316
Views
17
CrossRef citations to date
0
Altmetric
Drug Evaluations

Sapacitabine for cancer

, &
Pages 541-555 | Published online: 14 Feb 2012

Bibliography

  • Matsuda A, Nakajima Y, Azuma A, Nucleosides and nucleotides. 100. 2'-C-cyano-2'-deoxy-1-beta-D-arabinofuranosyl-cytosine (CNDAC): design of a potential mechanism-based DNA-strand-breaking antineoplastic nucleoside. J Med Chem 1991;34(9):2917-19
  • Azuma A, Hanaoka K, Kurihara A, Nucleosides and nucleotides. 141. Chemical stability of a new antitumor nucleoside, 2'-C-cyano-2'-deoxy-1-beta-D-arabino-pentofuranosylcytosine in alkaline medium: formation of 2'-C-cyano-2'-deoxy-1-beta-D-ribo-pentofuranosylcytosine and its antitumor activity. J Med Chem 1995;38(17):3391-7
  • Hayakawa Y, Kawai R, Otsuki K, Evidence supporting the activity of 2'-C-cyano-2'-deoxy-1-beta-D-arabino-pentafuranosylcytosine as a terminator in enzymatic DNA-chain elongation. Bioorg Med Chem Lett 1998;8(18):2559-62
  • Matsuda A. 2'-C-Cyano-2'-deoxy-1-beta-D-arabinofuranosyl-cytosine(CNDAC): a mechanism-based DNA-strandbreaking antitumor nucleoside. Nucleosides Nucleotides 1995;14:461-71
  • Hanaoka K, Suzuki M, Kobayashi T, Antitumor activity and novel DNA-self-strand-breaking mechanism of CNDAC (1-(2-C-cyano-2-deoxy-beta-D-arabino-pentofuranosyl) cytosine) and its N4-palmitoyl derivative (CS-682). Int J Cancer 1999;82(2):226-36
  • Azuma A, Huang P, Matsuda A, 2'-C-cyano-2'-deoxy-1-beta-D-arabino-pentofuranosylcytosine: a novel anticancer nucleoside analog that causes both DNA strand breaks and G(2) arrest.Mol Pharmacol 2001;59(4):725-31
  • Kaneko M, Koga R, Murayama K, Synthesis and antitumor activity of a novel antitumor nucleoside 1-(2-C-cyano-2-deoxy-beta-D-arabino-pentofuranosyl)-N4-palmitoylcytosine (CS-682). Proc Am Assoc Cancer Res 1997;38:679
  • Obata T, Endo Y, Tanaka M, Development and biochemical characterization of a 2'-C-cyano-2'-deoxy-1-beta-D-arabino-pentofuranosylcytosine (CNDAC)-resistant variant of the human fibrosarcoma cell line HT-1080. Cancer Lett 1998;123(1):53-61
  • Yoshida R, Matsuda T, Watanabe T, A case of gallbladder cancer which completely responded to gemcitabine. Gan To Kagaku Ryoho 2010;37(9):1771-3
  • Azuma A, Huang P, Matsuda A, Cellular pharmacokinetics and pharmacodynamics of the deoxycytidine analog 2'-C-cyano-2'-deoxy-1-beta-D-arabino-pentofuranosylcytosine (CNDAC). Biochem Pharmacol 2001;61(12):1497-507
  • Tanaka M. Enhancement of the cytotoxicity of cytosine arabinoside by interleukin-3. Jpn J Cancer Res 1992;83(2):194-9
  • Serova M, Galmarini CM, Ghoul A, Antiproliferative effects of sapacitabine (CYC682), a novel 2'-deoxycytidine-derivative, in human cancer cells. Br J Cancer 2007;97(5):628-36
  • Tanaka M, Matsuda A, Terao T, Antitumor activity of a novel nucleoside, 2'-C-cyano-2'-deoxy-1-beta-D-arabinofuranosylcytosine (CNDAC) against murine and human tumors. Cancer Lett 1992;64(1):67-74
  • Wu M, Mazurchuk R, Chaudhary ND, High-resolution magnetic resonance imaging of the efficacy of the cytosine analogue 1-[2-C-cyano-2-deoxy-beta-D-arabino-pentofuranosyl]-N(4)-palmitoyl cytosine (CS-682) in a liver-metastasis athymic nude mouse model. Cancer Res 2003;63(10):2477-82
  • Katz MH, Bouvet M, Takimoto S, Selective antimetastatic activity of cytosine analog CS-682 in a red fluorescent protein orthotopic model of pancreatic cancer. Cancer Res 2003;63(17):5521-5
