250
Views
35
CrossRef citations to date
0
Altmetric
Drug Evaluations

Temporal aspects of the action of ASA404 (vadimezan; DMXAA)

&
Pages 1413-1425 | Published online: 21 Oct 2010

Bibliography

  • Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986;315:1650-9
  • Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182-6
  • Denekamp J. Vascular endothelium as the vulnerable element in tumours. Acta Radiol Oncol 1984;23:217-25
  • Zwi LJ, Baguley BC, Gavin JB, Wilson WR. Blood flow failure as a major determinant in the antitumor action of flavone acetic acid. J Natl Cancer Inst 1989;81:1005-13
  • Milosevic MF, Fyles AW, Hill RP. The relationship between elevated interstitial fluid pressure and blood flow in tumors: a bioengineering analysis. Int J Radiat Oncol Biol Phys 1999;43:1111-23
  • Dickson PV, Hamner JB, Sims TL, Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res 2007;13:3942-50
  • Mukherji SK. Bevacizumab (Avastin). Am J Neuroradiol 2010;31:235-6
  • Mulders P. Vascular endothelial growth factor and mTOR pathways in renal cell carcinoma: differences and synergies of two targeted mechanisms. BJU Int 2009;104:1585-9
  • Siemann DW, Horsman MR. Vascular targeted therapies in oncology. Cell Tissue Res 2009;335:241-8
  • Siemann DW, Chaplin DJ, Horsman MR. Vascular-targeting therapies for treatment of malignant disease. Cancer 2004;100:2491-9
  • Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer 2005;5:423-35
  • Plowman J, Narayanan VL, Dykes D, Flavone acetic acid: a novel agent with preclinical antitumor activity against colon adenocarcinoma 38 in mice. Cancer Treat Rep 1986;70:631-5
  • Kerr DJ, Kaye SB, Cassidy J, Phase I and pharmacokinetic study of flavone acetic acid. Cancer Res 1987;47:6776-81
  • Kal HB, de Graaff E, Van Berkel AH, Goedoen HH. Responses of experimental rat tumours and a mouse colon tumour to flavone acetic acid. In Vivo 1992;6:73-5
  • Smith GP, Calveley SB, Smith MJ, Baguley BC. Flavone acetic acid (NSC 347512) induces haemorrhagic necrosis of mouse colon 26 and 38 tumours. Eur J Cancer Clin Oncol 1987;23:1209-11
  • Finlay GJ, Smith GP, Fray LM, Baguley BC. Effect of flavone acetic acid on Lewis lung carcinoma: evidence for an indirect effect. J Natl Cancer Inst 1988;80:241-5
  • Baguley BC, Calveley SB, Crowe KK, Comparison of the effects of flavone acetic acid, fostriecin, homoharringtonine and tumour necrosis factor alpha on colon 38 tumours in mice. Eur J Cancer Clin Oncol 1989;25:263-9
  • Baguley BC, Holdaway KM, Thomsen LL, Inhibition of growth of colon 38 adenocarcinoma by vinblastine and colchicine: evidence for a vascular mechanism. Eur J Cancer 1991;27:482-7
  • Rewcastle GW, Atwell GJ, Baguley BC, Potential antitumor agents. 58. Synthesis and structure–activity relationships of substituted xanthenone-4-acetic acids active against the colon 38 tumor in vivo. J Med Chem 1989;32:793-9
  • Liu J, Ching LM, Goldthorpe N, Antitumour action of 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in rats bearing chemically-induced primary mammary tumours. Cancer Chemother Pharmacol 2007;59:661-9
  • Baguley BC, Wilson WR. Potential of DMXAA combination therapy for solid tumors. Expert Rev Anticancer Ther 2002;2:593-603
  • Siemann DW, Mercer E, Lepler S, Rojiani AM. Vascular targeting agents enhance chemotherapeutic agent activities in solid tumor therapy. Int J Cancer 2002;99:1-6
  • Siemann DW, Horsman MR. Enhancement of radiation therapy by vascular targeting agents. Curr Opin Investig Drugs 2002;3:1660-5
