359
Views
33
CrossRef citations to date
0
Altmetric
Reviews

Pharmacological small molecules for the treatment of lysosomal storage disorders

, , , &
Pages 1367-1379 | Published online: 13 Oct 2010

Bibliography

  • Parenti G. Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol Med 2009;1:268-79
  • Futerman AH, van MG. The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 2004;5:554-65
  • Meikle PJ, Hopwood JJ, Clague AE, Carey WF. Prevalence of lysosomal storage disorders. JAMA 1999;281:249-54
  • Poorthuis BJ, Wevers RA, Kleijer WJ, The frequency of lysosomal storage diseases in The Netherlands. Hum Genet 1999;105:151-6
  • Wraith JE, Clarke LA, Beck M, Enzyme replacement therapy for mucopolysaccharidosis I: a randomized, double-blinded, placebo-controlled, multinational study of recombinant human alpha-L-iduronidase (laronidase). J Pediatr 2004;144:581-8
  • Muenzer J, Gucsavas-Calikoglu M, McCandless SE, A phase I/II clinical trial of enzyme replacement therapy in mucopolysaccharidosis II (Hunter syndrome). Mol Genet Metab 2007;90:329-37
  • Harmatz P, Giugliani R, Schwartz I, Enzyme replacement therapy for mucopolysaccharidosis VI: a phase 3, randomized, double-blind, placebo-controlled, multinational study of recombinant human N-acetylgalactosamine 4-sulfatase (recombinant human arylsulfatase B or rhASB) and follow-on, open-label extension study. J Pediatr 2006;148:533-9
  • Barton NW, Brady RO, Dambrosia JM, Replacement therapy for inherited enzyme deficiency – macrophage-targeted glucocerebrosidase for Gaucher's disease. N Engl J Med 1991;324:1464-70
  • Eng CM, Guffon N, Wilcox WR, Safety and efficacy of recombinant human alpha-galactosidase A-replacement therapy in Fabry's disease. N Engl J Med 2001;345:9-16
  • Schiffmann R, Kopp JB, Austin HA III, Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 2001;285:2743-9
  • Van den Hout H, Reuser AJ, Vulto AG, Recombinant human alpha-glucosidase from rabbit milk in Pompe patients. Lancet 2000;356:397-8
  • Brady RO, Kanfer JN, Shapiro D. Metabolism of glucocerebrosides.II. Evidence of an enzymatic deficiency in Gaucher disease. Biochem Biophys Res Commun 1965;18:221-5
  • Erikson A. Remaining problems in the management of patients with Gaucher disease. J Inherit Metab Dis 2001;24(Suppl 2):122-6
  • Rombach SM, Twickler T, Aerts JMFG, Vasculopathy in patients with Fabry disease: current controversies and research directions. Mol Genet Metab 2010;99:99-108
  • Breunig F, Weidemann F, Strotmann J, Clinical benefit of enzyme replacement therapy in Fabry disease. Kidney Int 2006;69:1216-21
  • Linthorst GE, Hollak CE, Donker-Koopman WE, Enzyme therapy for Fabry disease: neutralizing antibodies toward agalsidase alpha and beta. Kidney Int 2004;66:1589-95
  • Raben N, Danon M, Gilbert AL, Enzyme replacement therapy in the mouse model of Pompe disease. Mol Genet Metab 2003;80:159-69
  • Kishnani PS, Goldenberg PC, DeArmey SL, Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab 2010;99:26-33
  • Wraith JE, Beck M, Lane R, Enzyme replacement therapy in patients who have mucopolysaccharidosis I and are younger than 5 years: results of a multinational study of recombinant human alpha-L-iduronidase (Laronidase). Pediatrics 2007;120:e37-46
  • Beutler E. Lysosomal storage diseases: natural history and ethical and economic aspects. Mol Genet Metab 2006;88:208-15
  • Wraith JE. Limitations of enzyme replacement therapy: current and future. J Inherit Metab Dis 2006;29:442-7
  • Suzuki Y, Ichinomiya S, Kurosawa M, Chemical chaperone therapy: clinical effect in murine G(M1)-gangliosidosis. Ann Neurol 2007;62:671-5
