506
Views
15
CrossRef citations to date
0
Altmetric
Reviews

The impact of multi-targeted cyclin-dependent kinase inhibition in breast cancer cells: clinical implications

&
Pages 1611-1628 | Published online: 21 Oct 2011

Bibliography

  • Coqueret O. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 2003;13(12):65-70
  • Coqueret O. Linking cyclins to transcriptional control. Gene 2002;299(1-2):35-55
  • Gartel AL, Radhakrishnan SK. Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res 2005;65(10):3980-5
  • Caldon CE, Sutherland RL, Musgrove E. Cell cycle proteins in epithelial cell differentiation: implications for breast cancer. Cell cycle 2010;9(10):1918-28
  • Iavarone A, King ER, Dai XM, Retinoblastoma promotes definitive erythropoiesis by repressing Id2 in fetal liver macrophages. Nature 2004;432(7020):1040-5
  • Enmark E, Gustafsson JA. Oestrogen receptors - an overview. J Intern Med 1999;246(2):133-8
  • Matthews J, Gustafsson JA. Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv 2003;3(5):281-92
  • Schlessinger J, Schreiber AB, Levi A, Regulation of cell proliferation by epidermal growth factor. CRC Crit Rev Biochem 1983;14(2):93-111
  • Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 2006;7(7):505-16
  • Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 1997;13:261-91
  • Norbury C, Nurse P. Animal cell cycles and their control. Annu Rev Biochem 1992;61:441-70
  • Minshull J, Pines J, Golsteyn R, The role of cyclin synthesis, modification and destruction in the control of cell division. J Cell Sci Suppl 1989;12:77-97
  • Pines J. Cyclins: wheels within wheels. Cell Growth Differ 1991;2(6):305-10
  • Tarn WY, Lai MC. Translational control of cyclins. Cell Div 2011;6(1):5
  • Jeffrey PD, Russo AA, Polyak K, Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 1995;376(6538):313-20
  • Fisher RP. Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell Sci 2005;118(Pt 22):5171-80
  • Russo AA, Jeffrey PD, Pavletich NP. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Biol 1996;3(8):696-700
  • Stanelle J, Stiewe T, Theseling CC, Gene expression changes in response to E2F1 activation. Nucleic Acids Res 2002;30(8):1859-67
  • Girard F, Strausfeld U, Fernandez A, Lamb NJ. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 1991;67(6):1169-79
  • Welcker M, Singer J, Loeb KR, Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell 2003;12(2):381-92
  • Ekholm SV, Zickert P, Reed SI, Zetterberg A. Accumulation of cyclin E is not a prerequisite for passage through the restriction point. Mol Cell Biol 2001;21(9):3256-65
  • Orlicky S, Tang X, Willems A, Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 2003;112(2):243-56
  • Chibazakura T, Kamachi K, Ohara M, Cyclin A promotes S-phase entry via interaction with the replication licensing factor Mcm7. Mol Cell Biol 2011;31(2):248-55
  • Furuno N, den Elzen N, Pines J. Human cyclin A is required for mitosis until mid prophase. J Cell Biol 1999;147(2):295-306
  • Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999;13(12):1501-12
  • El-Deiry WS, Tokino T, Velculescu VE, WAF1, a potential mediator of p53 tumor suppression. Cell 1993;75(4):817-25
  • Wesierska-Gadek JA, Maurer M, Komina O, Control of the proper cell cycle progression by products of the tumor suppressor gene p53 and inhibitors of cyclin-dependent kinases. Use of pharmacological inhibitors mimicking the action of cell cycle regulators for cancer therapy. In: Yoshida K, editor. Trends in Cell Cycle Research. Trivandrum, Kerala, India: Research Signpost; 2008. p. 31-74
  • Gillett C, Fantl V, Smith R, Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res 1994;54(7):1812-17
