1,041
Views
59
CrossRef citations to date
0
Altmetric
Reviews

Novel NMDA receptor modulators: an update

, , , , , & show all
Pages 1337-1352 | Published online: 26 Sep 2012

Bibliography

  • Traynelis SF, Wollmuth LP, McBain CJ, Glutamate receptor ion channels: structure, regulation, and function. Pharm Rev 2010;62(3):405-96
  • Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987;325(6104):529-31
  • Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984;309(5965):261-3
  • Nowak L, Bregestovski P, Ascher P, Magnesium gates glutamate-activated channels in mouse central neurones. Nature 1984;307(5950):462-5
  • Paoletti P, Neyton J. NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 2007;7(1):39-47
  • Paoletti P. Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 2011;33(8):1351-65
  • Ogden KK, Traynelis SF. New advances in NMDA receptor pharmacology. Trends Pharmacol Sci 2011;32(12):726-33
  • Acker TM, Yuan H, Hansen KB, Mechanism for noncompetitive inhibition by novel GluN2C/D N-Methyl-d-aspartate receptor subunit-selective modulators. Mol Pharm 2011;80(5):782-95
  • Costa BM, Irvine MW, Fang G, A novel family of negative and positive allosteric modulators of NMDA receptors. J Pharmacol Exp Ther 2010;335(3):614-21
  • Mosley CA, Acker TM, Hansen KB, Quinazolin-4-one derivatives: a novel class of noncompetitive NR2C/D subunit-selective N-Methyl-d-aspartate receptor antagonists. J Med Chem 2010;53(15):5476-90
  • Gielen M, Retchless BS, Mony L, Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature 2009;459(7247):703-7
  • Yuan H, Hansen KB, Vance KM, Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J Neurosci 2009;29(39):12045-58
  • Karakas E, Simorowski N, Furukawa H. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature 2011;475(7355):249-53
  • Choi Y-B, Lipton SA. Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. Neuron 1999;23(1):171-80
  • Fayyazuddin A, Villarroel A, Le Goff A, Four residues of the extracellular N-terminal domain of the NR2A subunit control high-affinity Zn2+ binding to NMDA receptors. Neuron 2000;25(3):683-94
  • Mony L, Zhu S, Carvalho S, Paoletti P. Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines. EMBO J 2011;30(15):3134-46
  • Chao J, Seiler N, Renault J, N1-dansyl-spermine and N1-(n-Octanesulfonyl)-spermine, novel glutamate receptor antagonists: block and permeation of N-Methyl-d-aspartate receptors. Mol Pharm 1997;51(5):861-71
  • Low C-M, Zheng F, Lyuboslavsky P, Traynelis SF. Molecular determinants of coordinated proton and zinc inhibition of N-methyl-d-aspartate NR1/NR2A receptors. Proc Natl Acad Sci USA 2000;97(20):11062-7
  • Armstrong N, Sun Y, Chen G-Q, Gouaux E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 1998;395(6705):913-17
  • Furukawa H, Singh SK, Mancusso R, Gouaux E. Subunit arrangement and function in NMDA receptors. Nature 2005;438(7065):185-92
  • Kinarsky L, Feng B, Skifter DA, Identification of subunit- and antagonist-specific amino acid residues in the N-Methyl-d-aspartate receptor glutamate-binding pocket. J Pharm Exp Ther 2005;313(3):1066-74
  • Bonaccorso C, Micale N, Ettari R, Glutamate binding-site ligands of NMDA receptors. Curr Med Chem 2011;18(36):5483-506
  • Menniti FS, Chenard BL, Collins MB, Characterization of the binding site for a novel class of noncompetitive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonists. Mol Pharm 2000;58(6):1310-17