  • Siim BG, Lee AE, Shalal-Zwain S, Marked potentiation of the antitumour activity of chemotherapeutic drugs by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Cancer Chemother Pharmacol 2003;51:43-52
  • Mace KF, Hornung RL, Wiltrout RH, Young HA. Correlation between in vivo induction of cytokine gene expression by flavone acetic acid and strict dose dependency and therapeutic efficacy against murine renal cancer. Cancer Res 1990;50:1742-7
  • Ching LM, Joseph WR, Crosier KE, Baguley BC. Induction of tumor necrosis factor-alpha messenger RNA in human and murine cells by the flavone acetic acid analogue 5,6-dimethylxanthenone- 4-acetic acid (NSC 640488). Cancer Res 1994;54:870-2
  • Jameson MB, Thompson PI, Baguley BC, Clinical aspects of a phase I trial of 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a novel antivascular agent. Br J Cancer 2003;88:1844-50
  • Rustin GJ, Bradley C, Galbraith S, 5,6-Dimethylxanthenone-4-acetic acid (DMXAA), a novel antivascular agent: phase I clinical and pharmacokinetic study. Br J Cancer 2003;88:1160-7
  • Rustin G, Galbraith S, Taylor N, Impact on tumour perfusion measured by dynamic magnetic resonance imaging (MRI) in the phase I trial of 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Ann Oncol 1998;9(Suppl 2):126
  • McKeage MJ, Fong P, Jeffery M, 5,6-Dimethylxanthenone-4-acetic acid in the treatment of refractory tumors: a phase I safety study of a vascular disrupting agent. Clin Cancer Res 2006;12:1776-84
  • McKeage MJ, von Pawel J, Reck M, Randomised phase II study of ASA404 combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer. Br J Cancer 2008;99:2006-12
  • McKeage MJ, Reck M, Jameson MB, Phase II study of ASA404 (vadimezan, 5,6-dimethylxanthenone-4-acetic acid/DMXAA) 1800 mg/m2 combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer. Lung Cancer 2009;65:192-7
  • Gabra H, Jameson MB. Update of phase II study of DMXAA (AS1404) combined with carboplatin and paclitaxel in recurrent ovarian cancer. EJC Supplements 2007;5:319
  • Pili R, Rosenthal MA, Mainwaring PN, Phase II study on the addition of ASA404 (vadimezan; 5,6-dimethylxanthenone-4-acetic acid) to docetaxel in CRMPC. Clin Cancer Res 2010;16:2906-14
  • McKeage MJ, Baguley BC. Disrupting established tumor blood vessels: an emerging therapeutic strategy for cancer. Cancer 2010;116:1859-71
  • Zhao L, Ching LM, Kestell P, Mechanisms of tumor vascular shut-down induced by 5,6-dimethylxanthenone-4-acetic acid (DMXAA); increased tumor vascular permeability. Int J Cancer 2005;116:322-6
  • Chung F, Liu J, Ching LM, Baguley BC. Consequences of increased vascular permeability induced by treatment of mice with 5,6-dimethylxanthenone-4-acetic acid (DMXAA) and thalidomide. Cancer Chemother Pharmacol 2008;61:497-502
  • Ching LM, Zwain S, Baguley BC. Relationship between tumour endothelial cell apoptosis and tumour blood flow shutdown following treatment with the antivascular agent DMXAA in mice. Br J Cancer 2004;90:906-10
  • Ching LM, Cao Z, Kieda C, Induction of endothelial cell apoptosis by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid. Br J Cancer 2002;86:1937-42
  • Zwi LJ, Baguley BC, Gavin JB, Wilson WR. Correlation between immune and vascular activities of xanthenone acetic acid antitumor agents. Oncol Res 1994;6:79-85
  • Lash CJ, Li AE, Rutland M, Enhancement of the anti-tumour effects of the antivascular agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) by combination with 5-hydroxytryptamine and bioreductive drugs. Br J Cancer 1998;78:439-45
  • Ching LM, Goldsmith D, Joseph WR, Induction of intratumoral tumor necrosis factor (TNF) synthesis and hemorrhagic necrosis by 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in TNF knockout mice. Cancer Res 1999;59:3304-7