  • Bartkova J, Lukas J, Muller H, Cyclin D1 protein expression and function in human breast cancer. Int J Cancer 1994;57(3):353-61
  • Li T, Sotgia F, Vuolo MA, Caveolin-1 mutations in human breast cancer: functional association with estrogen receptor alpha-positive status. Am J Pathol 2006;168(6):1998-2013
  • Sicinski P, Donaher JL, Parker SB, Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 1995;82(4):621-30
  • Fantl V, Stamp G, Andrews A, Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev 1995;9(19):2364-72
  • Wang C, Pattabiraman N, Zhou JN, Cyclin D1 repression of peroxisome proliferator-activated receptor gamma expression and transactivation. Mol Cell Biol 2003;23(17):6159-73
  • Phelps DE,Xiong Y. Regulation of cyclin-dependent kinase 4 during adipogenesis involves switching of cyclin D subunits and concurrent binding of p18INK4c and p27Kip1. Cell Growth Differ 1998;9(8):595-610
  • Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 2000;16:145-71
  • Williams TM, Sotgia F, Lee H, Stromal and epithelial caveolin-1 both confer a protective effect against mammary hyperplasia and tumorigenesis: Caveolin-1 antagonizes cyclin D1 function in mammary epithelial cells. Am J Pathol 2006;169(5):1784-801
  • Muraoka RS, Lenferink AE, Simpson J, Cyclin-dependent kinase inhibitor p27(Kip1) is required for mouse mammary gland morphogenesis and function. J Cell Biol 2001;153(5):917-32
  • Jiang Z, Zacksenhaus E. Activation of retinoblastoma protein in mammary gland leads to ductal growth suppression, precocious differentiation, and adenocarcinoma. J Cell Biol 2002;156(1):185-98
  • Yerushalmi R, Woods R, Ravdin PM, Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol 2010;11(2):174-83
  • Santamaria D, Ortega S. Cyclins and CDKS in development and cancer: lessons from genetically modified mice. Front Biosci 2006;11:1164-88
  • Caldon CE, Daly RJ. Sutherland RL,Musgrove EA. Cell cycle control in breast cancer cells. J Cell Biochem 2006;97(2):261-74
  • Sutherland RL,Musgrove EA. Cyclins and breast cancer. J Mammary Gland Biol Neoplasia 2004;9(1):95-104
  • Nass SJ, Dickson RB. Defining a role for c-Myc in breast tumorigenesis. Breast Cancer Res Treat 1997;44(1):1-22
  • Iorio MV, Ferracin M, Liu CG, MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005;65(16):7065-70
  • Roy PG, Thompson AM. Cyclin D1 and breast cancer. Breast 2006;15(6):718-27
  • Arnold A, Papanikolaou A. Cyclin D1 in breast cancer pathogenesis. J Clin Oncol 2005;23(18):4215-24
  • Seshadri R, Lee CS, Hui R, Cyclin DI amplification is not associated with reduced overall survival in primary breast cancer but may predict early relapse in patients with features of good prognosis. Clin Cancer Res 1996;2(7):1177-84
  • Oh YL, Choi JS, Song SY, Expression of p21Waf1, p27Kip1 and cyclin D1 proteins in breast ductal carcinoma in situ: Relation with clinicopathologic characteristics and with p53 expression and estrogen receptor status. Pathol Int 2001;51(2):94-9
  • Takano Y, Takenaka H, Kato Y, Cyclin D1 overexpression in invasive breast cancers: correlation with cyclin-dependent kinase 4 and oestrogen receptor overexpression, and lack of correlation with mitotic activity. J Cancer Res Clin Oncol 1999;125(8-9):505-12
  • Reis-Filho JS, Savage K, Lambros MB, Cyclin D1 protein overexpression and CCND1 amplification in breast carcinomas: an immunohistochemical and chromogenic in situ hybridisation analysis. Mod Pathol 2006;19(7):999-1009
  • Elsheikh S, Green AR, Aleskandarany MA, CCND1 amplification and cyclin D1 expression in breast cancer and their relation with proteomic subgroups and patient outcome. Breast Cancer Res Treat 2008;109(2):325-35
