433
Views
60
CrossRef citations to date
0
Altmetric
Reviews

Therapeutic potential of novel glutamate receptor antagonists in migraine

&
Pages 789-803 | Published online: 09 May 2009

Bibliography

  • Lipton RB, Stewart WF, Diamond S, et al. Prevalence and burden of migraine in the United States: data from the American Migraine Study II. Headache 2001;41:646-57
  • Goadsby PJ, Lipton RB, Ferrari MD. Migraine: current understanding and treatment. N Engl J Med 2002;346:257-70
  • Menken M, Munsat TL, Toole JF. The global burden of disease study: implications for neurology. Arch Neurol 2000;57:418-20
  • Stewart WF, Ricci JA, Chee E, et al. Lost productive time and cost due to common pain conditions in the US workforce. JAMA 2003;290:2443-54
  • Tfelt-Hansen P, De Vries P, Saxena PR. Triptans in migraine: a comparative review of pharmacology, pharmacokinetics and efficacy. Drugs 2000;60:1259-87
  • Kruuse C, Thomsen LL, Birk S, Olesen J. Migraine can be induced by sildenafil without changes in middle cerebral artery diameter. Brain 2003;126:241-7
  • Goadsby PJ. Recent advances in understanding migraine mechanisms, molecules and therapeutics. Trends Mol Med 2007;13:39-44
  • Afridi SK, Goadsby PJ. Neuroimaging of migraine. Curr Pain Headache Rep 2006;10:221-4
  • Pollack MA, French JH. Hypothesis: glutamic acid in migraine. Headache 1975;15:114-7
  • Weiller C, May A, Limmroth V, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med 1995;1:658-60
  • Wolff HG. Headache and other head pain edn 1st. New York: Oxford University Press; 1948
  • Arbab MA, Wiklund L, Svendgaard NA. Origin and distribution of cerebral vascular innervation from superior cervical, trigeminal and spinal ganglia investigated with retrograde and anterograde WGA-HRP tracing in the rat. Neuroscience 1986;19:695-708
  • McNaughton F, Feindel WH. Innervation of intracranial structures: a reappraisal. In: Rose FC, editor, Physiological aspects of clinical neurology. Blackwell Scientific Publications; 1977. p. 279-93
  • Uddman R, Edvinsson L, Hara H. Axonal tracing of autonomic nerve fibers to the superficial temporal artery in the rat. Cell Tissue Res 1989;256:559-65
  • Goadsby PJ, Edvinsson L. Neuropeptides in headache. Eur J Neurol 1998;5:329-41
  • Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 1990;28:183-7
  • Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 1993;33:48-56
  • Olesen J, Diener HC, Husstedt IW, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 2004;350:1104-10
  • Ho TW, Mannix LK, Fan X, et al. Randomized controlled trial of an oral CGRP receptor antagonist, MK-0974, in acute treatment of migraine. Neurology 2008;70:1304-12
  • Ho TW, Ferrari MD, Dodick DW, et al. Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet 2009;372:2115-23
  • Goadsby PJ, Classey JD. Glutamatergic transmission in the trigeminal nucleus assessed with local blood flow. Brain Res 2000;875:119-24
  • Classey JD, Knight YE, Goadsby PJ. The NMDA receptor antagonist MK-801 reduces Fos-like immunoreactivity within the trigeminocervical complex following superior sagittal sinus stimulation in the cat. Brain Res 2001;907:117-24
  • Kaube H, Keay KA, Hoskin KL, et al. Expression of c-Fos-like immunoreactivity in the caudal medulla and upper cervical spinal cord following stimulation of the superior sagittal sinus in the cat. Brain Res 1993;629:95-102
  • Bartsch T, Goadsby PJ. Increased responses in trigeminocervical nociceptive neurons to cervical input after stimulation of the dura mater. Brain 2003;126:1801-13
