390
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Therapeutic application of vitamin D receptor ligands: an updated patent review

&

Bibliography

  • Makishima M. Nuclear receptors as targets for drug development: regulation of cholesterol and bile acid metabolism by nuclear receptors. J Pharmacol Sci 2005;97:177-83
  • Choi M, Makishima M. Therapeutic applications for novel non-hypercalcemic vitamin D receptor ligands. Expert Opin Ther Pat 2009;19:593-606
  • Carlberg C, Campbell MJ. Vitamin D receptor signaling mechanisms: integrated actions of a well-defined transcription factor. Steroids 2013;78:127-36
  • Pike JW, Meyer MB. Fundamentals of vitamin D hormone-regulated gene expression. J Steroid Biochem Mol Biol 2014;144(Part A)):5-11
  • Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 2006;20:1405-28
  • Yamada S, Makishima M. Structure-activity relationship of nonsecosteroidal vitamin D receptor modulators. Trends Pharmacol Sci 2014;35:324-37
  • Hewison M. Vitamin D and the intracrinology of innate immunity. Mol Cell Endocrinol 2010;321:103-11
  • Holick MF. Vitamin D deficiency. N Engl J Med 2007;357:266-81
  • Rochel N, Wurtz JM, Mitschler A, et al. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell 2000;5:173-9
  • Carlberg C, Molnar F, Mourino A. Vitamin D receptor ligands: the impact of crystal structures. Expert Opin Ther Pat 2012;22:417-35
  • Makishima M, Lu TT, Xie W, et al. Vitamin D receptor as an intestinal bile acid sensor. Science 2002;296:1313-16
  • Adachi R, Honma Y, Masuno H, et al. Selective activation of vitamin D receptor by lithocholic acid acetate, a bile acid derivative. J Lipid Res 2005;46:46-57
  • Ishizawa M, Matsunawa M, Adachi R, et al. Lithocholic acid derivatives act as selective vitamin D receptor modulators without inducing hypercalcemia. J Lipid Res 2008;49:763-72
  • Nehring JA, Zierold C, DeLuca HF. Lithocholic acid can carry out in vivo functions of vitamin D. Proc Nat Acad Sci USA 2007;104:10006-9
  • Makishima M, Yamada S. The bile acid derivatives lithocholic acid acetate and lithocholic acid propionate are functionally selective vitamin D receptor ligands. In: Feldman D, Pike JW, Adams JS, editors. Vitamin D. 3 edition. Academic Press; Waltham MA, USA: 2011. p. 1509-24
  • Masuno H, Ikura T, Morizono D, et al. Crystal structures of complexes of vitamin D receptor ligand-binding domain with lithocholic acid derivatives. J Lipid Res 2013;54:2206-13
  • Belorusova AY, Eberhardt J, Potier N, et al. Structural insights into the molecular mechanism of vitamin D receptor activation by lithocholic acid involving a new mode of ligand recognition. J Med Chem 2014;57:4710-19
  • Bookout AL, Jeong Y, Downes M, et al. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 2006;126:789-99
  • Yoshizawa T, Handa Y, Uematsu Y, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 1997;16:391-6
  • Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 2008;29:726-76
  • Li YC, Kong J, Wei M, et al. 1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 2002;110:229-38
  • Aihara K, Azuma H, Akaike M, et al. Disruption of nuclear vitamin D receptor gene causes enhanced thrombogenicity in mice. J Biol Chem 2004;279:35798-802
  • Verlinden L, Eelen G, Bouillon R, et al. Analogs of calcitriol. In: Feldman D, Pike JW, Adams JS, editors. Vitamin D. 3 edition. Academic Press; Waltham, MA, USA: 2011. p. 1461-87
  • Stayrook KR, Carson MW, Ma YL, et al. Non-secosteoidal ligands and modulators. In: Feldman D, Pike JW, Adams JS, editors. Vitamin D. 3 edition. Academic Press; Waltham, MA, USA: 2011. p. 1497-508
  • Brown AJ. Mechanims for the selectvie actions of vitamin D analogs. In: Feldman D, Pike JW, Adams JS, editors. Vitamin D. 3 edition. Academic Press; Waltham, MA, USA: 2011. p. 1437-59
  • Carlberg C, Mourino A. New vitamin D receptor ligands. Expert Opin Ther Pat 2003;13:761-72