  • Hansen KB, Traynelis SF. Structural and mechanistic determinants of a novel site for noncompetitive inhibition of GluN2D-containing NMDA receptors. J Neurosci 2011;31(10):3650-61
  • Horak M, Vlcek K, Chodounska H, Vyklicky L Jr. Subtype-dependence of N-methyl-D-aspartate receptor modulation by pregnenolone sulfate. Neuroscience 2006;137(1):93-102
  • Jang M-K, Mierke DF, Russek SJ, Farb DH. A steroid modulatory domain on NR2B controls N-methyl-D-aspartate receptor proton sensitivity. Proc Natl Acad Sci USA 2004;101(21):8198-203
  • Bettini E, Sava A, Griffante C, Identification and characterization of novel NMDA receptor antagonists selective for NR2A- over NR2B-containing receptors. J Pharmacol Exp Ther 2010;335(3):636-44
  • Hansen KB, Ogden KK, Traynelis SF. Subunit-selective allosteric inhibition of glycine binding to NMDA receptors. J Neurosci 2012;32(18):6197-208
  • Edman S, McKay S, MacDonald LJ, TCN 201 selectively blocks GluN2A-containing NMDARs in a GluN1 co-agonist dependent but non-competitive manner. Neuropharmacology 2012;63(3):441-9
  • Sobolevsky AI, Rosconi MP, Gouaux E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 2009;462(7274):745-56
  • Talukder I, Borker P, Wollmuth LP. Specific sites within the ligand-binding domain and ion channel linkers modulate NMDA receptor gating. J Neurosci 2010;30(35):11792-804
  • Gielen M, Le Goff A, Stroebel D, Structural rearrangements of NR1/NR2A NMDA receptors during allosteric inhibition. Neuron 2008;57(1):80-93
  • Low C-M, Lyuboslavsky P, French A, Molecular determinants of proton-sensitive N-Methyl-D-aspartate receptor gating. Mol Pharm 2003;63(6):1212-22
  • Lodge D, Johnson KM. Noncompetitive excitatory amino acid receptor antagonists. Trends Pharmacol Sci 1990;11(2):81-6
  • Yamakura T, Mori H, Masaki H, Different sensitivities of NMDA receptor channel subtypes to non-competitive antagonists. Neuroreport 1993;4(6):687-90
  • Kashiwagi K, Masuko T, Nguyen CD, Channel blockers acting at N-Methyl-D-aspartate receptors: differential effects of mutations in the vestibule and ion channel pore. Mol Pharm 2002;61(3):533-45
  • LePage KT, Ishmael JE, Low CM, Differential binding properties of [3H]dextrorphan and [3H]MK-801 in heterologously expressed NMDA receptors. Neuropharmacology 2005;49(1):1-16
  • Jin L, Sugiyama H, Takigawa M, Comparative studies of anthraquinone- and anthracene-tetraamines as blockers of N-Methyl-D-aspartate receptors. J Pharmacol Exp Ther 2007;320(1):47-55
  • Burnashev N, Schoepfer R, Monyer H, Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 1992;257(5075):1415-19
  • Lipton SA. Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuorRx 2004;1(1):101-10
  • Chen HS, Lipton SA. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J Physiol 1997;499:27-46
  • Chen H-SV, Lipton SA. The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem 2006;97(6):1611-26
  • Sobolevsky AI, Koshelev SG, Khodorov BI. Interaction of memantine and amantadine with agonist-unbound NMDA-receptor channels in acutely isolated rat hippocampal neurons. J Physiol 1998;512(1):47-60
  • Bolshakov KV, Gmiro VE, Tikhonov DB, Magazanik LG. Determinants of trapping block of N-methyl-D-aspartate receptor channels. J Neurochem 2003;87(1):56-65
  • Mullasseril P, Hansen K, Vance K, A subunit-selective potentiator of NR2C- and NR2D-containing NMDA receptors. Nat Commun 2010;1:90
  • Traynelis SF, Liotta DC, Santangelo RM, Garnier EC. Subunit Selective NMDA Receptor Potentiators For The Treatment Of Neurological Conditions. US20120028977A1; 2012