  • Zhao L, Ching LM, Kestell P, Baguley BC. The antitumour activity of 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in TNF receptor-1 knockout mice. Br J Cancer 2002;87:465-70
  • Roberts ZJ, Ching LM, Vogel SN. IFN-beta-dependent inhibition of tumor growth by the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). J Interferon Cytokine Res 2008;28:133-9
  • Baguley BC, Zhan X, Finlay GJ, The antitumor action of ASA404 (vadimezan; DMXAA); potential involvement of vascular endothelial growth factor (VEGF). Proc AACR 2010;101: #1660
  • Clauss M, Sunderkotter C, Sveinbjornsson B, A permissive role for tumor necrosis factor in vascular endothelial growth factor-induced vascular permeability. Blood 2001;97:1321-9
  • Komarova YA, Mehta D, Malik AB. Dual regulation of endothelial junctional permeability. Sci STKE 2007;2007:re8
  • Bannerman DD, Sathyamoorthy M, Goldblum SE. Bacterial lipopolysaccharide disrupts endothelial monolayer integrity and survival signaling events through caspase cleavage of adherens junction proteins. J Biol Chem 1998;273:35371-80
  • Benhamou Y, Favre J, Musette P, Toll-like receptors 4 contribute to endothelial injury and inflammation in hemorrhagic shock in mice. Crit Care Med 2009;37:1724-8
  • Baguley BC, Ding Q, Kestell P, Alix S. Potential importance of the ceramide pathway in the action of the tumour vascular disrupting agent ASA404 (DMXAA, 5,6-dimethylxanthenone-4-acetic acid). Eur J Cancer 2008;6:32
  • Huang A, Chen Y, Li X, Molecular mechanistic study of ASA404 (vadimezan)-induced endothelial cell death. Proc AACR 2010;101: #4443
  • Andrieu-Abadie N, Levade T. Sphingomyelin hydrolysis during apoptosis. Biochim Biophys Acta 2002;1585:126-34
  • Haimovitz-Friedman A, Cordon-Cardo C, Bayoumy S, Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med 1997;186:1831-41
  • Bollinger CR, Teichgraber V, Gulbins E. Ceramide-enriched membrane domains. Biochim Biophys Acta 2005;1746:284-94
  • Philpott M, Baguley BC, Ching LM. Induction of tumour necrosis factor-alpha by single and repeated doses of the antitumour agent 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother Pharmacol 1995;36:143-8
  • Wang LC, Thomsen L, Sutherland R, Neutrophil influx and chemokine production during the early phases of the antitumor response to the vascular disrupting agent DMXAA (ASA404). Neoplasia 2009;11:793-803
  • Thomsen LL, Ching LM, Zhuang L, Tumor-dependent increased plasma nitrate concentrations as an indication of the antitumor effect of flavone-8-acetic acid and analogues in mice. Cancer Res 1991;51:77-81
  • Veszelovsky E, Holford NH, Thomsen LL, Plasma nitrate clearance in mice: modeling of the systemic production of nitrate following the induction of nitric oxide synthesis. Cancer Chemother Pharmacol 1995;36:155-9
  • Roberts ZJ, Goutagny N, Perera PY, The chemotherapeutic agent DMXAA potently and specifically activates the TBK1-IRF-3 signaling axis. J Exp Med 2007;204:1559-69
  • Joseph WR, Cao Z, Mountjoy KG, Stimulation of tumors to synthesize tumor necrosis factor-alpha in situ using 5,6-dimethylxanthenone-4-acetic acid: a novel approach to cancer therapy. Cancer Res 1999;59:633-8
  • Ching LM, Joseph WR, Zhuang L, Baguley BC. Interaction between endotoxin and the antitumour agent 5,6-dimethylxanthenone-4-acetic acid in the induction of tumour necrosis factor and haemorrhagic necrosis of colon 38 tumours. Cancer Chemother Pharmacol 1994;35:153-60
