761
Views
64
CrossRef citations to date
0
Altmetric
Reviews

IKur/Kv1.5 channel blockers for the treatment of atrial fibrillation

, , &
Pages 399-416 | Published online: 01 Apr 2009

Bibliography

  • Fuster V, Ryden LE, Cannom DS, et al. ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation2006;114:e257-354
  • Wattigney WA, Mensah GA, Croft JB. Increasing trends in hospitalization for atrial fibrillation in the United States, 1985 through 1999: implications for primary prevention. Circulation2003;108:711-16
  • Nattel S. New ideas about atrial fibrillation 50 years on. Nature2002;415:219-26
  • Nattel S, Maguy A, Le Bouter S, et al. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev2007;87:425-56
  • Tamargo J, Caballero R, Delpón E. Pharmacological approaches in the treatment of atrial fibrillation. Curr Med Chem2004;11:13-28
  • Tamargo J, Caballero R, Gómez R, et al. Pharmacology of cardiac potassium channels. Cardiovasc Res2004;62:9-33
  • Nerbonne JM, Kass RS. Molecular physiology of cardiac repolarization. Physiol Rev2005;85:1205-53
  • Fedida D, Wible B, Wang Z, et al. Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current. Circ Res1993;73:210-16
  • Wang Z, Fermini B, Nattel S. Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circ Res1993;73:1061-06
  • Amor GJ, Wettwer E, Metzger F, et al. Differences between outward currents of human atrial and subepicardial ventricular myocytes. J Physiol1996;491:31-50
  • Golod DA, Kumar R, Joyner RW. Determinants of action potential initiation in isolated rabbit atrial and ventricular myocytes. Am J Physiol1998;274:H1902-13
  • Hohnloser SH, Kuck KH, Lilienthal J. Rhythm or rate control in atrial fibrillation–pharmacologic intervention in atrial fibrillation (PIAF): a randomised trial. Lancet2000;356:1789-94
  • Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) Investigators. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med2002;347:1825-33
  • Van Gelder IC, Hagens VE, Bosker HA, et al. for the RACE Investigators. A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N Engl J Med2002;347:1834-40
  • Carlsson J, Miketic S, Windeler J, et al. Randomized trial of rate-control versus rhythm-control in persistent atrial fibrillation: the Strategies of Treatment of Atrial Fibrillation (STAF) study. J Am Coll Cardiol2003;41:1690-6
  • Opolski G, Torbicki A, Kosior DA, et al. Rate control vs rhythm control in patients with nonvalvular atrial fibrillation: the results of the Polish How to Treat Chronic Atrial Fibrillation (HOT CAFE) study. Chest2004;126:476-86
  • de Denus S, Sanoski CA, Carlsson J, et al. Rate vs rhythm control in patients with atrial fibrillation: a meta-analysis. Arch Intern Med2005;165:258-62
  • Steinberg JS, Sadaniantz A, Kron J, et al. Analysis of cause-specific mortality in the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study. Circulation2004;109:1973-80
  • Curtis AB, Gersh BJ, Corley SD, et al.; for the AFFIRM Investigators. Clinical factors that influence response to treatment strategies in atrial fibrillation: the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study. Am Heart J2005;149:645-9
  • Roy D, Talajic M, Nattel S, et al. Atrial Fibrillation and Congestive Heart Failure Investigators. Rhythm control versus rate control for atrial fibrillation and heart failure. N Engl J Med2008;358:2667-77
  • Tamargo J, Valenzuela C, Delpón E. New insights into the pharmacology of sodium channel blockers. Eur Heart J1992;13(F Suppl):2-13
  • Nattel S, Singh BN. Evolution, Mechanisms, and classification of antiarrhythmic drugs: focus on class III actions. Am J Cardiol1999;84:11R-19R
  • Doyle D, Morais Cabral J, Pfuetzner RA, et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science1998;280:69-77
  • Jiang Y, Le A, Chen J, et al. X-ray structure of a voltage-dependent K+ channel. Nature2003;423:33-41
  • Long SB, Campbell EB, Mackinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science2005;309:897-903