  • Cox T, Lachmann R, Hollak C, Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 2000;355:1481-5
  • McEachern KA, Fung J, Komarnitsky S, A specific and potent inhibitor of glucosylceramide synthase for substrate inhibition therapy of Gaucher disease. Mol Genet Metab 2007;91:259-67
  • Piotrowska E, Jakobkiewicz-Banecka J, Baranska S, Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses. Eur J Hum Genet 2006;14:846-52
  • Fan JQ, Ishii S, Asano N, Suzuki Y. Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med 1999;5:112-15
  • Steet RA, Chung S, Wustman B, The iminosugar isofagomine increases the activity of N370S mutant acid beta-glucosidase in Gaucher fibroblasts by several mechanisms. Proc Natl Acad Sci USA 2006;103:13813-18
  • Lieberman RL, Wustman BA, Huertas P, Structure of acid beta-glucosidase with pharmacological chaperone provides insight into Gaucher disease. Nat Chem Biol 2007;3:101-7
  • Sun Y, Liou B, Quinn B, In vivo and ex vivo evaluation of L-type calcium channel blockers on acid beta-glucosidase in Gaucher disease mouse models. PLoS One 2009;4:e7320
  • Luan Z, Higaki K, Aguilar-Moncayo M, Chaperone activity of bicyclic nojirimycin analogues for Gaucher mutations in comparison with N-(n-nonyl)deoxynojirimycin. Chembiochem 2009;10:2780-92
  • Sawkar AR, Cheng WC, Beutler E, Chemical chaperones increase the cellular activity of N370S beta-glucosidase: a therapeutic strategy for Gaucher disease. Proc Natl Acad Sci USA 2002;99:15428-33
  • Welch EM, Barton ER, Zhuo J, PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007;447:87-91
  • Mu TW, Ong DS, Wang YJ, Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 2008;134:769-81
  • Ong DST, Mu TW, Palmer AE, Kelly JW. Endoplasmic reticulum Ca2+ increases enhance mutant glucocerebrosidase proteostasis. Nat Chem Biol 2010;6:424-32
  • Aerts JM, Hollak C, Boot R, Groener A. Biochemistry of glycosphingolipid storage disorders: implications for therapeutic intervention. Philos Trans R Soc Lond B Biol Sci 2003;358:905-14
  • Andersson U, Smith D, Jeyakumar M, Improved outcome of N-butyldeoxygalactonojirimycin-mediated substrate reduction therapy in a mouse model of Sandhoff disease. Neurobiol Dis 2004;16:506-15
  • Elliot-Smith E, Speak AO, Lloyd-Evans E, Beneficial effects of substrate reduction therapy in a mouse model of GM1 gangliosidosis. Mol Genet Metab 2008;94:204-11
  • Overkleeft HS, Renkema GH, Neele J, Generation of specific deoxynojirimycin-type inhibitors of the non-lysosomal glucosylceramidase. J Biol Chem 1998;273:26522-7
  • Wennekes T, van den Berg RJ, Donker W, Development of adamantan-1-yl-methoxy-functionalized 1-deoxynojirimycin derivatives as selective inhibitors of glucosylceramide metabolism in man. J Org Chem 2007;72:1088-97
  • Flanagan JJ, Rossi B, Tang K, The pharmacological chaperone 1-deoxynojirimycin increases the activity and lysosomal trafficking of multiple mutant forms of acid alpha-glucosidase. Hum Mutat 2009;30:1683-92
  • Steet R, Chung S, Lee WS, Selective action of the iminosugar isofagomine, a pharmacological chaperone for mutant forms of acid-beta-glucosidase. Biochem Pharmacol 2007;73:1376-83
  • Yu Z, Sawkar AR, Whalen LJ, Isofagomine- and 2,5-anhydro-2,5-imino-D-glucitol-based glucocerebrosidase pharmacological chaperones for Gaucher disease intervention. J Med Chem 2007;50:94-100
  • Luan Z, Li L, Ninomiya H, The pharmacological chaperone effect of N-octyl-beta-valienamine on human mutant acid beta-glucosidases. Blood Cells Mol Dis 2010;44:48-54