  • Goadsby PJ, Zagami AS. Stimulation of the superior sagittal sinus increases metabolic activity and blood flow in certain regions of the brainstem and upper cervical spinal cord of the cat. Brain 1991;114(Pt 2):1001-11
  • Bahra A, Matharu MS, Buchel C, et al. Brainstem activation specific to migraine headache. Lancet 2001;357:1016-7
  • Goadsby PJ, Lambert GA, Lance JW. Differential effects on the internal and external carotid circulation of the monkey evoked by locus coeruleus stimulation. Brain Res 1982;249:247-54
  • Goadsby PJ, Zagami AS, Lambert GA. Neural processing of craniovascular pain: a synthesis of the central structures involved in migraine. Headache 1991;31:365-71
  • Knight YE, Bartsch T, Kaube H, Goadsby PJ. P/Q-type calcium-channel blockade in the periaqueductal gray facilitates trigeminal nociception: a functional genetic link for migraine? J Neurosci 2002;22:RC213
  • Knight YE, et al. Q-type calcium channel blockade in the PAG facilitates trigeminal nociception: a functional genetic link for migraine? J Neurosci 2002;22(RC213):1-6
  • Hoskin KL, Kaube H, Goadsby PJ. Central activation of the trigeminovascular pathway in the cat is inhibited by dihydroergotamine. A c-Fos and electrophysiological study. Brain 1996;119(Pt 1):249-56
  • Storer RJ, Akerman S, Goadsby PJ. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol 2004;142:1171-81
  • Percheron G. Thalamus. In: Paxinos G, May J, editors, The human nervous system, edn 2nd. Elsevier; 2003. p. 592-675
  • Shields KG, Goadsby PJ. Propranolol modulates trigeminovascular responses in thalamic ventroposteromedial nucleus: a role in migraine? Brain 2005;128:86-97
  • Shields KG, Goadsby PJ. Serotonin receptors modulate trigeminovascular responses in ventroposteromedial nucleus of thalamus: a migraine target? Neurobiol Dis 2006;23:491-501
  • Davis KD, Dostrovsky JO. Properties of feline thalamic neurons activated by stimulation of the middle meningeal artery and sagittal sinus. Brain Res 1988;454:89-100
  • Lambert GA, Goadsby PJ, Zagami AS, Duckworth JW. Comparative effects of stimulation of the trigeminal ganglion and the superior sagittal sinus on cerebral blood flow and evoked potentials in the cat. Brain Res 1988;453:143-9
  • DaSilva AF, Becerra L, Makris N, et al. Somatotopic activation in the human trigeminal pain pathway. J Neurosci 2002;22:8183-92
  • Shields KG, Kaube H, Goadsby PJ. GABA receptors modulate trigeminovascular nociceptive neurotransmission in the VPM thalamic nucleus of the rat. Cephalalgia 2003;23:728 [abstract]
  • Kew JN, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl) 2005;179:4-29
  • Ozawa S, Kamiya H, Tsuzuki K. Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 1998;54:581-618
  • Mothet JP, Parent AT, Wolosker H, et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 2000;97:4926-31
  • Schuler T, Mesic I, Madry C, et al. Formation of NR1/NR2 and NR1/NR3 heterodimers constitutes the initial step in N-methyl-D-aspartate receptor assembly. J Biol Chem 2008;283:37-46
  • Kalia LV, Kalia SK, Salter MW. NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol 2008;7:742-55
  • Hollmann M, Hartley M, Heinemann S. Ca2+ permeability of KA-AMPA–gated glutamate receptor channels depends on subunit composition. Science 1991;252:851-3
  • Bowie D, Mayer ML. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 1995;15:453-62
  • Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 1999;51:7-61