  • Makishima M, Yamada S. Targeting the vitamin D receptor: advances in drug discovery. Expert Opin Ther Pat 2005;15:1133-45
  • Wisconsin Alumni Research Foundation. 1-Desoxy-2-methylene-19-nor-vitamin D analogs and their uses. WO041590; 2011
  • Wisconsin Alumni Research Foundation. 3-Desoxy-2-methylene-19-nor-vitamin D analogs and their uses. WO174095; 2012
  • Wisconsin Alumni Research Foundation. A-ring modified 19-nor-vitamin D analogs and their uses. WO184412; 2013
  • Sicinski RR, Prahl JM, Smith CM, et al. New 1α,25-dihydroxy-19-norvitamin D3 compounds of high biological activity: synthesis and biological evaluation of 2-hydroxymethyl, 2-methyl, and 2-methylene analogues. J Med Chem 1998;41:4662-74
  • DeLuca HF. The development of a bone- and parathyroid-specific analog of vitamin D: 2-methylene-19-Nor-(20S)-1α,25-dihydroxyvitamin D3. BoneKEy Rep 2014;3
  • Vanhooke JL, Benning MM, Bauer CB, et al. Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D3 hormone analogues and a LXXLL-containing coactivator peptide. Biochem 2004;43:4101-10
  • Singarapu KK, Zhu J, Tonelli M, et al. Ligand-specific structural changes in the vitamin D receptor in solution. Biochem 2011;50:11025-33
  • Yamamoto H, Shevde NK, Warrier A, et al. 2-Methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 potently stimulates gene-specific DNA binding of the vitamin D receptor in osteoblasts. J Biol Chem 2003;278:31756-65
  • Sibilska IK, Sicinski RR, Ochalek JT, et al. Synthesis and biological activity of 25-hydroxy-2-methylene-vitamin D3 analogues monohydroxylated in the A-ring. J Med Chem 2014;57:8319-31
  • Teijin Pharma Limited. 23-yne-Vitamin D3 derivative. WO057068; 2012
  • Vidasym, Llc. Vitamin D receptor agonists and uses thereof. WO120698; 2010
  • Wu-Wong JR, Kawai M, Chen Y-w, et al. VS-105: a novel vitamin D receptor modulator with cardiovascular protective effects. Br J Pharmacol 2011;164:551-60
  • Chen B, Kawai M, Wu-Wong JR. Synthesis of VS-105: A novel and potent vitamin D receptor agonist with reduced hypercalcemic effects. Bioorg Med Chem Lett 2013;23:5949-52
  • Wu-Wong JR, Kawai M, Chen Y, et al. Two novel vitamin D receptor modulators with similar structures exhibit different hypercalcemic effects in 5/6 nephrectomized uremic rats. Am J Nephrol 2013;37:310-19
  • The University Of Chicago. Vitamin D and vitamin D analogs or derivatives as new anti-hypertensive agents. US0222307; 2010
  • Cytochroma Inc. 1-Deoxy analogs of vitamin D-related compounds. WO088209; 2011
  • Glycomyr, Inc. Use of vitamin D glycosides and sulfates for treatment of disease. WO079249; 2011
  • Goff JP, Koszewski NJ, Haynes JS, et al. Targeted delivery of vitamin D to the colon using β-glucuronides of vitamin D: therapeutic effects in a murine model of inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2012;302:G460-G9
  • Beth Israel Deaconess Medical Center, Inc. Vitamin D receptor agonists and uses thereof. WO009799; 2013
  • UWM Research Foundation, Inc. Vitamin D receptor - coregulator inhibitors. WO032960; 2013
  • Sidhu PS, Nassif N, McCallum MM, et al. Development of novel vitamin D receptor–coactivator inhibitors. ACS Med Chem Lett 2014;5:199-204
  • University of Bristol. Ligands of vitamin D nuclear receptors with cell maturation promotion factors. WO052508; 2010
  • Nihon University. Function-selective vitamin D receptor agonist. EP2163557; 2014
  • Mansell JP, Shorez D, Farrar D, et al. Lithocholate-A promising non-calcaemic calcitriol surrogate for promoting human osteoblast maturation upon biomaterials. Steroids 2009;74:963-70
  • The Salk Institute for Biological Studies. Use of vitamin D receptor agonists and precursors to treat fibrosis. WO061961; 2009
  • Ding N, Yu RT, Subramaniam N, et al. A Vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 2013;153:601-13