  • Martens JR, Kwak YG, Tamkun MM. Modulation of Kv channel α/β subunit interactions. Trends Cardiovasc Med1999;9:253-8
  • Mays DJ, Foose JM, Philipson LH, et al. Localization of the Kv1.5 K+ channel protein in explanted cardiac tissue. J Clin Invest1995;96:282-92
  • Eldstrom J, Van Wagoner DR, Moore ED, et al. Localization of Kv1.5 channels in rat and canine myocyte sarcolemma. FEBS Lett2006;580:6039-46
  • Feng J, Wible B, Li GR, et al. Antisense oligonucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes. Circ Res1997;80:572-9
  • Boyle WA, Nerbonne JM. Two functionally distinct 4-aminopyridine-sensitive outward K+ currents in rat atrial myocytes. J Gen Physiol1992;100:1041-67
  • Fedida D, Eldstrom J, Hesketh JC, et al. Kv1.5 is an important component of repolarizing K+ current in canine atrial myocytes. Circ Res2003;93:744-51
  • London B, Guo W, Pan XH, et al. Targeted replacement of KV1.5 in the mouse leads to loss of the 4-aminopyridine-sensitive component of IK,slow and resistance to drug-induced qt prolongation. Circ Res2001;88:940-6
  • Feng J, Yue L, Wang Z, et al. Ionic mechanisms of regional action potential heterogeneity in the canine right atrium. Circ Res1998;83:541-51
  • De Biasi M, Wang Z, Accili E, et al. Open channel block of human heart hKv1.5 by the beta-subunit hKvβ1.2. Am J Physiol1997;272:H2932-41
  • Fedida D, Maruoka ND, Lin S. Modulation of slow inactivation in human cardiac Kv1.5 channels by extra- and intracellular permeant cations. J Physiol1999;515:315-29
  • López-Barneo J, Hoshi T, Heinemann SH, et al. Effects of external cations and mutations in the pore region of C-type inactivation Shaker potassium channels. Recept Channels1993;1:61-71
  • Snyders D, Tamkun MM, Bennett PB. A rapidly activating and slowly inactivating potassium channel cloned from human heart. J Gen Physiol1993;101:513-43
  • Wang Z, Fermini B, Nattel S. Effects of flecainide, quinidine, and 4-aminopyridine on transient outward and ultrarapid delayed rectifier currents in human atrial myocytes. J Pharmacol Exp Ther1995;272:184-96
  • Yue L, Feng JL, Wang Z, et al. Effects of ambasilide, quinidine, flecainide and verapamil on ultra-rapid delayed rectifier potassium currents in canine atrial myocytes. Cardiovasc Res2000;46:151-61
  • Doggrell SA, Hancox JC. Dronedarone: an amiodarone analogue. Expert Opin Investig Drugs2004;13:415-26
  • Valenzuela C, Delpón E, Tamkun MM, et al. Stereoselective block of a human cardiac potassium channel (Kv1.5) by bupivacaine enantiomers. Biophys J1995;69:418-27
  • Franqueza L, Longobardo M, Vicente J, et al. Molecular determinants of stereoselective bupivacaine block of hKv1.5 channels. Circ Res1997;81:1053-64
  • Delpón E, Caballero R, Valenzuela C, et al. Benzocaine enhances and inhibits the K+ current through a human cardiac cloned channel (Kv1.5). Cardiovasc Res1999;42:510-20
  • Caballero R, Moreno I, González T, et al. Putative binding sites for benzocaine on a human cardiac cloned channel (Kv1.5). Cardiovasc Res2002;56:104-17
  • Caballero R, Delpón E, Valenzuela C, et al. Losartan and its metabolite E3174 modify cardiac delayed rectifier K+ currents. Circulation2000;101:1199-205
  • Moreno I, Caballero R, González T, et al. Effects of irbesartan on cloned potassium channels involved in human cardiac repolarization. J Pharmacol Exp Ther2003;304:862-73
  • Delpón E, Caballero R, Gómez R, et al. Angiotensin II, angiotensin II antagonists and spironolactone and their modulation of cardiac repolarization. Trends Pharmacol Sci2005;26:155-61
  • Gómez R, Núñez L, Caballero R, et al. Spironolactone and its main metabolite canrenoic acid block hKv1.5, Kv4.3 and Kv7.1 + minK channels. Br J Pharmacol2005;146:146-61
  • Valenzuela C, Delpón E, Franqueza L, et al. Class III antiarrhythmic effects of zatebradine. Time-, state-, use-, and voltage-dependent block of hKv1.5 channels. Circulation1996;94:562-70