  • Monaghan DT, Jane DE, Costa BM, Positive and negative modulators of NMDA receptors. WO2012019106A2; 2012
  • Kornau H-C, Schenker LT, Kennedy MB, Seeburg PH. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 1995;269(5231):1737-40
  • Niethammer M, Kim E, Sheng M. Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci 1996;16(7):2157-63
  • Cook DJ, Teves L, Tymianski M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature 2012;483(7388):213-17
  • Kalia LV, Kalia SK, Salter MW. NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol 2008;7(8):742-55
  • Buchan A. Do NMDA antagonists protect against cerebral ischemia: are clinical trials warranted? Cerebrovasc Brain Metab Rev 1990;2(1):1-26
  • Choi DW. Excitotoxic cell death. J Neurobio 1992;23(9):1261-76
  • Hartley Z, Dubinsky JM. Changes in intracellular pH associated with glutamate excitotoxicity. J Neurosci 1993;13(11):4690-9
  • Schmitt F, Ryan M, Cooper G. A brief review of the pharmacologic and therapeutic aspects of memantine in Alzheimer's disease. Exp Opin Drug Metab Toxicol 2007;3(1):135-41
  • Hallett PJ, Standaert DG. Rationale for and use of NMDA receptor antagonists in Parkinson's disease. Pharmacol Ther 2004;102(2):155-74
  • Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 2002;1(6):383-6
  • Hoyte L, Barber PA, Buchan AM, Hill MD. The rise and fall of NMDA antagonists for ischemic stroke. Curr Mol Med 2004;4(2):131-6
  • Dawson DA, Wadsworth G, Palmer AM. A comparative assessment of the efficacy and side-effect liability of neuroprotective compounds in experimental stroke. Brain Res 2001;892(2):344-50
  • Davis SM, Lees KR, Albers GW, Selfotel in acute ischemic stroke. Stroke 2000;31(2):347-54
  • Muir KW. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol 2006;6(1):53-60
  • Muir KW, Lees KR, Ford I, Davis S. IMEiSS, magnesium for acute stroke (Intravenous Magnesium Efficacy in Stroke trial): randomised controlled trial. Lancet 2004;363(9407):439-45
  • Danysz W, Parsons C. Neuroprotective potential of ionotropic glutamate receptor antagonists. Neurotox Res 2002;4(2):119-26
  • Doppenberg EM, Choi SC, Bullock R. Clinical trials in traumatic brain injury: lessons for the future. J Neurosurg Anesthesiol 2004;16(1):87-94
  • Preskorn SH, Baker B, Kolluri S, An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol 2008;28(6):631-7
  • Berman RM, Cappiello A, Anand A, Antidepressant effects of ketamine in depressed patients. Bio Psychiatry 2000;47(4):351-4
  • Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist–a review of preclinical data. Neuropharmacology 1999;38(6):735-67
  • Schwab RS, England AC Jr, Poskanzer DC, Young RR. Amantadine in the treatment of Parkinson's disease. JAMA 1969;208(7):1168-70
  • Luby E, Cohen BD, Rosenbaum G, Study of a new schizophrenomimetic drug—sernyl. Arch Neurol Psychiatry 1959;81(3):363-9
  • Olney JW, Newcomer JW, Farber NB. NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 1999;33(6):523-33
  • Krystal JH, Anand A, Moghaddam B. Effects of NMDA receptor antagonists: implications for the pathophysiology of schizophrenia. Arch Gen Psychiatry 2002;59(7):663-4
  • Tsai G, Coyle JT. Glutamatergic mechanisms in schizophrenia. Ann Rev Pharmacol Toxicol 2002;42:165-79
  • Depoortere R, Dargazanli G, Estenne-Bouhtou G, Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacology 2005;30(11):1963-85