  • Baguley BC, Zhuang L, Kestell P. Increased plasma serotonin following treatment with flavone-8-acetic acid, 5,6-dimethylxanthenone-4-acetic acid, vinblastine, and colchicine: relation to vascular effects. Oncol Res 1997;9:55-60
  • Siim BG, Baguley BC. Flavones and xanthenones as vascular disrupting agents. In: Sieman DW, editor, Vascular-targeted therapies in oncology. John Wiley & Sons Ltd, London; 2006. p. 159-77
  • Baguley BC, Cole G, Thomsen LL, Li Z. Serotonin involvement in the antitumour and host effects of flavone-8-acetic acid and 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother Pharmacol 1993;33:77-81
  • Zhao L, Kestell P, Philpott M, Effects of the serotonin receptor antagonist cyproheptadine on the activity and pharmacokinetics of 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Cancer Chemother Pharmacol 2001;47:491-7
  • Kawahara K, Hashiguchi T, Kikuchi K, Induction of high mobility group box 1 release from serotonin-stimulated human umbilical vein endothelial cells. Int J Mol Med 2008;22:639-44
  • Kestell P, Zhao L, Jameson MB, Measurement of plasma 5-hydroxyindoleacetic acid as a possible clinical surrogate marker for the action of antivascular agents. Clin Chim Acta 2001;314:159-66
  • Zhao L, Kestell P, Ching LM, Baguley BC. Oral activity and pharmacokinetics of 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in mice. Cancer Chemother Pharmacol 2002;49:20-6
  • Siim BG, Laux WT, Rutland MD, Scintigraphic imaging of the hypoxia marker (99m)technetium-labeled 2,2′-(1,4-diaminobutane)bis(2-methyl-3-butanone) dioxime (99mTc-labeled HL-91; prognox): noninvasive detection of tumor response to the antivascular agent 5,6-dimethylxanthenone-4-acetic acid. Cancer Res 2000;60:4582-8
  • Raghunand N, Gatenby RA, Gillies RJ. Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol 2003;76(Spec No 1):S11-22
  • Meng X, Ao L, Shames BD, Harken AH. Inhibition of cyclic-3′,5′-nucleotide phosphodiesterase abrogates the synergism of hypoxia with lipopolysaccharide in the induction of macrophage TNF-alpha production. J Surg Res 2001;101:210-15
  • Cao Z, Joseph WR, Browne WL, Thalidomide increases both intra-tumoural tumour necrosis factor-alpha production and anti-tumour activity in response to 5,6-dimethylxanthenone-4-acetic acid. Br J Cancer 1999;80:716-23
  • Cao Z, Baguley BC, Ching LM. Interferon-inducible protein 10 induction and inhibition of angiogenesis in vivo by the antitumor agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Cancer Res 2001;61:1517-21
  • Apetoh L, Tesniere A, Ghiringhelli F, Molecular interactions between dying tumor cells and the innate immune system determine the efficacy of conventional anticancer therapies. Cancer Res 2008;68:4026-30
  • Cohen I, Rider P, Carmi Y, Differential release of chromatin-bound IL-1alpha discriminates between necrotic and apoptotic cell death by the ability to induce sterile inflammation. Proc Natl Acad Sci USA 2010;107:2574-9
  • Apetoh L, Mignot G, Panaretakis T, Immunogenicity of anthracyclines: moving towards more personalized medicine. Trends Mol Med 2008;14:141-51
  • Tesniere A, Schlemmer F, Boige V, Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 2010;29:482-91
  • McKeage MJ, Kestell P, Denny WA, Baguley BC. Plasma pharmacokinetics of the antitumour agents 5,6-dimethylxanthenone-4-acetic acid, xanthenone-4-acetic acid and flavone-8-acetic acid in mice. Cancer Chemother Pharmacol 1991;28:409-13
  • Zhao L, Ching LM, Kestell P, Baguley BC. Improvement of the antitumor activity of intraperitoneally and orally administered 5,6-dimethylxanthenone-4-acetic acid by optimal scheduling. Clin Cancer Res 2003;9:6545-50