  • Delpón E, Valenzuela C, Pérez O, et al. Mechanisms of block of a human cloned potassium channel by the enantiomers of a new bradycardic agent: S-16257-2 and S-16260-2. Br J Pharmacol1996;117:1293-301
  • Vaquero M, Caballero R, Gómez R, et al. Effects of atorvastatin and simvastatin on atrial plateau currentss. J Mol Cell Cardiol2007;42:931-45
  • Caballero R, Gómez R, Nuñez L, et al. Diltiazem inhibits hKv1.5 and Kv4.3 currents at therapeutic concentrations. Cardiovasc Res2004;64:457-66
  • Zhang X, Anderson JW, Fedida D. Characterization of nifedipine block of the human heart delayed rectifier, hKv1.5. J Pharmacol Exp Ther1997;281:1247-56
  • Brendel J, Peukert S. Blockers of the Kv1.5 channel for the treatment of atrial arrhythmias. Curr Med Chem Cardiovasc Hematol Agents2003;1:273-87
  • Ford JW, Milnes JT. New drugs targeting the cardiac ultra-rapid delayed-rectifier current (IKur): rationale, pharmacology and evidence for potential therapeutic value. J Cardiovasc Pharmacol2008;52:105-20
  • Fedida D. Vernakalant (RSD1235): a novel, atrial-selective antifibrillatory agent. Expert Opin Investig Drugs2007;16:519-32
  • Yeola SW, Rich TC, Uebele VN, et al. Molecular analysis of a binding site for quinidine in a human cardiac delayed rectifier K+ channel. Role of S6 in antiarrhythmic drug binding. Circ Res1996;78:1105-14
  • Feng J, Xu D, Wang Z, et al. Ultrarapid delayed rectifier current inactivation in human atrial myocytes: properties and consequences. Am J Physiol1998;275:H1717-25
  • Ehrlich JR, Ocholla H, Ziemek D, et al. Characterisation of human cardiac Kv1.5 inhibition by the novel atrial-selective antiarrhythmic compound AVE1231. J Cardiovasc Pharmacol2008;51:380-7
  • Burashnikov A, Antzelevitch C. Can inhibition of IKur promote atrial fibrillation? Heart Rhythm2008;5:1304-9
  • Burashnikov A, Antzelevitch C. How do atrial-selective drugs differ from atrial antiarrhythmic drugs currently used in the treatment of atrial fibrillation? J Atrial Fibrillation2008;1:98-107
  • Yamashita T, Murakawa Y, Hayami N, et al. Short-term effects of rapid pacing on mRNA level of voltage-dependent K+ channels in rat atrium: electrical remodeling in paroxysmal atrial tachycardia. Circulation2000;101:2007-14
  • Dechner N, Pirard B, Bundis F, et al. Molecular basis for Kv1.5 channel block: conservation of drug binding sites among voltage-gated K+ channels. J Biol Chem2004;279:394-400
  • Decher N, Kumar P, González T, et al. Binding site of a novel Kv1.5 blocker: a ‘foot in the door’ against atrial fibrillation. Mol Pharmacol2006;70:1204-11
  • Eldstrom J, Wang Z, Xu H, et al. The molecular basis of high-affinity binding of the antiarrhythmic compound vernakalant (RSD1235) to Kv1.5 channels. Mol Pharmacol2007;72:1522-34
  • Strutz-Seebohm N, Gutcher I, Decher N, et al. Comparison of potent Kv1.5 potassium channel inhibitors reveals the molecular basis for blocking kinetics and binding mode. Cell Physiol Biochem2007;20:791-800
  • Honoré E, Barhanin J, Attali B, et al. External blockade of the major cardiac delayed-rectifier K+ channel (Kv1.5) by polyunsaturated fatty acids. Proc Natl Acad Sci USA1994;91:1937-41
  • Longobardo M, González T, Navarro-Polanco R, et al. Effects of a quaternary bupivacaine derivative on delayed rectifier K+ currents. Br J Pharmacol2000;130:391-401
  • Yue L, Feng J, Li GR, et al. Characterization of an ultrarapid delayed rectifier potassium channel involved in canine atrial repolarization. J Physiol1996;496:647-62
  • Nattel S, Matthews C, De Blasio E, et al. Dose-dependence of 4-aminopyridine plasma concentrations and electrophysiological effects in dogs: potential relevance to ionic mechanisms in vivo. Circulation2000;101:1179-84
  • Escande D, Loisance D, Planche C, et al. Age-related changes of action potential plateau shape in isolated human atrial fibres. Am J Physiol1985;249:H843-50