  • Keyomarsi K, Tucker SL, Buchholz TA, Cyclin E and survival in patients with breast cancer. N Engl J Med 2002;347(20):1566-75
  • Hunt KK, Keyomarsi K. Cyclin E as a prognostic and predictive marker in breast cancer. Semin Cancer Biol 2005;15(4):319-26
  • Ekholm-Reed S, Mendez J, Tedesco D, Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J Cell Biol 2004;165(6):789-800
  • Spruck CH, Won KA, Reed SI. Deregulated cyclin E induces chromosome instability. Nature 1999;401(6750):297-300
  • Keyomarsi K, Pardee AB. Redundant cyclin overexpression and gene amplification in breast cancer cells. PNAS 1993;90(3):1112-16
  • Porter DC, Zhang N, Danes C, Tumor-specific proteolytic processing of cyclin E generates hyperactive lower-molecular-weight forms. Mol Cell Biol 2001;21(18):6254-69
  • Harwell RM, Porter DC, Danes C, Keyomarsi K. Processing of cyclin E differs between normal and tumor breast cells. Cancer Res 2000;60(2):481-9
  • Wingate H, Bedrosian I, Akli S, Keyomarsi K. The low molecular weight (LMW) isoforms of cyclin E deregulate the cell cycle of mammary epithelial cells. Cell Cycle 2003;2(5):461-6
  • Bagheri-Yarmand R, Nanos-Webb A, Biernacka A, Cyclin E deregulation impairs mitotic progression through premature activation of Cdc25C. Cancer Res 2010;70(12):5085-95
  • Bagheri-Yarmand R, Biernacka A, Hunt KK, Keyomarsi K. Low molecular weight cyclin E overexpression shortens mitosis, leading to chromosome missegregation and centrosome amplification. Cancer Res 2010;70(12):5074-84
  • Akli S, Van Pelt CS, Bui T, Overexpression of the low molecular weight cyclin E in transgenic mice induces metastatic mammary carcinomas through the disruption of the ARF-p53 pathway. Cancer Res 2007;67(15):7212-22
  • Mittendorf EA, Liu Y, Tucker SL, A novel interaction between HER2/neu and cyclin E in breast cancer. Oncogene 2010;29(27):3896-907
  • Mangelsdorf DJ, Thummel C, Beato M, The nuclear receptor superfamily: the second decade. Cell 1995;83(6):835-9
  • Katzenellenbogen JA, O'Malley BW, Katzenellenbogen BS. Tripartite steroid hormone receptor pharmacology: interaction with multiple effector sites as a basis for the cell- and promoter-specific action of these hormones. Mol Endocrinol 1996;10(2):119-31
  • Hopp TA, Fuqua SA. Estrogen receptor variants. J Mammary Gland Biol Neoplasia 1998;3(1):73-83
  • Jazaeri O, Shupnik MA, Jazaeri AA, Rice LW. Expression of estrogen receptor alpha mRNA and protein variants in human endometrial carcinoma. Gynecol Oncol 1999;74(1):38-47
  • King WJ, Greene GL. Monoclonal antibodies localize oestrogen receptor in the nuclei of target cells. Nature 1984;307(5953):745-7
  • Chambliss KL, Yuhanna IS, Mineo C, Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ Res 2000;87(11):E44-52
  • Szego CM, Davis JS. Adenosine 3′,5′-monophosphate in rat uterus: acute elevation by estrogen. PNAS 1967;58(4):1711-18
  • Pietras RJ, Szego CM. Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells. Nature 1977;265(5589):69-72
  • Lonard DM, O'Malley BW. The expanding cosmos of nuclear receptor coactivators. Cell 2006;125(3):411-14
  • Brzozowski AM, Pike AC, Dauter Z, Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997;389(6652):753-8
  • Razandi M, Pedram A, Park ST, Levin ER. Proximal events in signaling by plasma membrane estrogen receptors. J Biol Chem 2003;278(4):2701-12
  • Aronica SM, Katzenellenbogen BS. Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen, cyclic adenosine monophosphate, and insulin-like growth factor-I. Mol Endocrinol 1993;7(6):743-52
  • Kato S, Endoh H, Masuhiro Y, Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 1995;270(5241):1491-4
