selective antiarrhythmic compound AVE1231. J Cardiovasc Pharmacol 2007;49(4):197-206
  • Cardiome Pharma Corp. Aminocycloalkyl cinnamide compounds for arrhythmia and analgesics and anesthetics. US7053087; 2006
  • Cardiome Pharma Corp. Ion channel modulating compounds and uses thereof. US7057053; 2006
  • Cardiome Pharma Corp. Cycloalkyl amine compounds and uses thereof. US6979685; 2005
  • Cardiome Pharma Corp. Aminocycloalkyl cinnamide compounds for arrhythmia and as analgesics and anesthetics. US7687536; 2010
  • Cardiome Pharma Corp. Ion channel modulating compounds and uses thereof. US7524879; 2009
  • Fedida D. Vernakalant (RSD1235): a novel, atrial-selective antifibrillatory agent. Expert Opin Investig Drugs 2007;16(4):519-32
  • Fedida D, Orth PM, Chen JY, The mechanism of atrial antiarrhythmic action of RSD1235. J Cardiovasc Electrophysiol 2005;16(11):1227-38
  • Orth PM, Hesketh JC, Mak CK, RSD1235 blocks late INa and suppresses early afterdepolarizations and torsades de pointes induced by class III agents. Cardiovasc Res 2006;70(3):486-96
  • Kozlowski D, Budrejko S, Lip GY, Vernakalant hydrochloride for the treatment of atrial fibrillation. Expert Opin Investig Drugs 2009;18(12):1929-37
  • Xention Ltd. Furanopyrimidine compounds as potassium ion channel inhibitors. US7456187; 2008
  • Xention Ltd. Thieno[2,3-B] pyridines as potassium channel inhibitors. US7576212; 2009
  • Milnes JT, Louis L, Rogers M, The atrial antiarrhythmic drug XEN-D0101 selectively inhibits the human ultra-rapid delayed-rectifier potassium current (IKur) over other cardiac ion channels. Circulation 2008;118:S342
  • Rivard L, Shiroshita-Takeshita A, Maltais C, Electrophysiological and atrial antiarrhythmic effects of a novel IKur/Kv1.5 blocker in dogs. Heart Rhythm 2005;2(5):S180
  • Shiroshita-Takeshita A, Maltais C, Ford JW, Electrophysiological and atrial antiarrhythmic effects of a novel IKUR/Kv1.5 blocker in dogs with atrial tachycardia remodeling. Heart Rhythm 2006;3(5):S183
  • Ottschytsch N, Raes A, Van Hoorick D, Snyders DJ. Obligatory heterotetramerization of three previously uncharacterized Kv channel alpha-subunits identified in the human genome. Proc Natl Acad Sci USA 2002;99(12):7986-91
  • Salinas M, Duprat F, Heurteaux C, New modulatory alpha subunits for mammalian Shab K+ channels. J Biol Chem 1997;272(39):24371-9
  • Gutman GA, Chandy KG, Grissmer S, Voltage-gated potassium channels. IUPHAR database (IUPHAR-DB). 2010 2010-04-07. Available from: http://www.iuphar-db.org/PRODDATABASE/FamilyMenuForward?familyId=81. [Cited 24 May 2010]
  • Feinshreiber L, Singer-Lahat D, Ashery U, Lotan I. Voltage-gated potassium channel as a facilitator of exocytosis. Ann NY Acad Sci 2009;1152:87-92
  • MacDonald PE, Sewing S, Wang J, Inhibition of Kv2.1 voltage-dependent K+ channels in pancreatic beta-cells enhances glucose-dependent insulin secretion. J Biol Chem 2002;277(47):44938-45
  • SmithKline Beecham Corp. Kv2.1 antagonists. US6589934; 2003
  • Gordon E, Cohen JL, Engel R, Abbott GW. 1,4-Diazabicyclo[2.2.2]octane derivatives: a novel class of voltage-gated potassium channel blockers. Mol Pharmacol 2006;69(3):718-26
  • Rudy B, McBain CJ. Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci 2001;24(9):517-26
  • Abbott GW, Butler MH, Goldstein SA. Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis. FASEB J 2006;20(2):293-301
  • Angulo E, Noe V, Casado V, Up-regulation of the Kv3.4 potassium channel subunit in early stages of Alzheimer's disease. J Neurochem 2004;91(3):547-57