  • Pinheiro P, Mulle C. Kainate receptors. Cell Tissue Res 2006;326:457-82
  • Huettner JE. Kainate receptors and synaptic transmission. Prog Neurobiol 2003;70:387-407
  • Bahn S, Volk B, Wisden W. Kainate receptor gene expression in the developing rat brain. J Neurosci 1994;14:5525-47
  • Chittajallu R, Braithwaite SP, Clarke VR, Henley JM. Kainate receptors: subunits, synaptic localization and function. Trends Pharmacol Sci 1999;20:26-35
  • Bessis AS, Rondard P, Gaven F, et al. Closure of the Venus flytrap module of mGlu8 receptor and the activation process: Insights from mutations converting antagonists into agonists. Proc Natl Acad Sci USA 2002;99:11097-102
  • Bertrand HO, Bessis AS, Pin JP, Acher FC. Common and selective molecular determinants involved in metabotropic glutamate receptor agonist activity. J Med Chem 2002;45:3171-83
  • Greenamyre JT, Young AB, Penney JB. Quantitative autoradiographic distribution of L-[3H]glutamate-binding sites in rat central nervous system. J Neurosci 1984;4:2133-44
  • Kai-Kai MA, Howe R. Glutamate-immunoreactivity in the trigeminal and dorsal root ganglia, and intraspinal neurons and fibres in the dorsal horn of the rat. Histochem J 1991;23:171-9
  • Hill RG, Salt TE. An ionophoretic study of the responses of rat caudal trigeminal nucleus neurons to non-noxious mechanical sensory stimuli. J Physiol 1982;327:65-78
  • Tallaksen-Greene SJ, Young AB, Penney JB, Beitz AJ. Excitatory amino acid binding sites in the trigeminal principal sensory and spinal trigeminal nuclei of the rat. Neurosci Lett 1992;141:79-83
  • Broman J, Ottersen OP. Cervicothalamic tract terminals are enriched in glutamate-like immunoreactivity: an electron microscopic double-labeling study in the cat. J Neurosci 1992;12:204-21
  • Bereiter DA, Benetti AP. Excitatory amino release within spinal trigeminal nucleus after mustard oil injection into the temporomandibular joint region of the rat. Pain 1996;67:451-9
  • Oshinsky ML, Luo J. Neurochemistry of trigeminal activation in an animal model of migraine. Headache 2006;46(Suppl 1):S39-44
  • Xiao Y, Richter JA, Hurley JH. Release of glutamate and CGRP from trigeminal ganglion neurons: role of calcium channels and 5-HT1 receptor signaling. Mol Pain 2008;4:12
  • Ma QP. Co-localization of 5-HT(1B/1D/1F) receptors and glutamate in trigeminal ganglia in rats. Neuroreport 2001;12:1589-91
  • Silva E, Quinones B, Freund N, et al. Extracellular glutamate, aspartate and arginine increase in the ventral posterolateral thalamic nucleus during nociceptive stimulation. Brain Res 2001;923:45-9
  • Salt TE. Glutamate receptor functions in sensory relay in the thalamus. Philos Trans R Soc Lond B Biol Sci 2002;357:1759-66
  • Halpain S, Wieczorek CM, Rainbow TC. Localization of L-glutamate receptors in rat brain by quantitative autoradiography. J Neurosci 1984;4:2247-58
  • Watanabe M, Mishina M, Inoue Y. Distinct gene expression of the N-methyl-D-aspartate receptor channel subunit in peripheral neurons of the mouse sensory ganglia and adrenal gland. Neurosci Lett 1994;165:183-6
  • Sahara Y, Noro N, Iida Y, et al. Glutamate receptor subunits GluR5 and KA-2 are coexpressed in rat trigeminal ganglion neurons. J Neurosci 1997;17:6611-20
  • Tamaru Y, Nomura S, Mizuno N, Shigemoto R. Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites. Neuroscience 2001;106:481-503
  • Peres MF, Zukerman E, Senne Soares CA, et al. Cerebrospinal fluid glutamate levels in chronic migraine. Cephalalgia 2004;24:735-9