  • Coyle JT, Tsai G. The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology (Berl) 2004;174(1):32-8
  • Shim S, Hammonds M, Kee B. Potentiation of the NMDA receptor in the treatment of schizophrenia: focused on the glycine site. Eur Arch Psychiatry Clin Neurosci 2007;258(1):16-27
  • Tuominen HJ, Tiihonen J, Wahlbeck K. Glutamatergic drugs for schizophrenia: a systematic review and meta-analysis. Schizophr Res 2005;72(2–3):225-34
  • Collingridge GL, Volianskis A, Bannister N, The NMDA receptor as a target for cognitive enhancement. Neuropharmacology 2013;64:13-16
  • Tang Y-P, Shimizu E, Dube GR, Genetic enhancement of learning and memory in mice. Nature 1999;401(6748):63-9
  • Tang YP, Wang H, Feng R, Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology 2001;41(6):779-90
  • Von Engelhardt J, Doganci B, Jensen V, Contribution of hippocampal and extra-hippocampal NR2B-containing NMDA receptors to performance on spatial learning tasks. Neuron 2008;60(5):846-60
  • Kutsuwada T, Sakimura K, Manabe T, Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon2 subunit mutant mice. Neuron 1996;16(2):333-44
  • Malenka RC. Synaptic plasticity in the hippocampus: LTP and LTD. Cell 1994;78(4):535-8
  • Morris R. Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D- aspartate receptor antagonist AP5. J Neurosci 1989;9(9):3040-57
  • Sison M, Gerlai R. Associative learning performance is impaired in zebrafish (Danio rerio) by the NMDA-R antagonist MK-801. Neurobiol Learn Mem 2011;96(2):230-7
  • Van der Staay FJ, Rutten K, Erb C, Blokland A. Effects of the cognition impairer MK-801 on learning and memory in mice and rats. Behav Brain Res 2011;220(1):215-29
  • Willner J, Gallagher M, Graham PW, Crooks GB Jr. N-methyl-D-aspartate antagonist D-APV selectively disrupts taste-potentiated odor aversion learning. Behav Neurosci 1992;106(2):315-23
  • Davis S, Butcher SP, Morris RG. The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro. J Neurosci 1992;12(1):21-34
  • Rockstroh S, Emre M, Tarral A, Pokorny R. Effects of the novel NMDA-receptor antagonist SDZ EAA 494 on memory and attention in humans. Psychopharmacology (Berl) 1996;124(3):261-6
  • Morgan CJA, Riccelli M, Maitland CH, Curran HV. Long-term effects of ketamine: evidence for a persisting impairment of source memory in recreational users. Drug Alcohol Depend 2004;75(3):301-8
  • Rowland LM, Astur RS, Jung RE, Selective cognitive impairments associated with NMDA receptor blockade in humans. Neuropsychopharmacology 2005;30(3):633-9
  • Dravid SM, Burger PB, Prakash A, Structural determinants of D-cycloserine efficacy at the NR1/NR2C NMDA receptors. J Neurosci 2010;30(7):2741-54
  • Sheinin A, Shavit S, Benveniste M. Subunit specificity and mechanism of action of NMDA partial agonist D-cycloserine. Neuropharmacology 2001;41(2):151-8
  • Ressler KJ, Rothbaum BO, Tannenbaum L, Cognitive enhancers as adjuncts to psychotherapy use of d-cycloserine in phobic individuals to facilitate extinctionof fear. Arch Gen Psychiatry 2004;61(11):1136-44
  • Richardson R, Ledgerwood L, Cranney J. Facilitation of fear extinction by d-cycloserine: theoretical and clinical implications. Learn Mem 2004;11(5):510-16
  • Vervliet B. Learning and memory in conditioned fear extinction: effects of d-cycloserine. Acta Psychol (Amst) 2008;127(3):601-13
  • Hofmann SG, Pollack MH, Otto MW. Augmentation treatment of psychotherapy for anxiety disorders with d-cycloserine. CNS Drug Rev 2006;12(3-4):208-17