  • Sanchez-Olle G, Duque J, Egido-Gabas M, Promising results of the chaperone effect caused by imino sugars and aminocyclitol derivatives on mutant glucocerebrosidases causing Gaucher disease. Blood Cells Mol Dis 2009;42:159-66
  • Kato A, Yamashita Y, Nakagawa S, 2,5-Dideoxy-2,5-imino-D-altritol as a new class of pharmacological chaperone for Fabry disease. Bioorg Med Chem 2010;18:3790-4
  • Tropak MB, Mahuran D. Lending a helping hand, screening chemical libraries for compounds that enhance beta-hexosaminidase A activity in GM2 gangliosidosis cells. FEBS J 2007;274:4951-61
  • Tominaga L, Ogawa Y, Taniguchi M, Galactonojirimycin derivatives restore mutant human beta-galactosidase activities expressed in fibroblasts from enzyme-deficient knockout mouse. Brain Dev 2001;23:284-7
  • Lee WC, Kang D, Causevic E, Molecular characterization of mutations that cause globoid cell leukodystrophy and pharmacological rescue using small molecule chemical chaperones. J Neurosci 2010;30:5489-97
  • Maegawa GHB, Tropak M, Buttner J, Pyrimethamine as a potential pharmacological chaperone for late-onset forms of GM2 gangliosidosis. J Biol Chem 2007;282:9150-61
  • Dawson G, Schroeder C, Dawson PE. Palmitoyl:protein thioesterase (PPT1) inhibitors can act as pharmacological chaperones in infantile Batten disease. Biochem Biophys Res Commun 2010;23:66-9
  • Egido-Gabas M, Canals D, Casas J, Aminocyclitols as pharmacological chaperones for glucocerebrosidase, a defective enzyme in Gaucher disease. ChemMedChem 2007;2:992-4
  • Wennekes T, van den Berg RJ, Boot RG, Glycosphingolipids – nature, function, and pharmacological modulation. Angew Chem Int Ed Engl 2009;48:8848-69
  • Zheng W, Padia J, Urban DJ, Three classes of glucocerebrosidase inhibitors identified by quantitative high-throughput screening are chaperone leads for Gaucher disease. Proc Natl Acad Sci USA 2007;104:13192-7
  • Maegawa GH, Tropak MB, Buttner JD, Identification and characterization of ambroxol as an enzyme enhancement agent for Gaucher disease. J Biol Chem 2009;284:23502-16
  • Radin NS. Treatment of Gaucher disease with an enzyme inhibitor. Glycoconj J 1996;13:153-7
  • Pastores GM, Barnett NL, Kolodny EH. An open-label, noncomparative study of miglustat in type I Gaucher disease: efficacy and tolerability over 24 months of treatment. Clin Ther 2005;27:1215-27
  • Giraldo P, Latre P, Alfonso P, Short-term effect of miglustat in every day clinical use in treatment-naive or previously treated patients with type 1 Gaucher's disease. Haematologica 2006;91:703-6
  • Elstein D, Dweck A, Attias D, Oral maintenance clinical trial with miglustat for type I Gaucher disease: switch from or combination with intravenous enzyme replacement. Blood 2007;110:2296-301
  • Giraldo P, Alfonso P, Atutxa K, Real-world clinical experience with long-term miglustat maintenance therapy in type 1 Gaucher disease: the ZAGAL project. Haematologica 2009;94:1771-5
  • Treiber A, Morand O, Clozel M. The pharmacokinetics and tissue distribution of the glucosylceramide synthase inhibitor miglustat in the rat. Xenobiotica 2007;37:298-314
  • Capablo JL, Franco R, de Cabezon AS, Neurologic improvement in a type 3 Gaucher disease patient treated with imiglucerase/miglustat combination. Epilepsia 2007;48:1406-8
  • Cox-Brinkman J, van Breemen MJ, van Maldegem BT, Potential efficacy of enzyme replacement and substrate reduction therapy in three siblings with Gaucher disease type III. J Inherit Metab Dis 2008;31:745-52