  • Martinez F, Castillo J, Rodriguez JR, et al. Neuroexcitatory amino acid levels in plasma and cerebrospinal fluid during migraine attacks. Cephalalgia 1993;13:89-93
  • Rothrock JF, Mar KR, Yaksh TL, et al. Cerebrospinal fluid analyses in migraine patients and controls. Cephalalgia 1995;15:489-93
  • Burstein R, Yarnitsky D, Goor-Aryeh I, et al. An association between migraine and cutaneous allodynia. Ann Neurol 2000;47:614-24
  • Burstein R. Deconstructing migraine headache into peripheral and central sensitization. Pain 2001;89:107-10
  • van den Maagdenberg AM, Haan J, Terwindt GM, Ferrari MD. Migraine: gene mutations and functional consequences. Curr Opin Neurol 2007;20:299-305
  • Jen JC, Wan J, Palos TP, et al. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology 2005;65:529-34
  • Gorji A, Scheller D, Straub H, et al. Spreading depression in human neocortical slices. Brain Res 2001;906:74-83
  • Obrenovitch TP, Zilkha E. Inhibition of cortical spreading depression by L-701,324, a novel antagonist at the glycine site of the N-methyl-D-aspartate receptor complex. Br J Pharmacol 1996;117:931-7
  • Lauritzen M, Hansen AJ. The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J Cereb Blood Flow Metab 1992;12:223-9
  • Nellgard B, Wieloch T. NMDA-receptor blockers but not NBQX, an AMPA-receptor antagonist, inhibit spreading depression in the rat brain. Acta Physiol Scand 1992;146:497-503
  • Peeters M, Gunthorpe MJ, Strijbos PJ, et al. Effects of Pan- and Subtype-Selective N-Methyl-D-aspartate Receptor Antagonists on Cortical Spreading Depression in the Rat: Therapeutic Potential for Migraine. J Pharmacol Exp Ther 2007;321:564-72
  • Anderson TR, Andrew RD. Spreading depression: imaging and blockade in the rat neocortical brain slice. J Neurophysiol 2002;88:2713-25
  • Faria LC, Mody I. Protective effect of ifenprodil against spreading depression in the mouse entorhinal cortex. J Neurophysiol 2004;92:2610-4
  • Storer RJ, Goadsby PJ. Trigeminovascular nociceptive transmission involves N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate receptors. Neuroscience 1999;90:1371-6
  • Mitsikostas DD, Sanchez del Rio M, Waeber C, et al. The NMDA receptor antagonist MK-801 reduces capsaicin-induced c-fos expression within rat trigeminal nucleus caudalis. Pain 1998;76:239-48
  • Le Doare K, Akerman S, Holland PR, et al. Occipital afferent activation of second order neurons in the trigeminocervical complex in rat. Neurosci Lett 2006;403:73-7
  • Chan KY, Gupta S, Van Veghel R, et al. Distinct effects of several glutamate receptors antagonists on rat dural artery diameter in a rat intravital microscopy model. Cephalalgia 2009;29:101 [abstract]
  • Hattori Y, Watanabe M, Iwabe T, et al. Administration of MK-801 decreases c-Fos expression in the trigeminal sensory nuclear complex but increases it in the midbrain during experimental movement of rat molars. Brain Res 2004;1021:183-91
  • Jensen TS, Yaksh TL. The anti-nociceptive activity of excitatory amino acids in the rat brainstem: an anatomical and pharmacological analysis. Brain Res 1992;569:255-67
  • Salt TE, Eaton SA. Function of non-NMDA receptors and NMDA receptors in synaptic responses to natural somatosensory stimulation in the ventrobasal thalamus. Exp Brain Res 1989;77:646-52
  • Andreou AP, Storer RJ, Holland PR, Goadsby PJ. CNQX inhibits trigeminovascular neurons in the rat: a microiontophoresis study. Cephalalgia 2006;26:1383 [abstract]