  • Pannaccione A, Boscia F, Scorziello A, Up-regulation and increased activity of KV3.4 channels and their accessory subunit MinK-related peptide 2 induced by amyloid peptide are involved in apoptotic neuronal death. Mol Pharmacol 2007;72(3):665-73
  • Choi E, Abbott GW. The MiRP2-Kv3.4 potassium channel: muscling in on Alzheimer's disease. Mol Pharmacol 2007;72(3):499-501
  • Northwestern University. Manipulation of neuronal ion channels. US7629323; 2009
  • Birnbaum SG, Varga AW, Yuan LL, Structure and function of Kv4-family transient potassium channels. Physiol Rev 2004;84(3):803-33
  • Dixon JE, Shi W, Wang HS, Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ Res 1996;79(4):659-68
  • Hohnloser SH, Dorian P, Straub M, Safety and efficacy of intravenously administered tedisamil for rapid conversion of recent-onset atrial fibrillation or atrial flutter. J Am Coll Cardiol 2004;44(1):99-104
  • Devgen NV. 5-carboxamido substituted thiazole derivatives that interact with ion channels, in particular with ion channels from the kv family. WO6058905; 2006
  • Devgen NV. Compounds that interact with ion channels, in particular with ion channels from the kv family. WO6066879; 2006
  • Devgen NV. Compounds that interact with ion channels, in particular with ion channels from the kv family. WO2007138110; 2007
  • Devgen NV. Compounds that interact with ion channels, in particular with ion channels from the kv family. WO2007138112; 2007
  • Jespersen T, Grunnet M, Olesen SP. The KCNQ1 potassium channel: from gene to physiological function. Physiology (Bethesda) 2005;20:408-16
  • Peroz D, Rodriguez N, Choveau F, Kv7.1 (KCNQ1) properties and channelopathies. J Physiol 2008;586(7):1785-9
  • Maljevic S, Wuttke TV, Seebohm G, Lerche H. K(V)7 channelopathies. Pflugers Arch 2010;460(2):277-88
  • Salataa JJ, Selnickb HG, Lynch JJ Jr. Pharmacological modulation of I(Ks): potential for antiarrhythmic therapy. Curr Med Chem 2004;11(1):29-44
  • VerNooy RA, Mangrum JM. Azimilide, a novel oral class III antiarrhythmic for both supraventricular and ventricular arrhythmias. Curr Drug Targets 2005;5(1):75-84
  • Artham SM, Lavie CJ, McMullan PW. Major recent trials in cardiovascular diseases. Postgrad Med 2009;121(2):15-24
  • Viswanathan MN, Page RL. Pharmacological therapy for atrial fibrillation: current options and new agents. Expert Opin Investig Drugs 2009;18(4):417-31
  • Aventis Pharma Deutschland GmbH. Sulfonamide-substituted chromans, processes for their preparation, their use as a medicament or diagnostic, and pharmaceutical preparations comprising them. US6177449; 2001
  • Hoechst Marion Roussel Deutschland. Sulfonamide-substituted chromans, processes for their preparation, their use as a medicament or diagnostic, and pharmaceutical preparations comprising them. US5955607; 1999
  • Hoechst Aktiengesellschaft. Sulfonamide-substituted chromans, processes for their preparation, their use as medicament or diagnostic aid, and medicament comprising them. US6071953; 2000
  • Hoechst Aktiengesellschaft. Sulfonamide-substituted chromans, processes for their preparation, their use as a medicament or diagnostic, and medicament comprising them. US6191164; 2001
  • Merck & Co., Inc. Benzodiazepine derivatives as antiarrhythmic agents. US6214823; 2001
  • Lynch JJ Jr, Houle MS, Stump GL, Antiarrhythmic efficacy of selective blockade of the cardiac slowly activating delayed rectifier current, I(Ks), in canine models of malignant ischemic ventricular arrhythmia. Circulation 1999;100(18):1917-22
  • Ahmad S, Doweyko L, Ashfaq A, Tetrahydronaphthalene-derived amino alcohols and amino ketones as potent and selective inhibitors of the delayed rectifier potassium current IKs. Bioorg Med Chem Lett 2004;14(1):99-102
