363
Views
7
CrossRef citations to date
0
Altmetric
Review

Novel therapeutic uses and formulations of botulinum neurotoxins: a patent review (2012 – 2014)

, PhD (Senior Research Scientist) , , PhD (Senior Research Scientist) & , PhD (Chief Scientific Officer)

Bibliography

  • Byrne MP, Smith LA. Development of vaccines for prevention of botulism. Biochimie 2000;82(9-10):955-66
  • Meunier FA, Lisk G, Sesardic D, Dolly JO. Dynamics of motor nerve terminal remodeling unveiled using SNARE-cleaving botulinum toxins: the extent and duration are dictated by the sites of SNAP-25 truncation. Mol Cell Neurosci 2003;22(4):454-66
  • Abrams SB, Hallett M. Clinical utility of different botulinum neurotoxin preparations. Toxicon 2013;67:81-6
  • Stone HF, Zhu Z, Thach TQ, Ruegg CL. Characterization of diffusion and duration of action of a new botulinum toxin type A formulation. Toxicon 2011;58(2):159-67
  • Duggan MJ, Quinn CP, Chaddock JA, et al. Inhibition of release of neurotransmitters from rat dorsal root ganglia by a novel conjugate of a Clostridium botulinum toxin A endopeptidase fragment and Erythrina cristagalli lectin. J Biol Chem 2002;277(38):34846-52
  • Foster KA. The analgesic potential of clostridial neurotoxin derivatives. Expert Opin Investig Drugs 2004;13(11):1437-43
  • Keith F, John C. Targeted secretion inhibitors-innovative protein therapeutics. Toxins 2010;2(12):2795-815
  • Pickett A. Immunogenicity issues related to botulinum toxins in clinical use cannot be answered by speculation about product characteristics. BioDrugs 2013;27(1):83-4
  • He C, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 2008;127(3):189-207
  • Matanovic MR, Kristl J, Grabnar PA. Thermoresponsive polymers: insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int J Pharm 2014;472(1-2):262-75
  • Nguyen MK, Lee DS. Injectable biodegradable hydrogels. Macromol Biosci 2010;10(6):563-79
  • Theracoat Ltd. Reverse thermal hydrogel preparations for the use in the treatment of disorders of the urothelium. WO153550; 2013
  • Mangera A, Andersson KE, Apostolidis A, et al. Contemporary management of lower urinary tract disease with botulinum toxin A: a systematic review of botox (onabotulinumtoxinA) and dysport (abobotulinumtoxinA). Eur Urol 2011;60(4):784-95
  • Mangera A, Apostolidis A, Andersson KE, et al. An updated systematic review and statistical comparison of standardised mean outcomes for the use of botulinum toxin in the management of lower urinary tract disorders. Eur Urol 2014;65(5):981-90
  • Michel MC. OnabotulinumtoxinA: how deep will it go? Eur Urol 2014;65(6):1125-7
  • Botox [Package Insert]. Allergan, Inc; Irvine, CA: 2013
  • Chuang YC, Yoshimura N, Huang CC, et al. Intravesical botulinum toxin A administration inhibits COX-2 and EP4 expression and suppresses bladder hyperactivity in cyclophosphamide-induced cystitis in rats. Eur Urol 2009;56(1):159-66
  • Eldrup J, Thorup J, Nielsen SL, et al. Permeability and ultrastructure of human bladder epithelium. Br J Urol 1983;55(5):488-92
  • Parsons CL, Boychuk D, Jones S, et al. Bladder surface glycosaminoglycans: an epithelial permeability barrier. J Urol 1990;143(1):139-42
  • Tyagi P, Kashyap MP, Kawamorita N, et al. Intravesical liposome and antisense treatment for detrusor overactivity and interstitial cystitis/painful bladder syndrome. ISRN Pharmacol 2014;2014:601653
  • Coelho A, Cruz F, Cruz CD, Avelino A. Spread of onabotulinumtoxinA after bladder injection. Experimental study using the distribution of cleaved SNAP-25 as the marker of the toxin action. Eur Urol 2012;61(6):1178-84