  • Mitsikostas DD, Sanchez del Rio M, Waeber C, et al. Non-NMDA glutamate receptors modulate capsaicin induced c-fos expression within trigeminal nucleus caudalis. Br J Pharmacol 1999;127:623-30
  • Johnson KW, Dieckman DK, Phebus LA, et al. GLUR5 antagonists as novel migraine therapies. Cephalalgia 2001;21:268 [abstract]
  • Johnson KW, Nisenbaum ES, Johnson MP, et al. Innovative drug development for headache disorders: glutamate. In: Olesen J, Ramadan N, editors, Frontiers in Headache Research. Oxford; 2008 vol 16. p. 185-94
  • Weiss B, Alt A, Ogden AM, et al. Pharmacological characterization of the competitive GLUK5 receptor antagonist decahydroisoquinoline LY466195 in vitro and in vivo. J Pharmacol Exp Ther 2006;318:772-81
  • Filla SA, Winter MA, Johnson KW, et al. Ethyl (3S,4aR,6S,8aR)-6-(4-ethoxycar-bonylimidazol-1-ylmethyl)decahydroiso-quinoline-3-carboxylic ester: a prodrug of a GluR5 kainate receptor antagonist active in two animal models of acute migraine. J Med Chem 2002;45:4383-6
  • Andreou AP, Holland PR, Goadsby PJ. Activation of iGluR5 kainate receptors inhibits neurogenic dural vasodilatation in an animal model of trigeminovascular activation. Br J Pharmacol 2009 (In Press)
  • Andreou A, Goadsby P, Holland P. Pre- and post-synaptic involvement of GluR5 kainate receptors in trigeminovascular nociceptive processing. Cephalalgia 2007;27:605 [abstract]
  • Kerchner GA, Wilding TJ, Huettner JE, Zhuo M. Kainate receptor subunits underlying presynaptic regulation of transmitter release in the dorsal horn. J Neurosci 2002;22:8010-7
  • Andreou AP, Holland PR, Goadsby PJ. iGluR5 kainate receptors modulate trigeminovascular nociceptive transmission in thalamic ventroposteromedial nucleus [abstract]. Headache 2008;48:5-6
  • Fundytus ME. Glutamate receptors and nociception: implications for the drug treatment of pain. CNS Drugs 2001;15:29-58
  • Salt TE, Binns KE. Contributions of mGlu1 and mGlu5 receptors to interactions with N-methyl-D-aspartate receptor-mediated responses and nociceptive sensory responses of rat thalamic neurons. Neuroscience 2000;100:375-80
  • Kaube H, Herzog J, Kaufer T, et al. Aura in some patients with familial hemiplegic migraine can be stopped by intranasal ketamine. Neurology 2000;55:139-41
  • Bigal M, Rapoport A, Sheftell F, et al. Memantine in the preventive treatment of refractory migraine. Headache 2008;48:1337-42
  • Cammarata D, Krusz J. Memantine: novel mechanism for migraine and headache prophylaxis. Headache 2005;45:820
  • Charles A, Flippen C, Romero Reyes M, Brennan KC. Memantine for prevention of migraine: a retrospective study of 60 cases. J Headache Pain 2007;8:248-50
  • Evers S, Frese A, Gregor N, et al. Memantine in the acute treatment of migraine aura. Cephalalgia 2007;27:740 [abstract]
  • Lampl C, Buzath A, Klinger D, Neumann K. Lamotrigine in the prophylactic treatment of migraine aura–a pilot study. Cephalalgia 1999;19:58-63
  • Steiner TJ, Findley LJ, Yuen AW. Lamotrigine versus placebo in the prophylaxis of migraine with and without aura. Cephalalgia 1997;17:109-12
  • Pascual J, Caminero AB, Mateos V, et al. Lamotrigine in the prevention of migraine aura [abstract]. Cephalalgia 2005;25:646-7
  • Fumal A, Schoenen J. Effectiveness of lamotrigine in the prophylaxis of migraine with aura: an open study. [abstract] Cephalalgia 2006;26:1369-70
  • Sang CN, Ramadan NM, Wallihan RG, et al. LY293558, a novel AMPA/GluR5 antagonist, is efficacious and well-tolerated in acute migraine. Cephalalgia 2004;24:596-602