  • Burashnikov A, Mannava S, Antzelevitch C. Transmembrane action potential heterogeneity in the canine isolated arterially-perfused atrium: effect of IKr and Ito/IKur block. Am J Physiol2004;286:H2393-400
  • Wettwer E, Hala O, Christ T, et al. Role of IKur in controlling action potential shape and contractility in the human atrium: influence of chronic atrial fibrillation. Circulation2004;110:2299-306
  • Sridhar A, Cunha DN, Lacombe VA, et al. The plateau outward current in canine ventricle, sensitive to 4-aminopyridine, is a constitutive contributor to ventricular repolarization. Br J Pharmacol2007;152:870-9
  • Workman AJ, Kane KA, Rankin AC. The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovasc Res2001;52:226-35
  • Bowman WC, Marshall RJ, Rodger IW, et al. Actions of 4-aminopyridine on the cardiovascular systems of anesthetized cats and dogs. Br J Anaesth1981;53:555-65
  • Van Wagoner DR, Pond AL, McCarthy PM, et al. Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ Res1997;80:772-81
  • Bosch RF, Zeng X, Grammer JB, et al. Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res1999;44:121-31
  • Courtemanche M, Ramírez RJ, Nattel S. Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: insights from a mathematical model. Cardiovasc Res1999;42:477-89
  • Li GR, Wang HB, Qin GW, et al. Acacetin, a natural flavone, selectively inhibits human atrial repolarization potassium currents and prevents atrial fibrilation in dogs. Circulation2008;117:2449-457
  • Gögelein H, Brendel J, Steinmeyer K, et al. Effects of the atrial antiarrhythmic drug AVE0118 on cardiac ion channels. Naunyn Schmiedebergs Arch Pharmacol2004;370:183-92
  • Wirth KJ, Brendel J, Stenmeyer K, et al. In vitro and in vivo effect of the atrial selective antiarrhythmic compound AVE1231. J Cardiovasc Pharmacol2007;49:197-206
  • Gögelein H, Brendel J, Bleich M, et al. Novel atrial K channel blockers AVE3295 and AVE1231 for prevention of recurrence of atrial fibrillation. Heart Rhythm2004;1:S103
  • Persson F, Carlsson L, Duker G, et al. Blocking characteristics of hERG, hNav1.5 and hKvLQT1/hminK after administration of the novel antiarrhythmic compound AZD7009. J Cardiovasc Electrophysiol2005;16:329-41
  • Persson F, Carlsson L, Duker G, et al. Blocking characteristics of hKv1.5 and hKv4.3/hKChIP2.2 after administration of the novel antiarrhythmic compound AZD7009. J Cardiovasc Pharmacol2005;46:7-17
  • Lagrutta A, Wang J, Fermini B, et al. Novel, potent inhibitors of human Kv1.5 K+ channels and ultrarapidly activating delayed rectifier potassium current. J Pharmacol Exp Ther2006;317:1054-63
  • Trotter BW, Nanda KK, Kett NR, et al. Design and synthesis of novel isoquinoline-3-nitriles as orally bioavailable Kv1.5 antagonists for the treatment of atrial fibrillation. J Med Chem2006;49:6954-7
  • Regan CP, Stump GL, Wallace AA, et al. In vivo cardiac electrophysiologic and antiarrhythmic effects of an isoquinoline IKur blocker, ISQ-1, in rat, dog, and nonhuman primate. J Cardiovasc Pharmacol2007;49:236-45
  • Regan CP, Kiss L, Stump GL, et al. Atrial antifibrillatory effects of structurally distinct IKur blockers 3-[(dimethylamino)methyl]-6-methoxy-2-methyl-4-phenylisoquinolin-1(2H)-one and 2-phenyl-1,1-dipyridin-3-yl-2-pyrrolidin-1-yl-ethanol in dogs with underlying heart failure. J Pharmacol Exp Ther2008;324:322-30
  • Tanaka H, Hashimoto NA. Multiple ion channel blocker, NIP-142, for the treatment of atrial fibrillation. Cardiovasc Drug Rev2007;25:342-56
  • Bachmann A, Gutcher I, Kopp K, et al. Characterization of a novel Kv1.5 channel blocker in Xenopus oocytes, CHO cells, human and rat cardiomyocytes. Naunyn Schmiedeberg's Arch Pharmacol2001;364:472-8
  • Knobloch K, Brendel J, Peukert S, et al. Electrophysiological and antiarrhythmic effects of the novel Kur channel blockers, S9947 and S20951, on left vs. right pig atrium in vivo in comparison with the IKr blockers dofetilide, azimilide, d,l-sotalol and ibutilide. Naunyn Schmiedebergs Arch Pharmacol2002;366:482-7