  • Washburn T, Hocutt A, Brautigan DL, Korach KS. Uterine estrogen receptor in vivo: phosphorylation of nuclear specific forms on serine residues. Mol Endocrinol 1991;5(2):235-42
  • Ali S, Metzger D, Bornert JM, Chambon P. Modulation of transcriptional activation by ligand-dependent phosphorylation of the human oestrogen receptor A/B region. Embo J 1993;12(3):1153-60
  • Lannigan DA. Estrogen receptor phosphorylation. Steroids 2003;68(1):1-9
  • Murphy LC, Skliris GP, Rowan BG, The relevance of phosphorylated forms of estrogen receptor in human breast cancer in vivo. J Steroid Biochem Mol Biol 2009;114(1-2):90-5
  • Murphy L, Cherlet T, Adeyinka A, Phospho-serine-118 estrogen receptor-alpha detection in human breast tumors in vivo. Clin Cancer Res 2004;10(4):1354-9
  • Murphy LC, Niu Y. Snell L,Watson P. Phospho-serine-118 estrogen receptor-alpha expression is associated with better disease outcome in women treated with tamoxifen. Clin Cancer Res 2004;10(17):5902-6
  • Joel PB, Traish AM, Lannigan DA. Estradiol and phorbol ester cause phosphorylation of serine 118 in the human estrogen receptor. Mol Endocrinol 1995;9(8):1041-52
  • Joel PB, Traish AM, Lannigan DA. Estradiol-induced phosphorylation of serine 118 in the estrogen receptor is independent of p42/p44 mitogen-activated protein kinase. J Biol Chem 1998;273(21):13317-23
  • Chen D, Riedl T, Washbrook E, Activation of estrogen receptor alpha by S118 phosphorylation involves a ligand-dependent interaction with TFIIH and participation of CDK7. Mol Cell 2000;6(1):127-37
  • Le Goff P, Montano MM, Schodin DJ, Katzenellenbogen BS. Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J Biol Chem 1994;269(6):4458-66
  • Evans RM. The steroid and thyroid hormone receptor superfamily. Science 1988;240(4854):889-95
  • Beato M, Chalepakis G, Schauer M, Slater EP. DNA regulatory elements for steroid hormones. J Steroid Biochem 1989;32(5):737-47
  • Ham J, Parker MG. Regulation of gene expression by nuclear hormone receptors. Curr Opin Cell Biol 1989;1(3):503-11
  • Wakeling AE, Dukes M, Bowler J. A potent specific pure antiestrogen with clinical potential. Cancer Res 1991;51(15):3867-73
  • Sabbah M, Courilleau D, Mester J, Redeuilh G. Estrogen induction of the cyclin D1 promoter: involvement of a cAMP response-like element. PNAS 1999;96(20):11217-22
  • Hartman J, Lam EW, Gustafsson JA, Strom A. Hes-6, an inhibitor of Hes-1, is regulated by 17beta-estradiol and promotes breast cancer cell proliferation. Breast Cancer Res 2009;11(6):R79
  • Gudas JM, Nguyen H, Li T, Cowan KH. Hormone-dependent regulation of BRCA1 in human breast cancer cells. Cancer Res 1995;55(20):4561-5
  • Hurd C, Khattree N, Dinda S, Regulation of tumor suppressor proteins, p53 and retinoblastoma, by estrogen and antiestrogens in breast cancer cells. Oncogene 1997;15(8):991-5
  • Spillman MA, Bowcock AM. BRCA1 and BRCA2 mRNA levels are coordinately elevated in human breast cancer cells in response to estrogen. Oncogene 1996;13(8):1639-45
  • El-Ashry D, Chrysogelos SA, Lippman ME, Kern FG. Estrogen induction of TGF-alpha is mediated by an estrogen response element composed of two imperfect palindromes. J Steroid Biochem Mol Biol 1996;59(3-4):261-9
  • Dubik D, Dembinski TC, Shiu RP. Stimulation of c-myc oncogene expression associated with estrogen-induced proliferation of human breast cancer cells. Cancer Res 1987;47(24 Pt 1):6517-21
  • Lubahn DB, Moyer JS, Golding TS, Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. PNAS 1993;90(23):11162-6
  • Klapper LN, Glathe S, Vaisman N, The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. PNAS 1999;96(9):4995-5000
  • Tzahar E, Waterman H, Chen X, A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 1996;16(10):5276-87