  • Lloyd J, Schmidt JB, Rovnyak G, Design and synthesis of 4-substituted benzamides as potent, selective, and orally bioavailable I(Ks) blockers. J Med Chem 2001;44(23):3764-7
  • Bristol-Myers Squibb Company. Tetralone derivatives as antiarrhythmic agents. US6048877; 2000
  • Bristol-Myers Squibb Company. Lactam derivatives as antiarrhythmic agents. US6262068; 2001
  • Gogelein H, Bruggemann A, Gerlach U, Inhibition of IKs channels by HMR 1556. Naunyn Schmiedebergs Arch Pharmacol 2000;362(6):480-8
  • Thomas GP, Gerlach U, Antzelevitch C. HMR 1556, a potent and selective blocker of slowly activating delayed rectifier potassium current. J Cardiovasc Pharmacol 2003;41(1):140-7
  • Salata JJ, Jurkiewicz NK, Wang J, A novel benzodiazepine that activates cardiac slow delayed rectifier K+ currents. Mol Pharmacol 1998;54(1):220-30
  • Biervert C, Schroeder BC, Kubisch C, A potassium channel mutation in neonatal human epilepsy. Science 1998;279(5349):403-6
  • Lerche H, Biervert C, Alekov AK, A reduced K+ current due to a novel mutation in KCNQ2 causes neonatal convulsions. Ann Neurol 1999;46(3):305-12
  • Maljevic S, Wuttke TV, Lerche H. Nervous system KV7 disorders: breakdown of a subthreshold brake. J Physiol 2008;586(7):1791-801
  • Gribkoff VK. The therapeutic potential of neuronal KV7 (KCNQ) channel modulators: an update. Expert Opin Ther Targets 2008;12(5):565-81
  • ICAgen, Inc. Methods for treating or preventing pain. US6326385; 2001
  • Miceli F, Soldovieri MV, Martire M, Taglialatela M. Molecular pharmacology and therapeutic potential of neuronal Kv7-modulating drugs. Curr Opin Pharmacol 2008;8(1):65-74
  • Gurney AM, Joshi S, Manoury B. KCNQ potassium channels: new targets for pulmonary vasodilator drugs? Adv Exp Med Biol 2010;661:405-17
  • The DuPont Merck Pharmaceutical Company. Blockade of neuronal m-channels as a therapeutic approach to the treatment of neurological disease. US5750528; 1998
  • Fontana DJ, Inouye GT, Johnson RM. Linopirdine (DuP 996) improves performance in several tests of learning and memory by modulation of cholinergic neurotransmission. Pharmacol Biochem Behav 1994;49(4):1075-82
  • Borjesson A, Karlsson T, Adolfsson R, Linopirdine (DUP 996): cholinergic treatment of older adults using successive and non-successive tests. Neuropsychobiology 1999;40(2):78-85
  • Zaczek R, Chorvat RJ, Saye JA, Two new potent neurotransmitter release enhancers, 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone and 10,10-bis(2-fluoro-4-pyridinylmethyl)-9(10H)-anthracenone: comparison to linopirdine. J Pharmacol Exp Ther 1998;285(2):724-30
  • Aiken SP, Zaczek R, Brown BS. Pharmacology of the neurotransmitter release enhancer linopirdine (DuP 996), and insights into its mechanism of action. Adv Pharmacol 1996;35:349-84
  • Rundfeldt C, Netzer R. The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells tranfected with human KCNQ2/3 subunits. Neurosci Lett 2000;282(1-2):73-6
  • Wickenden AD, Yu W, Zou A, Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels. Mol Pharmacol 2000;58(3):591-600
  • Asta Medica Aktiengesellschaft. Pharmaceutically active 1,2,4-triamino-benzene derivatives, processes for their preparation and pharmaceutical compositions containing them. US5384330; 1995
  • Blackburn-Munro G, Dalby-Brown W, Mirza NR, Retigabine: chemical synthesis to clinical application. CNS Drug Rev 2005;11(1):1-20
  • Nickel B. The antinociceptive activity of flupirtine: a structurally new analgesic. Postgrad Med J 1987;63(Suppl 3):19-28