  • Koller M, Urwyler S. Novel N-methyl-D-aspartate receptor antagonists: a review of compounds patented since 2006. Expert Opin Ther Patents 2010;20(12):1683-702
  • Adejare AMNJ. Non-competitive NMDA receptor antagonists. US8129414; 2012
  • Ogunbadeniyi AM, Adejare A. Syntheses of fluorinated phencyclidine analogs. J Fluor Chem 2002;114(1):39-42
  • Adejare A, Nie JY, Hebel D, Effect of fluorine substitution on the adrenergic properties of 3-(tert-butylamino)-1-(3,4-dihydroxyphenoxy)-2-propanol. J Med Chem 1991;34(3):1063-8
  • Adejare A, Sciberras SS. Synthesis and beta-Adrenergic Activities of R-Fluoronaphthyloxypropanolamine. Pharm Res 1997;14(4):533-6
  • Igarashi K, Takayama H. Compounds blocking the NMDA receptor channel and pharmaceutical agent using the same. EP2039354; 2011
  • Igarashi K, Shirahata A, Pahk AJ, Benzyl-polyamines: novel, potent N-Methyl-D-aspartate receptor antagonists. J Pharmacol Exp Ther 1997;283(2):533-40
  • Chen J, Graham S, Moroni F, Simon R. A study of the dose dependency of a glycine receptor antagonist in focal ischemia. J Pharmacol Exp Ther 1993;267(2):937-41
  • Koek W, Colpaert FC. Selective blockade of N-methyl-D-aspartate (NMDA)-induced convulsions by NMDA antagonists and putative glycine antagonists: relationship with phencyclidine-like behavioral effects. J Pharmacol Exp Ther 1990;252(1):349-57
  • Danysz W, Parsons CG. Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 1998;50(4):597-664
  • Bristow LJ, Flatman KL, Hutson PH, The atypical neuroleptic profile of the glycine/N-methyl-D-aspartate receptor antagonist, L-701,324, in rodents. J Pharmacol Exp Ther 1996;277(2):578-85
  • Berger P, Farrel K, Sharp F, Skolnick P. Drugs acting at the strychnine-insensitive glycine receptor do not induce HSP-70 protein in the cingulate cortex. Neurosci Lett 1994;168(1–2):147-50
  • Chiamulera C, Costa S, Reggiani A. Effect of NMDA- and strychnine-insensitive glycine site antagonists on NMDA-mediated convulsions and learning. Psychopharmacology (Berl) 1990;102(4):551-2
  • Murata S, Kawasaki K. Common and uncommon behavioural effects of antagonists for different modulatory sites in the NMDA receptor/channel complex. Eur J Pharmacol 1993;239(1-3):9-15
  • Nicholson K, Balster R. The discriminative stimulus effects of N -methyl-D-aspartate glycine-site ligands in NMDA antagonist-trained rats. Psychopharmacology (Berl) 2009;203(2):441-51
  • Henrich M, Bauer A, Nagel J, Glycine B Antagonists. WO2010139483A1; 2010
  • Henrich M, Bauer A, Nagel J, Glycine B Antagonists. WO2010139481A1; 2010
  • Mony L, Kew JN, Gunthorpe MJ, Paoletti P. Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential. Br J Pharmacol 2009;157(8):1301-17
  • Hansen KB, Furukawa H, Traynelis SF. Control of assembly and function of glutamate receptors by the amino-terminal domain. Mol Pharmacol 2010;78(4):535-49
  • Buettelmann B, Neidhart M-P, Jaeschke G, Pinard E. Substituted imidazol-pyridazine derivatives. US20030229096A1; 2003
  • Kemp JA, Tasker T. Methods for treating disorders using NMDA NR2B-subtype selective antagonist. US20110053951A1; 2011
  • Wunsch B, Tewes B, Schepmann D. NR2B-selective NMDA-receptor antagonists. WO2010122134A1; 2010
  • Yano T, Kanemasa T, Yamamoto S. Piperidine derivative having NMDA receptor antagonistic activity. US7786140; 2010
  • Albers DS, Weiss SW, Iadarola MJ, Standaert DG. Immunohistochemical localization of N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor subunits in the substantia nigra pars compacta of the rat. Neuroscience 1999;89(1):209-20