  • Jones RB, Gordus A, Krall JA, MacBeath G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 2006;439(7073):168-74
  • Pinkas-Kramarski R, Soussan L, Waterman H, Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. Embo J 1996;15(10):2452-67
  • Baulida J, Kraus MH, Alimandi M, All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J Biol Chem 1996;271(9):5251-7
  • Miettinen PJ, Berger JE, Meneses J, Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature 1995;376(6538):337-41
  • Sibilia M, Wagner EF. Strain-dependent epithelial defects in mice lacking the EGF receptor. Science 1995;269(5221):234-8
  • Worthylake R. Opresko LK,Wiley HS. ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J Biol Chem 1999;274(13):8865-74
  • Menard S, Casalini P, Campiglio M, Role of HER2/neu in tumor progression and therapy. Cell Mol Life Sci 2004;61(23):2965-78
  • Kaklamani V, O'Regan RM. New targeted therapies in breast cancer. Semin Oncol 2004;31(2 Suppl 4):20-5
  • Chang HR. Trastuzumab-based neoadjuvant therapy in patients with HER2-positive breast cancer. Cancer 2010;116(12):2856-67
  • Henson ES, Hu X, Gibson SB. Herceptin sensitizes ErbB2-overexpressing cells to apoptosis by reducing antiapoptotic Mcl-1 expression. Clin Cancer Res 2006;12(3 Pt 1):845-53
  • Sutherland RL, Musgrove EA. CDK inhibitors as potential breast cancer therapeutics: new evidence for enhanced efficacy in ER+ disease. Breast Cancer Res 2009;11(6):112
  • Lapenna S, Giordano A. Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 2009;8(7):547-66
  • Rogalinska M, Blonski JZ, Komina O, R-roscovitine (Seliciclib) affects CLL cells more strongly than combinations of fludarabine or cladribine with cyclophosphamide: Inhibition of CDK7 sensitizes leukemic cells to caspase-dependent apoptosis. J Cell Biochem 2010;109(1):217-35
  • Galons H, Oumata N, Meijer L. Cyclin-dependent kinase inhibitors: a survey of recent patent literature. Expert Opin Ther Pathol 2010;20(3):377-404
  • Rizzolio F, Tuccinardi T, Caligiuri I, CDK inhibitors: from the bench to clinical trials. Curr Drug Targets 2010;11(3):279-90
  • Wesierska-Gadek J, Chamrad I, Krystof V. Novel potent pharmacological cyclin-dependent kinase inhibitors. Future Med Chem 2009;1(9):1561-81
  • Sedlacek H, Czech J, Naik R, Flavopiridol (L86 8275; NSC 649890), a new kinase inhibitor for tumor therapy. Int J Oncol 1996;9(6):1143-68
  • Senderowicz AM, Headlee D, Stinson SF, Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms. J Clin Oncol 1998;16(9):2986-99
  • De Azevedo WF, Leclerc S, Meijer L, Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur J Biochem 1997;243(1-2):518-26
  • Havlicek L, Hanus J, Vesely J, Cytokinin-derived cyclin-dependent kinase inhibitors: synthesis and cdc2 inhibitory activity of olomoucine and related compounds. J Med Chem 1997;40(4):408-12
  • Meijer L, Borgne A, Mulner O, Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 1997;243(1-2):527-36
  • Vesely J, Havlicek L, Strnad M, Inhibition of cyclin-dependent kinases by purine analogues. Eur J Biochem 1994;224(2):771-86
  • Chao SH, Fujinaga K, Marion JE, Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem 2000;275(37):28345-8
  • Chao SH, Price DH. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem 2001;276(34):31793-9
  • Shima D, Yugami M, Tatsuno M, Mechanism of H-8 inhibition of cyclin-dependent kinase 9: study using inhibitor-immobilized matrices. Genes Cells 2003;8(3):215-23
  • Blagosklonny MV. Analysis of FDA approved anticancer drugs reveals the future of cancer therapy. Cell cycle 2004;3(8):1035-42