  • Beatch GN, Lin SP, Hesketh C, et al. Electrophysiological mechanism of RSD1235, a new atrial fibrillation converting drug. Circulation2003;108:IV-85
  • Fedida D, Orth PM, Chen JY, et al. The mechanism of atrial antiarrhythmic action of RSD1235. J Cardiovasc Electrophysiol2005;16:1227-38
  • Orth PM, Hesketh JC, Mak CK, et al. RSD1235 blocks late INa and suppresses early afterdepolarizations and torsades de pointes induced by class III agents. Cardiovasc Res2006;70:486-96
  • Nagasawa H, Fujiki A, FujiKura N, et al. Effects of a novel class III antiarrhythmic agent, NIP-142, on canine atrial fibrillation and flutter. Circ J2002;66:185-91
  • Wirth KJ, Paehler T, Rosenstein B, et al. Atrial effects of the novel K+-channel-blocker AVE0118 in anesthetized pigs. Cardiovasc Res2003;60:298-306
  • Oros A, Volders PG, Beekman JD, et al. Atrial-specific drug AVE0118 is free of torsades de pointes in anaesthetized dogs with chronic complete atrioventricular block. Heart Rhythm2006;3:1339-45
  • Blaauw Y, Gögelein H, Tieleman RG, et al. ‘Early’ class III drugs for the treatment of atrial fibrillation: efficacy and atrial selectivity of AVE0118 in remodelled atria of the goat. Circulation2004;110:1717-24
  • Linz DK, Afkham F, Itter G, et al. Effect of at arial electrical remodeling on the efficacy of antiarrhythmic drugs: comparison of amiodarone with IKr-and Ito/IKur-blockade in vivo. J Cardiovasc Electrophysiol2007;18:1313-20
  • Goldstein RN, Khrestian C, Carlsson L, et al. AZD7009: a new antiarrhythmic drug with predominant effects on the atria effectively terminates and prevents reinduction of atrial fibrillation and flutter in the sterile pericarditis model. J Cardiovasc Electrophysiol2004;15:1444-50
  • Stump GL, Wallace AA, Regan CP, et al. In vivo antiarrhythmic and cardiac electrophysiologic effects of a novel diphenylphosphine oxide IKur blocker (2-isopropyl-5-methylcyclohexyl) diphenylphosphine oxide. J Pharmacol Exp Ther2005;315:1362-7
  • Rivard L, Shiroshita-Takeshita A, Maltais C, et al. Electrophysiological and atrial antiarrhythmic effects of a novel IKur/Kv1.5 blocker in dogs. Heart Rhythm2005;2:S180
  • Regan CP, Wallace AA, Cresswell HK, et al. In vivo cardiac electrophysiologic effects of a novel diphenylphosphine oxide IKur blocker, (2-Isopropyl-5-methylcyclohexyl) diphenylphosphine oxide, in rat and nonhuman primate. J Pharmacol Exp Ther2006;316:727-32
  • Schotten U, De Haan S, Verheule S, et al. Blockade of atrial-specific K+-currents increases atrial but not ventricular contractility by enhancing reverse mode Na+/Ca+-exchange. Cardiovasc Res2007;73:37-47
  • De Haan S, Greiser M, Harks E, et al. AVE0118, blocker of the transient outward current (Ito) and ultrarapid delayed rectifier current (IKur), fully restores atrial contractility after cardioversion of atrial fibrillation in the goat. Circulation2006;114:1234-42
  • Ehrlich JR, Hoche C, Coutu P, et al. Properties of a time-dependent potassium current in pig atrium: evidence for a role of Kv1.5 in repolarization. J Pharmacol Exp Ther2006;319:898-906
  • Eldstrom J, Van Wagoner DR, Moore ED, et al. Localization of Kv1.5 channels in rat and canine myocyte sarcolemma. FEBS Lett2006;580:6039-46
  • Saski Y, Ishii K, Nunoki K, et al. The voltage-dependent K+ channel (Kv1.5) cloned from rabbit heart and facilitation of inactivation of the delayed rectifier current by the rat β-unit. FEBS Lett1995;372:20-4
  • Van der Velden HMW, Van der Zee L, Wijffels MC, et al. Atrial fibrillation in the goat induces changes in monophasic action potential and mRNA expression of ion channels involved in repolarization. J Cardiovasc Electrophysiol2000;11:1262-9
  • Yue L, Feng J, Gaspo R, et al. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res1997;81:512-25
  • Nattel S, Wang ZG, Matthews C. Direct electrophysiological actions of pentobarbital at concentrations achieved during general anesthesia. Am J Physiol1990;259:H1743-51