  • Katz MH, Bouvet M, Takimoto S, Survival efficacy of adjuvant cytosine-analogue CS-682 in a fluorescent orthotopic model of human pancreatic cancer. Cancer Res 2004;64(5):1828-33
  • Asai T, Kurohane K, Shuto S, Antitumor activity of 5'-O-dipalmitoylphosphatidyl 2'-C-cyano-2'-deoxy-1-beta-D-arabino-pentofuranosylcytosine is enhanced by long-circulating liposomalization. Biol Pharm Bull 1998;21(7):766-71
  • Green SR, Choudhary AK, Fleming IN. Combination of sapacitabine and HDAC inhibitors stimulates cell death in AML and other tumour types. Br J Cancer 2010;103(9):1391-9
  • Gilbert J, Carducci MA, Baker SD, A Phase I study of the oral antimetabolite, CS-682, administered once daily 5 days per week in patients with refractory solid tumor malignancies. Invest New Drugs 2006;24(6):499-508
  • Delaunoit T, Burch PA, Reid JM, A phase I clinical and pharmacokinetic study of CS-682 administered orally in advanced malignant solid tumors. Invest New Drugs 2006;24(4):327-33
  • Tolcher A, Calvo E, Carmona T, Phase I study of sapacitabine, an oral nucleoside analogue, in patients with refractory solid tumors or lymphomas [abstract #463]. The 18th EORTC-NCI-AACR Symposium on "Molecular Targets and Cancer Therapeutics"; 2006
  • Sankhala KK, Takimoto CH, Mita AC, Two phase I, pharmacokinetic (PK) and pharmacodynamic (PD) studies of TAS-109, a novel nucleoside analogue with 14 days and 7 days continuous infusion (CI) schedules. ASCO Meeting Abstracts 2008;26(15 Suppl):2577
  • Kantarjian H, Garcia-Manero G, O'Brien S, Phase I clinical and pharmacokinetic study of oral sapacitabine in patients with acute leukemia and myelodysplastic syndrome. J Clin Oncol 2010;28(2):285-91
  • Kantarjian HM, Garcia-Manero G, Luger S, A Randomized Phase II Study of Sapacitabine. An oral nucleoside analogue, in elderly patients with AML previously untreated or in first relapse. ASH Annual Meeting Abstracts 2009;114(22):1061
  • Garcia-Manero G, Luger S, Venugopal P, A Randomized Phase II Study of Sapacitabine. An oral nucleoside analogue, in older patients with myelodysplastic syndrome (MDS) refractory to hypomethylating agents. ASH Annual Meeting Abstracts 2009;114(22):1758
  • Garcia-Manero G, Luger S, Venugopal P, A Randomized Phase II Study of Sapacitabine. An oral nucleoside analogue, in older patients with MDS refractory to hypomethylating agents. ASH Annual Meeting Abstracts 2010;116(21):1857
  • Ravandi F, Faderl S, Cortes JE, Phase I/II study of sapacitabine and decitabine administered sequentially in elderly patients with newly diagnosed acute myeloid leukemia. ASCO Meeting Abstracts 2011;29(15 Suppl):6587
  • Liu X, Wang Y, Benaissa S, Homologous recombination as a resistance mechanism to replication-induced double-strand breaks caused by the antileukemia agent CNDAC. Blood 2010;116(10):1737-46
  • Liu X, Guo Y, Li Y, Molecular basis for G2 arrest induced by 2'-C-cyano-2'-deoxy-1-beta-D-arabino-pentofuranosylcytosine and consequences of checkpoint abrogation. Cancer Res 2005;65(15):6874-81
  • Liu X, Matsuda A, Plunkett W. Ataxia-telangiectasia and Rad3-related and DNA-dependent protein kinase cooperate in G2 checkpoint activation by the DNA strand-breaking nucleoside analogue 2'-C-cyano-2'-deoxy-1-beta-D-arabino-pentofuranosylcytosine. Mol Cancer Ther 2008;7(1):133-42