  • Krhut J, Zvara P. Intravesical instillation of botulinum toxin A: an in vivo murine study and pilot clinical trial. Int Urol Nephrol 2011;43(2):337-43
  • van Uhm JI, Beckers GM, van der Laarse WJ, et al. Development of an in vitro model to measure bioactivity of botulinum neurotoxin A in rat bladder muscle strips. BMC Urol 2014;14:37
  • NCT01997983. Efficacy and Safety of Intravesical Instillations of Botulinum Toxin in TC-3 Gel in IC Patients. Available from: https://clinicaltrials.gov/ct2/show/NCT01997983
  • NCT02179099. Safety and Efficacy of Intravesical Botulinum Toxin in TC-3 Gel in OAB Patients. Available from: https://clinicaltrials.gov/ct2/show/NCT02179099
  • McNeil SE. Nanotechnology for the biologist. J Leukoc Biol 2005;78(3):585-94
  • Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 2014;13(9):655-72
  • Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010;9(8):615-27
  • Barenholz Y. Doxil(R) – the first FDA-approved nano-drug: lessons learned. J Control Release 2012;160(2):117-34
  • Chuang YC, Tyagi P, Huang CC, et al. Urodynamic and immunohistochemical evaluation of intravesical botulinum toxin A delivery using liposomes. J Urol 2009;182(2):786-92
  • Lipella Pharmaceuticals, Inc. Method of treatment for bladder dysfunction. WO139984; 2009
  • Chapple C, Patel A. Botulinum toxin – new mechanisms, new therapeutic directions? Eur Urol 2006;49(4):606-8
  • Chuang YC, Yoshimura N, Huang CC, et al. Intravesical botulinum toxin a administration produces analgesia against acetic acid induced bladder pain responses in rats. J Urol 2004;172(4 Pt 1):1529-32
  • Chapple C, Sievert KD, MacDiarmid S, et al. OnabotulinumtoxinA 100 U significantly improves all idiopathic overactive bladder symptoms and quality of life in patients with overactive bladder and urinary incontinence: a randomised, double-blind, placebo-controlled trial. Eur Urol 2013;64(2):249-56
  • Kuo HC, Liu HT, Chuang YC, et al. Pilot study of liposome-encapsulated onabotulinumtoxina for patients with overactive bladder: a single-center study. Eur Urol 2014;65(6):1117-24
  • Kuo HC, Liao CH, Chung SD. Adverse events of intravesical botulinum toxin a injections for idiopathic detrusor overactivity: risk factors and influence on treatment outcome. Eur Urol 2010;58(6):919-26
  • Sahai A, Khan MS, Dasgupta P. Efficacy of botulinum toxin-A for treating idiopathic detrusor overactivity: results from a single center, randomized, double-blind, placebo controlled trial. J Urol 2007;177(6):2231-6
  • Lipella Pharmaceuticals, Inc. Methods and compositions for treating gastric disorders. WO116822; 2013
  • Stavropoulos SN, Friedel D, Modayil R, et al. Endoscopic approaches to treatment of achalasia. Therap Adv Gastroenterol 2013;6(2):115-35
  • Bashashati M, Andrews C, Ghosh S, Storr M. Botulinum toxin in the treatment of diffuse esophageal spasm. Dis Esophagus 2010;23(7):554-60
  • Kroupa R, Hep A, Dolina J, et al. Combined treatment of achalasia - botulinum toxin injection followed by pneumatic dilatation: long-term results. Dis Esophagus 2010;23(2):100-5
  • Ramzan Z, Nassri AB. The role of Botulinum toxin injection in the management of achalasia. Curr Opin Gastroenterol 2013;29(4):468-73
  • Jankovic J, Brin MF. Therapeutic uses of botulinum toxin. N Engl J Med 1991;324(17):1186-94
  • Wisconsin Alumni Research Foundation. Purification, characterization, and use of clostridium botulinum neurotoxin BoNT/A3. WO2013049139; 2013
  • Hill KK, Smith TJ. Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. Curr Top Microbiol Immunol 2013;364:1-20