  • Murphy MF, Mellberg SJ, Kurtz NM, Graham EA. AMPA/Kainate receptor antagonist Tezampanel is effective in treating acute migraine. Headache 2008;48:8 [abstract]
  • Mulleners WM, Chronicle EP. Anticonvulsants in migraine prophylaxis: a cochrane review. Cephalalgia 2008;28:585-97
  • Akerman S, Goadsby PJ. Topiramate inhibits cortical spreading depression in rat and cat: impact in migraine aura. Neuroreport 2005;16:1383-7
  • Akerman S, Goadsby PJ. Topiramate inhibits trigeminovascular activation: an intravital microscopy study. Br J Pharmacol 2005;146:7-14
  • Rosenfeld WE. Topiramate: a review of preclinical, pharmacokinetic, and clinical data. Clin Ther 1997;19:1294-308
  • Cader ZM, Noble-Topham S, Dyment DA, et al. Significant linkage to migraine with aura on chromosome 11q24. Hum Mol Genet 2003;12:2511-7
  • Addex Starts a Phase IIb Trial of ADX10059 for Migraine Prevention. Available from: www.addexpharma.com/press-releases/press-release-details/article/addex-starts-a-phase-iib-trial-ofadx10059-for-migraine-prevention/ [Last accessed 26 January 2009]
  • Starr MS. Antiparkinsonian actions of glutamate antagonists–alone and with L-DOPA: a review of evidence and suggestions for possible mechanisms. J Neural Transm Park Dis Dement Sect 1995;10:141-85
  • Olney JW, Labruyere J, Wang G, et al. NMDA antagonist neurotoxicity: mechanism and prevention. Science 1991;254:1515-8
  • Grotta J, Clark W, Coull B, et al. Safety and tolerability of the glutamate antagonist CGS 19755 (Selfotel) in patients with acute ischemic stroke. Results of a phase IIa randomized trial. Stroke 1995;26:602-5
  • Ben-Abraham R, Weinbroum AA. Dextromethorphan in chronic pain: a disappointing update. Isr Med Assoc J 2000;2:708-10
  • Forst T, Smith T, Schutte K, et al. Dose escalating safety study of CNS 5161 HCl, a new neuronal glutamate receptor antagonist (NMDA) for the treatment of neuropathic pain. Br J Clin Pharmacol 2007;64:75-82
  • Rogawski MA. Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res 2006;69:273-94
  • Walters MR, Kaste M, Lees KR, et al. The AMPA antagonist ZK 200775 in patients with acute ischaemic stroke: a double-blind, multicentre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20:304-9
  • Elting JW, Sulter GA, Kaste M, et al. AMPA antagonist ZK200775 in patients with acute ischemic stroke: possible glial cell toxicity detected by monitoring of S-100B serum levels. Stroke 2002;33:2813-8
  • Muir KW, Hamilton SJ, Lunnon MW, et al. Safety and tolerability of 619C89 after acute stroke. Cerebrovasc Dis 1998;8:31-7
  • Smolders I, Bortolotto ZA, Clarke VR, et al. Antagonists of GLU(K5)-containing kainate receptors prevent pilocarpine-induced limbic seizures. Nat Neurosci 2002;5:796-804
  • Goadsby PJ, Ferrari MD, Csanyi A, et al. Randomized, double-blind, placebo-controlled, proof-of-concept study of the cortical spreading depression inhibiting agent tonabersat in migraine prophylaxis. Cephalalgia 2009 (In Press)
  • Doraiswamy PM. Alzheimer's disease and the glutamate NMDA receptor. Psychopharmacol Bull 2003;37:41-9
  • Kavirajan H. Memantine: a comprehensive review of safety and efficacy. Expert Opin Drug Saf 2009;8:89-109
  • Lee HJ, Pogatzki-Zahn EM, Brennan TJ. The effect of the AMPA/kainate receptor antagonist LY293558 in a rat model of postoperative pain. J Pain 2006;7:768-77
  • Paternain AV, Cohen A, Stern-Bach Y, Lerma J. A role for extracellular Na+ in the channel gating of native and recombinant kainate receptors. J Neurosci 2003;23:8641-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.