  • Kelland LR. Flavopiridol, the first cyclin-dependent kinase inhibitor to enter the clinic: current status. Expert Opin Investig Drugs 2000;9(12):2903-11
  • Blagosklonny MV. Flavopiridol, an inhibitor of transcription: implications, problems and solutions. Cell cycle 2004;3(12):1537-42
  • Shapiro GI. Preclinical and clinical development of the cyclin-dependent kinase inhibitor flavopiridol. Clin Cancer Res 2004;10(12 Pt 2):4270s-4275s
  • Yang X, Zhao X, Phelps MA, A novel liposomal formulation of flavopiridol. Int J Pharm 2009;365(1-2):170-4
  • Patel V, Senderowicz AM, Pinto D Jr, Flavopiridol, a novel cyclin-dependent kinase inhibitor, suppresses the growth of head and neck squamous cell carcinomas by inducing apoptosis. J Clin Invest 1998;102(9):1674-81
  • Carlson B, Lahusen T, Singh S, Down-regulation of cyclin D1 by transcriptional repression in MCF-7 human breast carcinoma cells induced by flavopiridol. Cancer Res 1999;59(18):4634-41
  • Mitchell C, Yacoub A, Hossein H, Inhibition of MCL-1 in breast cancer cells promotes cell death in vitro and in vivo. Cancer Biol Ther 2010;10(9):903-17
  • Lam LT, Pickeral OK, Peng AC, Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biol 2001;2(10):RESEARCH0041
  • Reiner T, de las Pozas A, Perez-Stable C. Sequential combinations of flavopiridol and docetaxel inhibit prostate tumors, induce apoptosis, and decrease angiogenesis in the Ggamma/T-15 transgenic mouse model of prostate cancer. Prostate 2006;66(14):1487-97
  • Demidenko ZN, Blagosklonny MV. Flavopiridol induces p53 via initial inhibition of Mdm2 and p21 and, independently of p53, sensitizes apoptosis-reluctant cells to tumor necrosis factor. Cancer Res 2004;64(10):3653-60
  • Fornier MN, Rathkopf D, Shah M, Phase I dose-finding study of weekly docetaxel followed by flavopiridol for patients with advanced solid tumors. Clin Cancer Res 2007;13(19):5841-6
  • Ambrosini G, Seelman SL, Qin LX, Schwartz GK. The cyclin-dependent kinase inhibitor flavopiridol potentiates the effects of topoisomerase I poisons by suppressing Rad51 expression in a p53-dependent manner. Cancer Res 2008;68(7):2312-20
  • Shah MA, Kortmansky J, Motwani M, A phase I clinical trial of the sequential combination of irinotecan followed by flavopiridol. Clin Cancer Res 2005;11(10):3836-45
  • Wu K, Wang C, D'Amico M, Flavopiridol and trastuzumab synergistically inhibit proliferation of breast cancer cells: association with selective cooperative inhibition of cyclin D1-dependent kinase and Akt signaling pathways. Mol Cancer Ther 2002;1(9):695-706
  • Rusnak DW, Lackey K, Affleck K, The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 2001;1(2):85-94
  • Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 2000;6(4):443-6
  • Nagata Y, Lan KH, Zhou X, PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004;6(2):117-27
  • Vazquez-Martin A, Oliveras-Ferraros C, Colomer R, Low-scale phosphoproteome analyses identify the mTOR effector p70 S6 kinase 1 as a specific biomarker of the dual-HER1/HER2 tyrosine kinase inhibitor lapatinib (Tykerb) in human breast carcinoma cells. Ann Oncol 2008;19(6):1097-109
  • Tan AR, Yang X, Berman A, Phase I trial of the cyclin-dependent kinase inhibitor flavopiridol in combination with docetaxel in patients with metastatic breast cancer. Clin Cancer Res 2004;10(15):5038-47
  • Lin TS, Blum KA, Fischer DB, Flavopiridol, fludarabine, and rituximab in mantle cell lymphoma and indolent B-cell lymphoproliferative disorders. J Clin Oncol 2010;28(3):418-23
  • Wesierska-Gadek J, Borza A, Walzi E, Outcome of treatment of human HeLa cervical cancer cells with roscovitine strongly depends on the dosage and cell cycle status prior to the treatment. J Cell Biochem 2009;106(5):937-55