  • Kull S, Schulz KM, Strotmeier JW, et al. Isolation and functional characterization of the novel clostridium botulinum neurotoxin A8 subtype. PLoS One 2015;10(2):e0116381
  • Arndt JW, Jacobson MJ, Abola EE, et al. A structural perspective of the sequence variability within botulinum neurotoxin subtypes A1-A4. J Mol Biol 2006;362(4):733-42
  • Webb RP, Smith TJ, Wright P, et al. Production of catalytically inactive BoNT/A1 holoprotein and comparison with BoNT/A1 subunit vaccines against toxin subtypes A1, A2, and A3. Vaccine 2009;27(33):4490-7
  • Tepp WH, Lin G, Johnson EA. Purification and characterization of a novel subtype a3 botulinum neurotoxin. Appl Environ Microbiol 2012;78(9):3108-13
  • Whitemarsh RC, Tepp WH, Bradshaw M, et al. Characterization of botulinum neurotoxin A subtypes 1 through 5 by investigation of activities in mice, in neuronal cell cultures, and in vitro. Infect Immun 2013;81(10):3894-902
  • Whitemarsh RC, Tepp WH, Johnson EA, Pellett S. Persistence of botulinum neurotoxin a subtypes 1-5 in primary rat spinal cord cells. PLoS One 2014;9(2):e90252
  • Mazuet C, Dano J, Popoff MR, et al. Characterization of botulinum neurotoxin type A neutralizing monoclonal antibodies and influence of their half-lives on therapeutic activity. PLoS One 2010;5(8):e12416
  • Atassi MZ, Dolimbek BZ, Steward LE, Aoki KR. Molecular bases of protective immune responses against botulinum neurotoxin A – how antitoxin antibodies block its action. Crit Rev Immunol 2007;27(4):319-41
  • Critchfield J. Considering the immune response to botulinum toxin. Clin J Pain 2002;18(6 Suppl):S133-41
  • Lange O, Bigalke H, Dengler R, et al. Neutralizing antibodies and secondary therapy failure after treatment with botulinum toxin type A: much ado about nothing? Clin Neuropharmacol 2009;32(4):213-18
  • Hefter H, Spiess C, Rosenthal D. Very early reduction in efficacy of botulinum toxin therapy for cervical dystonia in patients with subsequent secondary treatment failure: a retrospective analysis. J Neural Transm 2014;121(5):513-19
  • Naumann M, Boo LM, Ackerman AH, Gallagher CJ. Immunogenicity of botulinum toxins. J Neural Transm 2013;120(2):275-90
  • Dysport [Package Insert]. Ipsen Biopharm Ltd; 2009
  • Myobloc [Package Insert]. Solstice Neurosciences, Inc; 2009
  • Xeomin [Package Insert]. Merz Pharmaceuticals, LLC; 2011
  • Brin MF, Dressler D, Aoki KR. Pharmacology of botulinum toxin therapy. In: Dystonia: etiology, clinical features, and treatment. Williams & Wilkins; Philadelphia, PA: 2004
  • Chen C, Wang S, Wang H, et al. Potent neutralization of botulinum neurotoxin/B by synergistic action of antibodies recognizing protein and ganglioside receptor binding domain. PLoS One 2012;7(8):e43845
  • Mukherjee J, Tremblay JM, Leysath CE, et al. A novel strategy for development of recombinant antitoxin therapeutics tested in a mouse botulism model. PLoS One 2012;7(1):e29941
  • Syntaxin Ltd. & Ipsen Biopharm Ltd. Recombinant clostridium botulinum neurotoxins. WO068317; 2014
  • Eleopra R, Tugnoli V, Rossetto O, et al. Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett 1998;256(3):135-8
  • Sloop RR, Cole BA, Escutin RO. Human response to botulinum toxin injection: type B compared with type A. Neurology 1997;49(1):189-94
  • Foran PG, Mohammed N, Lisk GO, et al. Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons. J Biol Chem 2003;278(2):1363-71
  • Tsai YC, Maditz R, Kuo CL, et al. Targeting botulinum neurotoxin persistence by the ubiquitin-proteasome system. Proc Natl Acad Sci USA 2010;107(38):16554-9