  • Szelenyi I, Nickel B. Pharmacological profile of flupirtine, a novel centrally acting, non-opioid analgesic drug. Agents Actions 1991;32:119-23
  • Lundbeck A/S. 1,2,4-Triaminobenzene derivatives useful for treating disorders of the central nervous system. US7368472; 2008
  • Lundbeck A/S. Use of KCNQ-openers for treating or reducing the symptoms of schizophrenia. WO2007090409; 2007
  • Lundbeck A/S. Use of kncq potassium channel openers for reducing symptoms of or treating disorders or conditions wherein the dopaminergic system is disrupted. WO2009015667; 2009
  • Valeant Pharmaceuticals International. 1,4 diamino bicyclic retigabine analogues as potassium channel modulators. WO2008066900; 2008
  • Valeant Pharmaceuticals International. Derivatives of 4-(n-azacycloalkyl) anilides as potassium channel modulators. WO2008024398; 2008
  • Valeant Pharmaceuticals International. Derivatives of 4-(n-azacycloalkyl) anilides as potassium channel modulators. WO2008157404; 2008
  • Valeant Pharmaceuticals International, Inc. Naphthyridine derivatives as potassium channel modulators. WO2009018466; 2009
  • Valeant Pharmaceuticals International, Inc. Derivatives of 5-amino-4, 6-disubstituted indole and 5-amino-4,6-disubstituted indoline as potassium channel modulators. WO2009023677; 2009
  • Valeant Pharmaceuticals International. Benzyloxy anilide derivatives useful as potassium channel modulators. WO2010008894; 2010
  • Icagen, Inc. Benzanilides as potassium channel openers. US6372767; 2002
  • Icagen, Inc. Benzanilides as potassium channel openers. US6605725; 2003
  • Icagen, Inc. Benzanilides as potassium channel openers. US6737422; 2004
  • Icagen, Inc. Benzanilides as potassium channel openers. US6989398; 2006
  • Wickenden AD, Krajewski JL, London B, N-(6-chloro-pyridin-3-yl)-3,4-difluoro-benzamide (ICA-27243): a novel, selective KCNQ2/Q3 potassium channel activator. Mol Pharmacol 2008;73(3):977-86
  • Padilla K, Wickenden AD, Gerlach AC, McCormack K. The KCNQ2/3 selective channel opener ICA-27243 binds to a novel voltage-sensor domain site. Neurosci Lett 2009;465(2):138-42
  • Lange W, Geissendorfer J, Schenzer A, Refinement of the binding site and mode of action of the anticonvulsant retigabine on KCNQ K+ channels. Mol Pharmacol 2009;75(2):272-80
  • Schenzer A, Friedrich T, Pusch M, Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine. J Neurosci 2005;25(20):5051-60
  • Roeloffs R, Wickenden AD, Crean C, In vivo profile of ICA-27243 [N-(6-chloro-pyridin-3-yl)-3,4-difluoro-benzamide], a potent and selective KCNQ2/Q3 (Kv7.2/Kv7.3) activator in rodent anticonvulsant models. J Pharmacol Exp Ther 2008;326(3):818-28
  • Roeloffs R, Wickenden AD, McNaughton-Smith G, In vivo profile of ICA-27243, a potent and selective KCNQ2/3 activator in rodent models of pain. Soc Neurosci Abstr 2005;153:14
  • Mark L, Harrison JE, Cummons T, Activity of a KCNQ2/3 opener in rat models of neuropathic pain. Soc Neurosci Abstr 2007;509:3
  • Leventhal L, Lu P, Piesla MJ, Activity of a KCNQ2/3 opener in rat models of inflammatory pain. Soc Neurosci Abstr 2007;509:17
  • Icagen, Inc. Pyrimidines as novel openers of potassium ion channels. US7205307; 2007
  • Icagen, Inc. Bisarylamines as potassium channel openers. US6593349; 2003
  • Fritch PC, McNaughton-Smith G, Amato GS, Novel KCNQ2/Q3 agonists as potential therapeutics for epilepsy and neuropathic pain. J Med Chem 2010;53(2):887-96
  • Icagen, Inc. Fused ring heterocycles as potassium channel modulators. US7223768; 2007
  • Neurosearch A/S. Novel quinazoline derivatives and their medical use. WO2007057447; 2007