  • McClue SJ, Blake D, Clarke R, In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). Int J Cancer 2002;102(5):463-8
  • Kotala V, Uldrijan S, Horky M, Potent induction of wild-type p53-dependent transcription in tumour cells by a synthetic inhibitor of cyclin-dependent kinases. Cell Mol Life Sci 2001;58(9):1333-9
  • Lacrima K, Valentini A, Lambertini C, In vitro activity of cyclin-dependent kinase inhibitor CYC202 (Seliciclib, R-roscovitine) in mantle cell lymphomas. Ann Oncol 2005;16(7):1169-76
  • Lu W, Chen L, Peng Y, Chen J. Activation of p53 by roscovitine-mediated suppression of MDM2 expression. Oncogene 2001;20(25):3206-16
  • Whittaker SR, Walton MI, Garrett MD, Workman P. The Cyclin-dependent kinase inhibitor CYC202 (R-roscovitine) inhibits retinoblastoma protein phosphorylation, causes loss of Cyclin D1, and activates the mitogen-activated protein kinase pathway. Cancer Res 2004;64(1):262-72
  • Wesierska-Gadek J, Gueorguieva M, Horky M. Roscovitine-induced up-regulation of p53AIP1 protein precedes the onset of apoptosis in human MCF-7 breast cancer cells. Mol Cancer Ther 2005;4(1):113-24
  • Whittaker SR, Te Poele RH, Chan F, The cyclin-dependent kinase inhibitor seliciclib (R-roscovitine; CYC202) decreases the expression of mitotic control genes and prevents entry into mitosis. Cell cycle 2007;6(24):3114-31
  • Janicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 1998;273(16):9357-60
  • Wesierska-Gadek J, Schmitz ML, Ranftler C. Roscovitine-activated HIP2 kinase induces phosphorylation of wt p53 at Ser-46 in human MCF-7 breast cancer cells. J Cell Biochem 2007;100(4):865-74
  • Wesierska-Gadek J, Wandl S, Kramer MP, Roscovitine up-regulates p53 protein and induces apoptosis in human HeLaS(3) cervix carcinoma cells. J Cell Biochem 2008;105(5):1161-71
  • Wesierska-Gadek J, Gritsch D, Zulehner N, Roscovitine, a selective CDK inhibitor, reduces the basal and estrogen-induced phosphorylation of ER-alpha in human ER-positive breast cancer cells. J Cell Biochem 2011;112(3):761-72
  • Wesierska-Gadek J, Gritsch D, Zulehner N, Interference with ER-alpha enhances the therapeutic efficacy of the selective CDK inhibitor roscovitine towards ER-positive breast cancer cells. J Cell Biochem 2011;112(4):1103-17
  • Gritsch D, Maurer M, Zulehner N, Wesierska-Gadek J. Tamoxifen enhances the anti-proliferative effect of roscovitine, a selective cyclin-dependent kinase inhibitor, on human ER-positive human breast cancer cells. J Exp Ther Oncol 2011;9(1):37-45
  • Zulehner N, Maurer M, Wesierska-Gadek J. Effect of anti-estrogen combined with roscovitine, a selective CDK inhibitor, on human breast cancer cells differing in expression of ER. J Exp Ther Oncol 2011;9(1):17-25
  • Fleming IN, Hogben M, Frame S, Synergistic inhibition of ErbB signaling by combined treatment with seliciclib and ErbB-targeting agents. Clin Cancer Res 2008;14(13):4326-35
  • Liebl J, Krystof V, Vereb G, Anti-angiogenic effects of purine inhibitors of cyclin dependent kinases. Angiogenesis 2011;14(3):281-91
  • Raynaud FI, Whittaker SR, Fischer PM, In vitro and in vivo pharmacokinetic-pharmacodynamic relationships for the trisubstituted aminopurine cyclin-dependent kinase inhibitors olomoucine, bohemine and CYC202. Clin Cancer Res 2005;11(13):4875-87
  • Hsieh WS, Soo R, Peh BK, Pharmacodynamic effects of seliciclib, an orally administered cell cycle modulator, in undifferentiated nasopharyngeal cancer. Clin Cancer Res 2009;15(4):1435-42
  • Siegel-Lakhai WS, Rodenstein DO, Beijnen JH, Phase I study of seliciclib (CYC202 or R-roscovitine) in combination with gemcitabine (gem)/cisplatin (cis) in patients with advanced Non-Small Cell Lung Cancer (NSCLC). J Clin Oncol 2005;23(16S):2060