  • Standaert DG, Bernhard Landwehrmeyer G, Kerner JA, Expression of NMDAR2D glutamate receptor subunit mRNA in neurochemically identified interneurons in the rat neostriatum, neocortex and hippocampus. Mol Brain Res 1996;42(1):89-102
  • Traynelis SF, Liotta DC, Mosley C, Subunit Selective NMDA Receptor Antagonists For The Treatment Of Neurological Conditions. US20110319416A1; 2011
  • Monaghan DT, Jane DE, Tse HW. Phenanthryl piperazinyl dicarboxylic acids as selective NMDA receptor modulating agents. US6916816; 2005
  • Monaghan DT, Jane DE, Tse HW. Phenanthryl piperazinyl dicarboxylic acids as selective NMDA receptor modulating agents. AU783141B2; 2001
  • Monaghan DT, Irvine MW, Costa BM, Pharmacological modulation of NMDA receptor activity and the advent of negative and positive allosteric modulators. Neurochem Int 2012;61(4):581-92
  • Costa BM, Irvine MW, Fang G, Structure-activity relationships for allosteric NMDA receptor inhibitors based on 2-naphthoic acid. Neuropharmacology 2012;62(4):1730-6
  • Li J, Zhao L, Cui B, Multiple signaling pathways involved in stimulation of osteoblast differentiation by N-methyl-D-Aspartate receptors activation in vitro. Acta Pharmacol Sinica 2011;32:895-903
  • Wu F, Gibbs TT, Farb DH. Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol Pharmacol 1991;40(3):333-6
  • Williams K, Zappia AM, Pritchett DB, Sensitivity of the N-Methyl-D-aspartate receptor to polyamines is controlled by the NR2 subunits. Mol Pharmacol 1994;45:803-9
  • Zhang L, Zheng X, Paupard MC, Spermine potentiation of recombinant N-methyl-D-aspartate receptors is affected by subunit composition. Proc Natl Acad Sci 1994;91(23):10883-7
  • Traynelis SF, Hartley M, Heinemann SF. Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 1995;268(5212):873-6
  • Hollmann M, Boulter J, Maron C, Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 1993;10(5):943-54
  • Gavazzo P, Mazzolini M, Tedesco M, Marchetti C. Nickel differentially affects NMDA receptor channels in developing cultured rat neurons. Brain Res 2006;1078(1):71-9
  • Segal JA, Harris BD, Kustova Y, Aminoglycoside neurotoxicity involves NMDA receptor activation. Brain Res 1999;815(2):270-7
  • Irvine MW, Costa BM, Volianskis A, Coumarin-3-carboxylic acid derivatives as potentiators and inhibitors of recombinant and native N-methyl-D-aspartate receptors. Neurochem Int 2012;61(4):593-600
  • Liu F. Compositions and methods for modulating nicotinic/NMDA receptor function. US20110097324A1; 2011
  • Tymianski M. Method of reducing injury to mammalian cells. US8071548; 2011
  • Tasker A, Doucette T, Tymianski M, Treatment for anxiety. US8008253; 2011
  • Tymianski M. Agents for reducing injury to mammalian cells. US7846897; 2010
  • Tasker A, Doucette T, Tymianski M, Treatment for anxiety. US20120083449A1; 2012
  • Gurd J, Dykstra C, Tymianski M. Treatment for epilepsy. US20100160240A1; 2010
  • Tymianski M. Method of reducing injury to mammalian cells. US20100137224A1; 2010
  • Nakanishi N, Tong G, Tu S. p16 mediated regulation of NMDA receptors. US20120046446A1; 2012
  • Tymianski M. Method of screening peptides useful in treating traumatic injury to the brain or spinal cord. US7510824; 2009
  • Kosley RW, Macdonald D, Sher R. Dipyrazole compounds and their use as central nervous system agents. US8053458; 2011