  • Merz Pharm Gmbh & Co. KGaA. Clostridial neurotoxins for use in tissue healing. WO035225; 2006
  • Angov E. Codon usage: nature’s roadmap to expression and folding of proteins. Biotechnol J 2011;6(6):650-9
  • Dolly JO, Wang J, Zurawski TH, Meng J. Novel therapeutics based on recombinant botulinum neurotoxins to normalize the release of transmitters and pain mediators. FEBS J 2011;278(23):4454-66
  • Wang J, Meng J, Lawrence GW, et al. Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, translocation, and protease domains to their functional characteristics. J Biol Chem 2008;283(25):16993-7002
  • Chinnapongse RB, Lew MF, Ferreira JJ, et al. Immunogenicity and long-term efficacy of botulinum toxin type B in the treatment of cervical dystonia: report of 4 prospective, multicenter trials. Clin Neuropharmacol 2012;35(5):215-23
  • President and Fellows of Harvard College. Engineered botulinum neurotoxin. WO180799; 2013
  • Black JD, Dolly JO. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves. J Cell Biol 1986;103(2):521-34
  • Dolly JO, Black J, Williams RS, Melling J. Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 1984;307(5950):457-60
  • Dong M, Richards DA, Goodnough MC, et al. Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 2003;162(7):1293-303
  • Nishiki T, Kamata Y, Nemoto Y, et al. Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem 1994;269(14):10498-503
  • Rummel A, Karnath T, Henke T, et al. Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J Biol Chem 2004;279(29):30865-70
  • Peng L, Berntsson RP, Tepp WH, et al. Botulinum neurotoxin D-C uses synaptotagmin I and II as receptors, and human synaptotagmin II is not an effective receptor for type B, D-C and G toxins. J Cell Sci 2012;125(Pt 13):3233-42
  • Strotmeier J, Willjes G, Binz T, Rummel A. Human synaptotagmin-II is not a high affinity receptor for botulinum neurotoxin B and G: increased therapeutic dosage and immunogenicity. FEBS Lett 2012;586(4):310-13
  • Chai Q, Arndt JW, Dong M, et al. Structural basis of cell surface receptor recognition by botulinum neurotoxin B. Nature 2006;444(7122):1096-100
  • Jin R, Rummel A, Binz T, Brunger AT. Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature 2006;444(7122):1092-5
  • Rummel A, Mahrhold S, Bigalke H, Binz T. Exchange of the H(CC) domain mediating double receptor recognition improves the pharmacodynamic properties of botulinum neurotoxin. FEBS J 2011;278(23):4506-15
  • Syntaxin Ltd. Fusion proteins and methods for treating, preventing, or ameliorating pain. WO033441; 2014
  • Aurora SK, Dodick DW, Turkel CC, et al. OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 1 trial. Cephalalgia 2010;30(7):793-803
  • Diener HC, Dodick DW, Aurora SK, et al. OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 2 trial. Cephalalgia 2010;30(7):804-14
  • Brin MF, Fahn S, Moskowitz C, et al. Localized injections of botulinum toxin for the treatment of focal dystonia and hemifacial spasm. Mov Disord 1987;2(4):237-54
  • Dolly JO, Lawrence GW, Meng J, et al. Neuro-exocytosis: botulinum toxins as inhibitory probes and versatile therapeutics. Curr Opin Pharmacol 2009;9(3):326-35
  • Ramachandran R, Yaksh TL. Therapeutic use of botulinum toxin in migraine: mechanisms of action. Br J Pharmacol 2014;171(18):4177-92
  • Aoki KR, Francis J. Updates on the antinociceptive mechanism hypothesis of botulinum toxin A. Parkinsonism Relat Disord 2011;17(Suppl 1):S28-33
  • Dolly JO, O’Connell MA. Neurotherapeutics to inhibit exocytosis from sensory neurons for the control of chronic pain. Curr Opin Pharmacol 2012;12(1):100-8