  • Schiffmann R, Fitzgibbon EJ, Harris C, Randomized, controlled trial of miglustat in Gaucher's disease type 3. Ann Neurol 2008;64:514-22
  • Patterson MC, Vecchio D, Prady H, Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol 2007;6:765-72
  • Patterson MC, Vecchio D, Jacklin E, Long-term miglustat therapy in children with Niemann-Pick disease type C. J Child Neurol 2010;25:300-5
  • Pineda M, Wraith JE, Mengel E, Miglustat in patients with Niemann-Pick disease Type C (NP-C): a multicenter observational retrospective cohort study. Mol Genet Metab 2009;98:243-9
  • Hollak CE, Hughes D, van Schaik IN, Miglustat (Zavesca) in type 1 Gaucher disease: 5-year results of a post-authorisation safety surveillance programme. Pharmacoepidemiol Drug Saf 2009;18:770-7
  • Biegstraaten M, Mengel E, Marudi L, Peripheral neuropathy in adult type I Gaucher disease: a 2-year prospective observational study. Brain 2010: published online 7 August 2010, doi: 10.1093/brain/awq198
  • Marshall J, McEachern KA, Chuang WL, Improved management of lysosomal glucosylceramide levels in a mouse model of type 1 Gaucher disease using enzyme and substrate reduction therapy. J Inherit Metab Dis 2010;33:281-9
  • Lukina E, Watman N, Arreguin EA, A Phase 2 study of eliglustat tartrate (Genz-112638), an oral substrate reduction therapy for Gaucher disease type 1. Blood 2010;116:893-9
  • Clinical trial register. ENCORE: NCT00943111, ENGAGE: NCT00891202. Available from: www.clinicaltrials.gov [Last accessed 12 June 2010]
  • Neufeld E, Muenzer J. The mucopolysaccharidoses. In: Scriver C, Beaudet AL, Valle D, Sly W, Editors, The metabolic and molecular bases of inherited diseases. McGraw-Hill, New York; 2001. p. 3421-3452
  • Pisano MM, Greene RM. Epidermal growth factor potentiates the induction of ornithine decarboxylase activity by prostaglandins in embryonic palate mesenchymal cells: effects on cell proliferation and glycosaminoglycan synthesis. Dev Biol 1987;122:419-31
  • Tsai TH. Concurrent measurement of unbound genistein in the blood, brain and bile of anesthetized rats using microdialysis and its pharmacokinetic application. J Chromatogr A 2005;1073:317-22
  • Padilla-Banks E, Jefferson WN, Newbold RR. Neonatal exposure to the phytoestrogen genistein alters mammary gland growth and developmental programming of hormone receptor levels. Endocrinology 2006;147:4871-82
  • Piotrowska E, Jakobkiewicz-Banecka J, Tylki-Szymanska A, Genistin-rich soy isoflavone extract in substrate reduction therapy for Sanfilippo syndrome: An open-label, pilot study in 10 pediatric patients. Curr Ther Res 2008;69:166-79
  • Dutch trial register: effect of genestein as food supplement in patients with Sanfilippo syndrome. NTR1826. Amsterdam, Netherlands: Dutch Cochrane Centre, 2009. Available from: http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1826 [Last accessed: 2 September 2010]
  • Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 2003;4:181-91
  • Fan JQ. A contradictory treatment for lysosomal storage disorders: inhibitors enhance mutant enzyme activity. Trends Pharmacol Sci 2003;24:355-60
  • Benjamin ER, Flanagan JJ, Schilling A, The pharmacological chaperone 1-deoxygalactonojirimycin increases alpha-galactosidase A levels in Fabry patient cell lines. J Inherit Metab Dis 2009;32:424-40
  • Frustaci A, Chimenti C, Ricci R, Improvement in cardiac function in the cardiac variant of Fabry's disease with galactose-infusion therapy. N Engl J Med 2001;345:25-32
  • Yam GH, Zuber C, Roth J. A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder. FASEB J 2005;19:12-88