  • Snyder GL, Fienberg AA, Huganir RL, Greengard P. A Dopamine/D1 Receptor/Protein Kinase A/Dopamine- and cAMP-Regulated Phosphoprotein (Mr 32 kDa)/Protein Phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J Neurosci 1998;18(24):10297-303
  • Feng J, Yan Z, Ferreira A, Spinophilin regulates the formation and function of dendritic spines. Proc Natl Acad Sci USA 2000;97(16):9287-92
  • Field JR, Walker AG, Conn PJ. Targeting glutamate synapses in schizophrenia. Trends Mol Med 2011;17(12):689-98
  • Cordi A, Desos P, Lestage P, Danober L. Benzothiadiazepine compounds, a process for their preparation and pharmaceutical compositions containing them. US20100240635A1; 2010
  • Ip NY-Y, Ip FC-F, Hu Y, Ye WC. Receptor modulators exhibiting neuroprotective and memory enhancing activities. US20100222286A1; 2010
  • Van Langenhove A. Isotope effects: definitions and consequences for pharmacologic studies. J Clin Pharmacol 1986;26(6):383-9
  • Foster AB. Deuterium isotope effects in studies of drug metabolism. Trends Pharmacol Sci 1984;5:524-7
  • Gant TG, Sarshar S. Ethanolamine modulators of NMDA receptor and muscarinic acetylcholine receptor. US20100130617A1; 2010
  • Murrough JW. Ketamine as a novel antidepressant: from synapse to behavior. Clin Pharmacol Ther 2012;91(2):303-9
  • Skolnick P, Popik P, Trullas R. Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci 2009;30(11):563-9
  • Ellers-Lenz B, Rosenberg T, Kruger H, Al Thaus M. 1-Aminocyclohexane derivatives for the treatment of cochlear tinnitus. US20110077304A1; 2011
  • Yakatan G, Berg J, Pope LE, Smith RA. Pharmaceutical compositions comprising dextromethorphan and quinidine for the treatment of neurological disorders. US7659282; 2010
  • Makovec F, Caselli G, Rovati LC, Giordani A. Use of neboglamine in the treatment of toxicodependency. US20110288173A1; 2011
  • Makovec F, Rovati LC. Use of neboglamine (CR 2249) as an antipsychotic and neuroprotective. US7737180; 2010
  • Jastreboff PJ, Jastreboff MM. Tinnitus Retraining Therapy (TRT) as a method for treatment of tinnitus and hyperacusis patients. J Am Acad Audiol 2000;11(3):162-77
  • Guitton MJ, Caston J, Ruel J, Salicylate induces tinnitus through activation of cochlear NMDA receptors. J Neurosci 2003;23(9):3944-52
  • Available from: http://clinicaltrials.gov/ct2/results?term=Neramexane [Last Accessed 2 August 2012]
  • Drugs @ FDA: FDA Approved Drugs. Washington, DC: FDA, 2012. Available freom http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.DrugDetails [Last accessed 29 July 2012]
  • NUEDEXTA® (dextromethorphan hydrobromide and quinidine sulfate) capsules. Available from: https://www.nuedexta.com/[Last Accessed 29 July 2012]
  • Pioro EP, Brooks BR, Cummings J, Dextromethorphan plus ultra low-dose quinidine reduces pseudobulbar affect. Ann Neurol 2010;68(5):693-702
  • Available from: http://clinicaltrials.gov/ct2/results?term=AVP-923 [Last Accessed 2 August 2012]
  • Lanza M, Bonnafous C, Colombo S, Characterization of a novel putative cognition enhancer mediating facilitation of glycine effect on strychnine-resistant sites coupled to NMDA receptor complex. Neuropharmacology 1997;36(8):1057-64
  • Bowery NG, Bettler B, Froestl W, International union of pharmacology. XXXIII. mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev 2002;54(2):247-64
  • Langmead CJ, Christopoulos A. Allosteric agonists of 7TM receptors: expanding the pharmacological toolbox. Trends Pharmacol Sci 2006;27(9):475-81

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.