  • Beilfuss A, Sowa J-P, Sydor S, et al. Vitamin D counteracts fibrogenic TGF-β signalling in human hepatic stellate cells both receptor-dependently and independently. Gut 2015;64:791-9
  • The Salk Institute for Biological Studies. Vitamin D receptor agonists to treat diseases involving CXCL12 activity. WO197680; 2014
  • Sherman MH, Yu RT, Engle DD, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 2014;159:80-93
  • Wobke TK, Sorg BL, Steinhilber D. Vitamin D in inflammatory diseases. Front Physiol 2014;5:244
  • Cantorna MT, Munsick C, Bemiss C, et al. 1,25-Dihydroxycholecalciferol prevents and ameliorates symptoms of experimental murine inflammatory bowel disease. J Nutr 2000;130:2648-52
  • Daniel C, Radeke HH, Sartory NA, et al. The new low calcemic vitamin D analog 22-ene-25-oxa-vitamin D prominently ameliorates T helper cell type 1-mediated colitis in mice. J Pharmacol Exp Ther 2006;319:622-31
  • Mazmanian SK, Shen Y, Hewison M, et al. Combinatorial vitamin D and probiotic therapy for inflammatory bowel disease. WO103532; 2012
  • Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006;311:1770-3
  • Schlogl M, Holick MF. Vitamin D and neurocognitive function. Clin Interv Aging 2014;9:559-68
  • Ascherio A, Munger KL, Simon KC. Vitamin D and multiple sclerosis. Lancet Neurol 2010;9:599-612
  • Burne THJ, McGrath JJ, Eyles DW, et al. Behavioural characterization of Vitamin D receptor knockout mice. Behav Brain Res 2005;157:299-308
  • Durk MR, Han K, Chow ECY, et al. 1α,25-Dihydroxyvitamin D3 reduces cerebral amyloid-β accumulation and improves cognition in mouse models of Alzheimer’s disease. J Neurosci 2014;34:7091-101
  • Lasnier S. Pharmaceutical composition comprising memantine and vitamin D for treating Alzheimer’s disease. WO042128; 2012
  • Emory University. Methods of neuroprotection using neuroprotective steroids and a vitamin D. WO088409; 2010
  • Atif F, Sayeed I, Ishrat T, et al. Progesterone with vitamin D affords better neuroprotection against excitotoxicity in cultured cortical neurons than progesterone alone. Mol Med 2009;15:328-36
  • Cekic M, Cutler SM, VanLandingham JW, et al. Vitamin D deficiency reduces the benefits of progesterone treatment after brain injury in aged rats. Neurobiol Aging 2011;32:864-74
  • Hua F, Reiss JI, Tang H, et al. Progesterone and low-dose vitamin D hormone treatment enhances sparing of memory following traumatic brain injury. Horm Behav 2012;61:642-51
  • Suda T, Masuyama R, Bouillon R, et al. Physiological functions of vitamin D: what we have learned from global and conditional VDR knockout mouse studies. Curr Opin Pharmacol 2015;22:87-99
  • Kudo T, Ishizawa M, Maekawa K, et al. Combination of triple bond and adamantane ring on the vitamin D side chain produced partial agonists for vitamin D receptor. J Med Chem 2014;57:4073-87
  • Anbalagan M, Huderson B, Murphy L, et al. Post-translational modifications of nuclear receptors and human disease. Nucl Recept Sigal 2012;10:e001
  • Takada I, Makishima M. PPARγ ligands and their therapeutic applications: a patent review (2008 – 2014). Expert Opin Ther Pat 2015;25:175-91
  • Yamada S, Kakuta H. Retinoid X receptor ligands: a patent review (2007 – 2013). Expert Opin Ther Pat 2014;24:443-52
  • Shulman AI, Larson C, Mangelsdorf DJ, et al. Structural determinants of allosteric ligand activation in RXR heterodimers. Cell 2004;116:417-29
  • Choi M, Yamada S, Makishima M. Dynamic and ligand-selective interactions of vitamin D receptor with retinoid X receptor and cofactors in living cells. Mol Pharmacol 2011;80:1147-55
  • Bijlsma MF, Spek CA, Zivkovic D, et al. Repression of smoothened by patched-dependent (pro-)vitamin D3 secretion. PLoS Biol 2006;4:e232
  • Nemere I, Farach-Carson MC, Rohe B, et al. Ribozyme knockdown functionally links a 1,25(OH)2D3 membrane binding protein (1,25D3-MARRS) and phosphate uptake in intestinal cells. Proc Natl Acad Sci USA 2004;101:7392-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.