  • Amicus therapeutics. Available from: http://www.amicustherapeutics.com/clinicaltrials [Last accessed 15 June 2010]
  • Khanna R, Benjamin ER, Pellegrino L, The pharmacological chaperone isofagomine increases the activity of the Gaucher disease L444P mutant form of beta-glucosidase. FEBS J 2010;277:1618-38
  • Porto C, Cardone M, Fontana F, The pharmacological chaperone N-butyldeoxynojirimycin enhances enzyme replacement therapy in Pompe disease fibroblasts. Mol Ther 2009;17:964-71
  • Shen JS, Edwards NJ, Hong YB, Murray GJ. Isofagomine increases lysosomal delivery of exogenous glucocerebrosidase. Biochem Biophys Res Commun 2008;369:1071-5
  • Mu TW, Fowler DM, Kelly JW. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis. PLoS Biol 2008;6:e26
  • Brooks DA, Muller VJ, Hopwood JJ. Stop-codon read-through for patients affected by a lysosomal storage disorder. Trends Mol Med 2006;12:367-73
  • Politano L, Nigro G, Nigro V, Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol 2003;22:15-21
  • Clancy JP, Bebok Z, Ruiz F, Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am J Respir Crit Care Med 2001;163:1683-92
  • Wilschanski M, Yahav Y, Yaacov Y, Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med 2003;349:1433-41
  • Kerem E, Hirawat S, Armoni S, Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet 2008;372:719-27
  • Press release on atularen. Available from: http://ptct.client.shareholder.com [Last accessed 1 May 10 AD]
  • Hyde SC, Gill DR. Ignoring the nonsense: a phase II trial in cystic fibrosis. Lancet 2008;372:691-2
  • Aerts JM, Hollak CE, Boot RG, Substrate reduction therapy of glycosphingolipid storage disorders. J Inherit Metab Dis 2006;29:449-56
  • Andersson U, Butters TD, Dwek RA, Platt FM. N-butyldeoxygalactonojirimycin: a more selective inhibitor of glycosphingolipid biosynthesis than N-butyldeoxynojirimycin, in vitro and in vivo. Biochem Pharmacol 2000;59:821-9
  • Marshall J, Ashe K, Li L, 90. Efficacy of Genz-529468-mediated inhibition of glucosylceramide synthase in a mouse model of Sandhoff disease. Mol Genet Metab 2010;99:S26
  • Urban DJ, Zheng W, Goker-Alpan O, Optimization and validation of two miniaturized glucocerebrosidase enzyme assays for high throughput screening. Comb Chem High Throughput Screen 2008;11:817-24
  • Kirkegaard T, Roth AG, Petersen NH, Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature 2010;463:549-53
  • Hollak CE, Vedder AC, Linthorst GE, Aerts JM. Novel therapeutic targets for the treatment of Fabry disease. Expert Opin Ther Targets 2007;11:821-33
  • Vanier M. Niemann-pick disease type C. Orphanet J Rare Dis 2010;5:16
  • Wraith JE, Baumgartner MR, Bembi B, Recommendations on the diagnosis and management of Niemann-Pick disease type C. Mol Genet Metab 2009;98:152-65
  • Fan JQ. Pharmacological chaperone therapy for lysosomal storage disorders – leveraging aspects of the folding pathway to maximize activity of misfolded mutant proteins. FEBS J 2007;274:4943
  • Lin HY, Chong KW, Hsu JH, High incidence of the cardiac variant of Fabry disease revealed by newborn screening in the Taiwan Chinese population. Circ Cardiovasc Genet 2009;2:450-6
  • Hwu WL, Chien YH, Lee NC, Newborn screening for Fabry disease in Taiwan reveals a high incidence of the later-onset GLA mutation c.936+919G>A (IVS4+919G>A). Hum Mutat 2009;30:1397-405
  • Spada M, Pagliardini S, Yasuda M, High incidence of later-onset Fabry disease revealed by newborn screening. Am J Hum Genet 2006;79:31-40

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.