  • Paruch K, Dwyer MP, Alvarez C, Discovery of dinaciclib (SCH 727965): a potent and selective inhibitor of cyclin-dependent kinases. ACS Med Chem Lett 2010;1(5):204-8
  • Parry D, Guzi T, Shanahan F, Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol Cancer Ther 2010;9(8):2344-53
  • Fu W, Ma L, Chu B, The cyclin-dependent kinase inhibitor SCH 727965 (Dinacliclib) induces the apoptosis of Osteosarcoma cells. Mol Cancer Ther 2011;10(6):1018-27
  • Mita M, Joy AA, Mita A, A randomized phase 2 study of the cyclin-dependent kinase (CDK) inhibitor dinaciclib (SCH 727965) in patients with advanced breast cancer [abstract 4718]. 102nd AACR Meeting; Orlando, FL; 2011
  • Bellan C, De Falco G, Lazzi S, CDK9/CYCLIN T1 expression during normal lymphoid differentiation and malignant transformation. J Pathol 2004;203(4):946-52
  • Zhou Q, Yik JH. The Yin and Yang of P-TEFb regulation: implications for human immunodeficiency virus gene expression and global control of cell growth and differentiation. Microbiol Mol Biol Rev 2006;70(3):646-59
  • Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol Cell 2006;23(3):297-305
  • Zhu Y, Pe'ery T, Peng J, Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev 1997;11(20):2622-32
  • Wu SY, Chiang CM. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem 2007;282(18):13141-5
  • Jang MK, Mochizuki K, Zhou M, The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 2005;19(4):523-34
  • Yang Z, Yik JH, Chen R, Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 2005;19(4):535-45
  • O'Brien SK, Cao H, Nathans R, P-TEFb kinase complex phosphorylates histone H1 to regulate expression of cellular and HIV-1 genes. J Biol Chem 2010;285(39):29713-20
  • Pagano M, Tam SW, Theodoras AM, Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 1995;269(5224):682-5
  • Mussman JG, Horn HF, Carroll PE, Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene 2000;19(13):1635-46
  • Setchell KD. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 1998;68(6 Suppl):1333S-1346S
  • Trock BJ, Hilakivi-Clarke L, Clarke R. Meta-analysis of soy intake and breast cancer risk. J Natl Cancer Inst 2006;98(7):459-71
  • Wu TY, Hsieh HF, West BT. Demographics and perceptions of barriers toward breast cancer screening among Asian-American women. Women Health 2008;48(3):261-81
  • Shu XO, Jin F, Dai Q, Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women. Cancer Epidemiol Biomarkers Prev 2001;10(5):483-8
  • Wu AH, Wan P, Hankin J, Adolescent and adult soy intake and risk of breast cancer in Asian-Americans. Carcinogenesis 2002;23(9):1491-6
  • Warri A, Saarinen NM, Makela S, Hilakivi-Clarke L. The role of early life genistein exposures in modifying breast cancer risk. Br J Cancer 2008;98(9):1485-93
  • Arena S, Rappa C, Del Frate E, A natural alternative to menopausal hormone replacement therapy. Phytoestrogens. Minerva Ginecol 2002;54(1):53-7
  • Walter ED. Genistin (an Isoflavone Glucoside) and its Aglucone, genistein, from Soybeans. J Am Chem Soc 1941;63(12):3273-6
  • Murphy PA, Song T, Buseman G, Barua K. Isoflavones in Soy-Based Infant Formulas. J Agri Food Chem 1997;45(12):4635-8
  • Miksicek RJ. Estrogenic flavonoids: structural requirements for biological activity. Proc Soc Exp Biol Med 1995;208(1):44-50
  • Day AJ, DuPont MS, Ridley S, Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett 1998;436(1):71-5
  • Joannou GE, Kelly GE, Reeder AY, A urinary profile study of dietary phytoestrogens. The identification and mode of metabolism of new isoflavonoids. J Steroid Biochem Mol Biol 1995;54(3-4):167-84

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.