  • Neurosearch A/S. Quinazolinones and their use as potassium channels activators. WO2007104717; 2007
  • Neurosearch A/S. Novel 2,3-diamino-quinazolinone derivatives and their medical use. WO2008142140; 2008
  • Icagen, Inc. Fused ring heterocycles as potassium channel modulators. US20080058319; 2008
  • Icagen, Inc. Heterocycles as potassium channel modulators. WO2009026254; 2009
  • Bristol-Myers Squibb Company. Fluoro oxindole derivatives as modulators if KCNQ potassium channels. US6469042; 2002
  • Bristol-Myers Squibb Company. Cinnamide derivatives as KCNQ potassium channel modulators. US6831080; 2004
  • Wu YJ, He H, Sun LQ, Synthesis and structure-activity relationship of acrylamides as KCNQ2 potassium channel openers. J Med Chem 2004;47(11):2887-96
  • Bristol-Myers Squibb Company. Pyridinyl, pyrimidinyl and pyrazinyl amides as potassium channel openers. US6900210; 2005
  • Bristol-Myers Squibb Company. 1-aryl-2-hydroxyethyl amides as potassium channel openers. US7045551; 2006
  • Bristol-Myers Squibb Company. 3-Heterocyclic benzylamide derivatives as potassium channel openers. US7135472; 2006
  • Bristol-Myers Squibb Company. Arylcyclopropylcarboxylic amides as potassium channel openers. US7144881; 2006
  • Bristol-Myers Squibb Company. Aminoalkyl thiazole derivatives as KCNQ modulators. US6933308; 2005
  • Bristol-Myers Squibb Company. 2-aryl thiazole derivatives as KCNQ modulators. US7273866; 2007
  • Wua YJ, Dworetzky SI. Recent developments on KCNQ potassium channel openers. Curr Med Chem 2005;12(4):453-60
  • Bristol-Myers Squibb Company. 3-fluoro-2-oxindole modulators of KCNQ potassium channels and use thereof in treating migraine and mechanistically related disease. US6855829; 2005
  • Wu YJ, Boissard CG, Greco C, (S)-N-[1-(3-morpholin-4-ylphenyl)ethyl]- 3-phenylacrylamide: an orally bioavailable KCNQ2 opener with significant activity in a cortical spreading depression model of migraine. J Med Chem 2003;46(15):3197-200
  • Gruenenthal GmbH. Sutstituted tetrahydropyrrolopyrazine compounds and the use thereof in the treatment and/or inhibition of pain. US7625900; 2009
  • Peretz A, Degani N, Nachman R, Meclofenamic acid and diclofenac, novel templates of KCNQ2/Q3 potassium channel openers, depress cortical neuron activity and exhibit anticonvulsant properties. Mol Pharmacol 2005;67(4):1053-66
  • Ramot at Tel Aviv University. Derivatives of N-phenylanthranilic acid and 2-benzimidazolone as potassium channel and/or neuron activity modulators. US7632866; 2009
  • Ramot At Tel Aviv University Ltd. N-phenyl anthranilic acid derivatives and uses thereof. WO2009037707; 2009
  • Peretz A, Degani-Katzav N, Talmon M, A tale of switched functions: from cyclooxygenase inhibition to M-channel modulation in new diphenylamine derivatives. PLoS One 2007;2(12):e1332
  • Neurosearch A/S. Novel KCNQ channel modulating compounds and their use. WO4080377; 2004
  • Hewawasam P, Gribkoff VK, Pendri Y, The synthesis and characterization of BMS-204352 (MaxiPost) and related 3-fluorooxindoles as openers of maxi-K potassium channels. Bioorg Med Chem Lett 2002;12(7):1023-6
  • Korsgaard MP, Hartz BP, Brown WD, Anxiolytic effects of Maxipost (BMS-204352) and retigabine via activation of neuronal Kv7 channels. J Pharmacol Exp Ther 2005;314(1):282-92
  • Schroder RL, Jespersen T, Christophersen P, KCNQ4 channel activation by BMS-204352 and retigabine. Neuropharmacology 2001;40(7):888-98
  • Redrobe JP, Nielsen AN. Effects of neuronal Kv7 potassium channel activators on hyperactivity in a rodent model of mania. Behav Brain Res 2009;198(2):481-5