  • Wheeler A, Smith HS. Botulinum toxins: mechanisms of action, antinociception and clinical applications. Toxicology 2013;306:124-46
  • Health Protection Agency (Great Britain) and Allergan, Inc. Fusion Proteins. WO059093; 2006
  • Xu XJ, Hokfelt T, Bartfai T, Wiesenfeld-Hallin Z. Galanin and spinal nociceptive mechanisms: recent advances and therapeutic implications. Neuropeptides 2000;34(3-4):137-47
  • Borowsky B, Walker MW, Huang LY, et al. Cloning and characterization of the human galanin GALR2 receptor. Peptides 1998;19(10):1771-81
  • Liu HX, Hokfelt T. The participation of galanin in pain processing at the spinal level. Trends Pharmacol Sci 2002;23(10):468-74
  • Mitsukawa K, Lu X, Bartfai T. Galanin, galanin receptors and drug targets. Cell Mol Life Sci 2008;65(12):1796-805
  • Masuyer G, Chaddock JA, Foster KA, Acharya KR. Engineered botulinum neurotoxins as new therapeutics. Annu Rev Pharmacol Toxicol 2014;54:27-51
  • NCT01678924. A Safety and Efficacy Study of AGN-214868 in Patients With Postherpetic Neuralgia. Available from: https://clinicaltrials.gov/ct2/show/NCT01678924
  • Singh BR. Botulinum chimera compositions for axonal regenerative therapy during spinal cord injury. WO113539; 2014
  • Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 2006;7(8):628-43
  • McKerracher L, Guertin P. Rho as a target to promote repair: translation to clinical studies with Cethrin. Curr Pharm Des 2013;19(24):4400-10
  • Lu Q, Longo FM, Zhou H, et al. Signaling through Rho GTPase pathway as viable drug target. Curr Med Chem 2009;16(11):1355-65
  • Lehmann M, Fournier A, Selles-Navarro I, et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci 1999;19(17):7537-47
  • Winton MJ, Dubreuil CI, Lasko D, et al. Characterization of new cell permeable C3-like proteins that inactivate Rho and stimulate neurite outgrowth on inhibitory substrates. J Biol Chem 2002;277(36):32820-9
  • Fehlings MG, Theodore N, Harrop J, et al. A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 2011;28(5):787-96
  • McKerracher L, Anderson KD. Analysis of recruitment and outcomes in the phase I/IIa Cethrin clinical trial for acute spinal cord injury. J Neurotrauma 2013;30(21):1795-804
  • Holtje M, Djalali S, Hofmann F, et al. A 29-amino acid fragment of Clostridium botulinum C3 protein enhances neuronal outgrowth, connectivity, and reinnervation. FASEB J 2009;23(4):1115-26
  • Huelsenbeck SC, Rohrbeck A, Handreck A, et al. C3 peptide promotes axonal regeneration and functional motor recovery after peripheral nerve injury. Neurotherapeutics 2012;9(1):185-98
  • Loske P, Boato F, Hendrix S, et al. Minimal essential length of Clostridium botulinum C3 peptides to enhance neuronal regenerative growth and connectivity in a non-enzymatic mode. J Neurochem 2012;120(6):1084-96
  • Just I, Hofmann F, Ahnert-Hilger G, Grosse G. Enzyme-Deficient C3 botulinum protein species and their use to promote neuronal growth and neuronal regeneration. WO037920;2003
  • Wang J, Zurawski TH, Meng J, et al. A dileucine in the protease of botulinum toxin A underlies its long-lived neuroparalysis: transfer of longevity to a novel potential therapeutic. J Biol Chem 2011;286(8):6375-85
  • O’Leary VB, Ovsepian SV, Raghunath A, et al. Innocuous full-length botulinum neurotoxin targets and promotes the expression of lentiviral vectors in central and autonomic neurons. Gene Ther 2011;18(7):656-65