  • Murata R, Siemann DW, Overgaard J, Horsman MR. Improved tumor response by combining radiation and the vascular-damaging drug 5,6-dimethylxanthenone-4-acetic acid. Radiat Res 2001;156:503-9
  • Wilson WR, Li AE, Cowan DS, Siim BG. Enhancement of tumor radiation response by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid. Int J Radiat Oncol Biol Phys 1998;42:905-8
  • Ching LM, Joseph WR, Baguley BC. Stimulation of macrophage tumouricidal activity by 5,6-dimethyl-xanthenone-4-acetic acid, a potent analogue of the antitumour agent flavone-8-acetic acid. Biochem Pharmacol 1992;44:192-5
  • Ching LM, Finlay GJ, Joseph WR, Baguley BC. In vitro methods for screening agents with an indirect mechanism of antitumour activity: xanthenone analogues of flavone acetic acid. Eur J Cancer 1991;27:1684-9
  • Perera PY, Barber SA, Ching LM, Vogel SN. Activation of LPS-inducible genes by the antitumor agent 5,6-dimethylxanthenone-4-acetic acid in primary murine macrophages. Dissection of signaling pathways leading to gene induction and tyrosine phosphorylation. J Immunol 1994;153:4684-93
  • Wang LC, Reddy CB, Baguley BC, Induction of tumour necrosis factor and interferon-gamma in cultured murine splenocytes by the antivascular agent DMXAA and its metabolites. Biochem Pharmacol 2004;67:937-45
  • Philpott M, Ching L, Baguley BC. The antitumour agent 5,6-dimethylxanthenone-4-acetic acid acts in vitro on human mononuclear cells as a co-stimulator with other inducers of tumour necrosis factor. Eur J Cancer 2001;37:1930-7
  • Zeidan YH, Hannun YA. The acid sphingomyelinase/ceramide pathway: biomedical significance and mechanisms of regulation. Curr Mol Med 2010;10:454-66
  • Woon ST, Hung SS, Wu DC, NF-kappa-B-independent induction of endothelial cell apoptosis by the vascular disrupting agent DMXAA. Anticancer Res 2007;27:327-34
  • Barbera M, Kettunen MI, Caputo A, Immune-modulating and anti-vascular activities of two xanthenone acetic acid analogues: a comparative study to DMXAA. Int J Oncol 2009;34:273-9
  • Garcia-Barros M, Paris F, Cordon-Cardo C, Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003;300:1155-9
  • Cuschieri J, Bulger E, Billgrin J, Acid sphingomyelinase is required for lipid Raft TLR4 complex formation. Surg Infect (Larchmt) 2007;8:91-106
  • Lee JC, Laydon JT, McDonnell PC, A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 1994;372:739-46
  • Baguley BC. Antivascular therapy of cancer: DMXAA. Lancet Oncol 2003;4:141-8
  • Galbraith SM, Rustin GJ, Lodge MA, Effects of 5,6-dimethylxanthenone-4-acetic acid on human tumor microcirculation assessed by dynamic contrast-enhanced magnetic resonance imaging. J Clin Oncol 2002;20:3826-40
  • Li J, Jameson MB, Baguley BC, Population pharmacokinetic-pharmacodynamic model of the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid in cancer patients. Clin Cancer Res 2008;14:2102-10
  • Jameson MB. A Phase I trial of DMXAA. The University of Auckland; Auckland, New Zealand 2005. p. 1-386
  • Ching LM, Joseph WR, Baguley BC. Inhibition of antitumor effects of flavone acetic acid by cortisone. Anticancer Res 1993;13:1139-41
  • Pruijn FB, van Daalen M, Holford NHG, Wilson WR. Mechanisms of enhancement of the antitumour activity of melphalan by the tumour blood flow inhibitor 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother Pharmacol 1997;39:541-6
  • Flaherty KT, Puzanov I. Building on a foundation of VEGF and mTOR targeted agents in renal cell carcinoma. Biochem Pharmacol 2010;80:638-46

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.