  • Sotty F, Damgaard T, Montezinho LP, Antipsychotic-like effect of retigabine [N-(2-Amino-4-(fluorobenzylamino)-phenyl)carbamic acid ester], a KCNQ potassium channel opener, via modulation of mesolimbic dopaminergic neurotransmission. J Pharmacol Exp Ther 2009;328(3):951-62
  • Lundbeck A/S. Use of KCNQ-openers for treating or reducing the symptoms of schizophrenia. US20090118285; 2009
  • Wyeth LLC. Tetracyclic indoles as potassium channel modulators. US7662831; 2010
  • Wyeth. Methods of selecting compounds for modulation of bladder function. US7160684; 2007
  • Loyola University Chicago. Methods of using proteinacious channels to identify pharmaceutical treatments and risks, and treatments resulting therefrom. US20100113553; 2010
  • Mackie AR, Byron KL. Cardiovascular KCNQ (Kv7) potassium channels: physiological regulators and new targets for therapeutic intervention. Mol Pharmacol 2008;74(5):1171-9
  • Pardo LA, Suhmer W. Eag1 as a cancer target. Expert Opin Ther Targets 2008;12(7):837-43
  • Hemmerlein B, Weseloh RM, Mello de Queiroz F, Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer 2006;5:41
  • Downie BR, Sanchez A, Knotgen H, Eag1 expression interferes with hypoxia homeostasis and induces angiogenesis in tumors. J Biol Chem 2008;283(52):36234-40, EagI
  • Weber C, Mello de Queiroz F, Downie BR, Silencing the activity and proliferative properties of the human EagI potassium channel by RNA interference. J Biol Chem 2006;281(19):13030-7
  • Toral C, Mendoza-Garrido ME, Azorin E, Effect of extracellular matrix on adhesion, viability, actin cytoskeleton and K+ currents of cells expressing human ether a go-go channels. Life Sci 2007;81(3):255-65
  • Pardo LA, del Camino D, Sanchez A, Oncogenic potential of EAG K(+) channels. EMBO J 1999;18(20):5540-7
  • Stuhmer W, Alves F, Hartung F, Potassium channels as tumour markers. FEBS Lett 2006;580(12):2850-2
  • Max-Planck-Gesellschaft zur Forderung Wissenschaften, E.V. Human K+ ion channel and therapeutic applications thereof. US7129207; 2006
  • Max-Planck-Gesellschaft zur Forderung der Wissenschaften, E.V. Human K+ channel and prognosing applications thereof. US7364845; 2008
  • Max-Planck-Gesellschaft zur Forderung der Wissenschaften, E.V. Human K+ ion EAG channels. US6638736; 2003
  • Max-Planck-Gesellschaft zur Forderung der Wissenschaften, E.V. Human K+ channel and prognosing applications thereof. US7364730; 2008
  • Garcia-Ferreiro RE, Kerschensteiner D, Major F, Mechanism of block of hEag1 K+ channels by imipramine and astemizole. J Gen Physiol 2004;124(4):301-17
  • Ouadid-Ahidouch H, Le Bourhis X, Roudbaraki M, Changes in the K+ current-density of MCF-7 cells during progression through the cell cycle: possible involvement of a h-ether.a-gogo K+ channel. Receptors Channels 2001;7(5):345-56
  • Agarwal JR, Griesinger F, Stuhmer W, Pardo LA. The potassium channel Ether a go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia. Mol Cancer 2010;9:18
  • Gomez-Varela D, Zwick-Wallasch E, Knotgen H, Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity. Cancer Res 2007;67(15):7343-9
  • Roukoz H, Saliba W. Dofetilide: a new class III antiarrhythmic agent. Expert Rev Cardiovasc Ther 2007;5(1):9-19
  • Neurosearch A/S. Erg channel openers for the treatment of cardiac arrhythmias. US20060281794; 2006
  • Neurosearch A/S. Diphenylurea derivatives useful as erg channel openers for the treatment of cardiac arrhythmias. WO6089871; 2006
  • Grunnet M. Repolarization of the cardiac action potential. Does an increase in repolarization capacity constitute a new anti-arrhythmic principle? Acta Physiol (Oxf) 2010;198(Suppl 676):1-48