  • Edupuganti OP, Ovsepian SV, Wang J, et al. Targeted delivery into motor nerve terminals of inhibitors for SNARE-cleaving proteases via liposomes coupled to an atoxic botulinum neurotoxin. FEBS J 2012;279(14):2555-67
  • Kukreja RV, Sharma S, Cai S, Singh BR. Role of two active site Glu residues in the molecular action of botulinum neurotoxin endopeptidase. Biochim Biophys Acta 2007;1774(2):213-22
  • Yang W, Lindo P, Riding S, et al. Expression, purification, and comparative characterization of enzymatically deactivated recombinant botulinum neurotoxin type A. The Botulinum J2008;1(2):219-41
  • Baskaran P, Lehmann TE, Topchiy E, et al. Effects of enzymatically inactive recombinant botulinum neurotoxin type A at the mouse neuromuscular junctions. Toxicon 2013;72:71-80
  • Naumann M, So Y, Argoff CE, et al. Assessment: botulinum neurotoxin in the treatment of autonomic disorders and pain (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2008;70(19):1707-14
  • Brin MF, Boodhoo TI, Pogoda JM, et al. Safety and tolerability of onabotulinumtoxinA in the treatment of facial lines: a meta-analysis of individual patient data from global clinical registration studies in 1678 participants. J Am Acad Dermatol 2009;61(6):961-70; e1-11
  • Allergan, Inc. Prophylactic treatment of herpes recurrence. WO100019; 2014
  • Garcia EA, Trivellin G, Aflorei ED, et al. Characterization of SNARE proteins in human pituitary adenomas: targeted secretion inhibitors as a new strategy for the treatment of acromegaly? J Clin Endocrinol Metab 2013;98(12):E1918-26
  • Somm E, Bonnet N, Martinez A, et al. A botulinum toxin-derived targeted secretion inhibitor downregulates the GH/IGF1 axis. J Clin Invest 2012;122(9):3295-306
  • Allergan Inc. Inhibiting aberrant blood vessel formation using retargeted endopeptidases. WO112434; 2012
  • Frevert J. Content of botulinum neurotoxin in Botox(R)/Vistabel(R), Dysport(R)/Azzalure(R), and Xeomin(R)/Bocouture(R). Drugs R D 2010;10(2):67-73
  • Simpson L. The life history of a botulinum toxin molecule. Toxicon 2013;68:40-59
  • Brunger AT, Rummel A. Receptor and substrate interactions of clostridial neurotoxins. Toxicon 2009;54(5):550-60
  • Rummel A, Eichner T, Weil T, et al. Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proc Natl Acad Sci USA 2007;104(1):359-64
  • Dong M, Yeh F, Tepp WH, et al. SV2 is the protein receptor for botulinum neurotoxin A. Science 2006;312(5773):592-6
  • Mahrhold S, Rummel A, Bigalke H, et al. The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 2006;580(8):2011-14
  • Binz T, Blasi J, Yamasaki S, et al. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem 1994;269(3):1617-20
  • Schiavo G, Malizio C, Trimble WS, et al. Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J Biol Chem 1994;269(32):20213-16
  • Schiavo G, Rossetto O, Catsicas S, et al. Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J Biol Chem 1993;268(32):23784-7
  • Schiavo G, Rossetto O, Santucci A, et al. Botulinum neurotoxins are zinc proteins. J Biol Chem 1992;267(33):23479-83
  • Schiavo G, Shone CC, Rossetto O, et al. Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J Biol Chem 1993;268(16):11516-19
  • Foran P, Lawrence GW, Shone CC, et al. Botulinum neurotoxin C1 cleaves both Syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry 1996;35(8):2630-6
  • Benefield DA, Dessain SK, Shine N, et al. Molecular assembly of botulinum neurotoxin progenitor complexes. Proc Natl Acad Sci USA 2013;110(14):5630-5
  • Lee K, Gu S, Jin L, et al. Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity. PLoS Pathog 2013;9(10):e1003690

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.