  • Yang Q, Wang X, Du L, et al. strategies for atrial fibrillation therapy: focusing on IKur potassium channel. Expert Opin Ther Pat2007;17:1443-56
  • Crijns HJ, Van Gelder IC, Walfridsson H, et al. Safe and effective conversion of persistent atrial fibrillation to sinus rhythm by intravenous AZD7009. Heart Rhythm2006;3:1321-31
  • Naccarelli GV, Wolbrette DL, Samii S, et al. Vernakalant–a promising therapy for conversion of recent-onset atrial fibrillation. Expert Opin Investig Drugs2008;17:805-10
  • Roy D, Rowe BH, Stiell IG, et al. A randomized, controlled trial of RSD1235, a novel anti-arrhythmic agent, in the treatment of recent onset atrial fibrillation. J Am Coll Cardiol2004;44:2355-61
  • Torp-Pedersen C, Roy D, Pratt C, et al. Efficacy and safety of vernakalant (RSD1235 injection) in the treatment of atrial fibrillation: combined analysis of two hase III trials. Eur Heart J2006;27(Suppl):887
  • Roy D, Pratt C, Camm AJ, et al. RSD1235 effectively converts atrial fibrillation to sinus rhythm independent of background use of oral rate- or rhythm-control medications. Circulation2006;114(Suppl):II-790
  • Roy D, Pratt CM, Torp-Pedersen C, et al. Vernakalant hydrochloride for rapid conversion of atrial fibrillation: a phase 3, randomized, placebo-controlled trial. Circulation2008;117:1518-25
  • Kowey PR, Roy D, Pratt CM, et al. Efficacy and safety of vernakalant hydrochloride injection for the treatment of atrial fibrillation after valvular or coronary artery bypass surgery. Circulation2007;116(Suppl):II-636
  • Stiell I, Roy D, Pratt C, et al. Vernakalant hydrochloride injection (RSD 1235) effectively converts acute atrial fibrillation to sinus rhythm independent of background use of oral rate-or rhythm-control medications. Ann Emerg Med2006;48(Suppl):46-7
  • Cheng JW. Vernakalant in the management of atrial fibrillation. Ann Pharmacother2008;42:533-42
  • Torp-Pedersen C, Raev D, Georgiev P, et al. Vernakalant (oral) investigators. P2538: oral vernakalant (RSD1235-SR) prevents recurrence of atrial fibrillation cardioversion. Eur Heart J2007;28(Suppl):401
  • Available from: www.cardiome.com/wordpress/?p =443
  • Dobrev D, Friedrich A, Voigt N, et al. The G protein-gated potassium current IK,(Ach) is constitutively active in patients with chronic atrial fibrillation. Circulation2005;112:3697-706
  • Mandapati R, Skanes A, Chen J, et al. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation2000;101:194-9
  • Pandit SV, Berenfeld O, Anumonwo JM, et al. Ionic determinants of functional reentry in a 2-D model of human atrial cells during simulated chronic atrial fibrillation. Biophys J2005;88:3806-21
  • Burashnikov A, Di Diego JM, Zygmunt AC, et al. Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: differences in sodium channel inactivation between atria and ventricles and the role of ranolazine. Circulation2007;116:1449-57
  • Li GR, Lau CP, Shrier A. Heterogeneity of sodium current in atrial vs epicardial ventricular myocytes of adult guinea pig hearts. J Mol Cell Cardiol2002;34:1185-94
  • Burashnikov A, Antzelevitch C. Atrial-selective sodium channel blockers: do they exist? J Cardiovasc Pharmacol2008;52:121-8
  • Carlsson L, Chartier D, Nattel S. Characterization of the in vivo and in vitro electrophysiological effects of the novel antiarrhythmic agent AZD7009 in atrial and ventricular tissue of the dog. J Cardiovasc Pharmacol2006;47:123-32
  • Simard C, Drolet B, Yang P, et al. Polymorphism screening in the cardiac K+ channel gene KCNA5. Clin Pharmacol Ther2005;77:138-44
  • Drolet B, Simard C, Mizoue L, Roden DM. Human cardiac potassium channel DNA polymorphism modulates acces to drug-binding site and causes drug resistance. J Clin Invest2005;115:2209-13
  • Olson TM, Alekseev AE, Liu X, et al. Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet2006;15:2185-91

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.