  • Grunnet M, Hansen RS, Olesen SP. hERG1 channel activators: a new anti-arrhythmic principle. Prog Biophys Mol Biol 2008;98(2-3):347-62
  • Hansen RS, Diness TG, Christ T, Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643). Mol Pharmacol 2006;69(1):266-77
  • Hansen RS, Diness TG, Christ T, Biophysical characterization of the new human ether-a-go-go-related gene channel opener NS3623 [N-(4-bromo-2-(1H-tetrazol-5-yl)-phenyl)-N′-(3′-trifluoromethylphenyl)urea]. Mol Pharmacol 2006;70(4):1319-29
  • Kang J, Chen XL, Wang H, Discovery of a small molecule activator of the human ether-a-go-go-related gene (HERG) cardiac K+ channel. Mol Pharmacol 2005;67(3):827-36
  • Xu X, Recanatini M, Roberti M, Tseng GN. Probing the binding sites and mechanisms of action of two human ether-a-go-go-related gene channel activators, 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643) and 2-[2-(3,4-dichloro-phenyl)-2,3-dihydro-1H-isoindol-5-ylamino]-nicotinic acid (PD307243). Mol Pharmacol 2008;73(6):1709-21
  • Gordon E, Lozinskaya IM, Lin Z, 2-[2-(3,4-dichloro-phenyl)-2,3-dihydro-1H-isoindol-5-ylamino]-nicotinic acid (PD-307243) causes instantaneous current through human ether-a-go-go-related gene potassium channels. Mol Pharmacol 2008;73(3):639-51
  • Su Z, Limberis J, Souers A, Electrophysiologic characterization of a novel hERG channel activator. Biochem Pharmacol 2009;77(8):1383-90
  • Gerlach AC, Stoehr SJ, Castle NA. Pharmacological removal of human ether-a-go-go-related gene potassium channel inactivation by 3-nitro-N-(4-phenoxyphenyl) benzamide (ICA-105574). Mol Pharmacol 2010;77(1):58-68
  • Hansen RS, Olesen SP, Ronn LC, Grunnet M. In vivo effects of the IKr agonist NS3623 on cardiac electrophysiology of the guinea pig. J Cardiovasc Pharmacol 2008;52(1):35-41
  • Hansen RS, Olesen SP, Grunnet M. Pharmacological activation of rapid delayed rectifier potassium current suppresses bradycardia-induced triggered activity in the isolated guinea pig heart. J Pharmacol Exp Ther 2007;321(3):996-1002
  • Dolderer Juergen. Diagnostic agent, method for detecting a carcinoma, and means for the treatment thereof. US7598270; 2009
  • University of Maryland, Baltimore. ERG-1 peptides and polynucleotides and their use in the treatment and diagnosis of disease. US20090047703; 2009
  • Dolderer J. Diagnostic agent and method for detection of cancer and a means for treatment of same. US20090192193; 2009
  • Wang Z, Yang B. Depression of herg K+ channel function in mammallan cells and applications to the control of cancer cells division. US20090209619; 2009
  • Dolderer JH, Schuldes H, Bockhorn H, HERG1 gene expression as a specific tumor marker in colorectal tissues. Eur J Surg Oncol 2010;36(1):72-7
  • Becchetti A, De Fusco M, Crociani O, The functional properties of the human ether-a-go-go-like (HELK2) K+ channel. Eur J Neurosci 2002;16(3):415-28
  • Engeland B, Neu A, Ludwig J, Cloning and functional expression of rat ether-a-go-go-like K+ channel genes. J Physiol 1998;513(Pt 3):647-54
  • Miyake A, Mochizuki S, Yokoi H, New ether-a-go-go K(+) channel family members localized in human telencephalon. J Biol Chem 1999;274(35):25018-25
  • Astellas Pharma, Inc. Transgenic animals. US7094948; 2006
  • Miyake A, Takahashi S, Nakamura Y, Disruption of the ether-a-go-go K+ channel gene BEC1/KCNH3 enhances cognitive function. J Neurosci 2009;29(46):14637-45
  • Astellas Pharma, Inc. 2,4,6-Triamino-1,3,5-triazine derivative. US7375222; 2008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.