  • Liu X, Sampath D, Tseng J, Abrogation of S-phase and G2 cell cycle checkpoints by small molecule inhibitors of the DNA damage kinase, Chk1 [abstract #1682]. Proc Am Assoc Cancer Res 2005;46:396-7
  • Wang Y, Liu X, Matsuda A, Repair of 2'-C-cyano-2'-deoxy-1-beta-D-arabino-pentofuranosylcytosine-induced DNA single-strand breaks by transcription-coupled nucleotide excision repair. Cancer Res 2008;68(10):3881-9
  • Meek K, Gupta S, Ramsden DA, The DNA-dependent protein kinase: the director at the end. Immunol Rev 2004;200:132-41
  • Beucher A, Birraux J, Tchouandong L, ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. Embo J 2009;28(21):3413-27
  • Morrison C, Sonoda E, Takao N, The controlling role of ATM in homologous recombinational repair of DNA damage. Embo J 2000;19(3):463-71
  • Kennedy RD, D'Andrea AD. The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes Dev 2005;19(24):2925-40
  • D'Andrea AD. Susceptibility pathways in Fanconi's anemia and breast cancer. N Engl J Med 2010;362(20):1909-19
  • Kee Y, D'Andrea AD. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev 2010;24(16):1680-94
  • Boultwood J. Ataxia telangiectasia gene mutations in leukaemia and lymphoma. J Clin Pathol 2001;54(7):512-16
  • Taylor AM, Metcalfe JA, Thick J, Leukemia and lymphoma in ataxia telangiectasia. Blood 1996;87(2):423-38
  • Gatti RA, Berkel I, Boder E, Localization of an ataxia-telangiectasia gene to chromosome 11q22-23. Nature 1988;336(6199):577-80
  • Ma SK, Wan TS, Au WY, Chromosome 11q deletion in myeloid malignancies. Leukemia 2002;16(5):953-5
  • Austen B, Skowronska A, Baker C, Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol 2007;25(34):5448-57
  • Dohner H, Stilgenbauer S, Benner A, Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000;343(26):1910-16
  • Hallek M, Fischer K, Fingerle-Rowson G, Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 2010;376(9747):1164-74
  • Monni O, Knuutila S. 11q deletions in hematological malignancies. Leuk Lymphoma 2001;40(3-4):259-66
  • Stankovic T, Stewart GS, Byrd P, ATM mutations in sporadic lymphoid tumours. Leuk Lymphoma 2002;43(8):1563-71
  • Stilgenbauer S, Schaffner C, Winkler D, The ATM gene in the pathogenesis of mantle-cell lymphoma. Ann Oncol 2000;11(Suppl 1):127-30
  • Stilgenbauer S, Winkler D, Ott G, Molecular characterization of 11q deletions points to a pathogenic role of the ATM gene in mantle cell lymphoma. Blood 1999;94(9):3262-4
  • Camacho E, Hernandez L, Hernandez S, ATM gene inactivation in mantle cell lymphoma mainly occurs by truncating mutations and missense mutations involving the phosphatidylinositol-3 kinase domain and is associated with increasing numbers of chromosomal imbalances. Blood 2002;99(1):238-44
  • Schaffner C, Idler I, Stilgenbauer S, Mantle cell lymphoma is characterized by inactivation of the ATM gene. Proc Natl Acad Sci USA 2000;97(6):2773-8
  • Stilgenbauer S, Schaffner C, Litterst A, Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat Med 1997;3(10):1155-9
  • Vorechovsky I, Luo L, Dyer MJ, Clustering of missense mutations in the ataxia-telangiectasia gene in a sporadic T-cell leukaemia. Nat Genet 1997;17(1):96-9
  • Luo L, Lu FM, Hart S, Ataxia-telangiectasia and T-cell leukemias: no evidence for somatic ATM mutation in sporadic T-ALL or for hypermethylation of the ATM-NPAT/E14 bidirectional promoter in T-PLL. Cancer Res 1998;58(11):2293-7
  • Bradshaw PS, Condie A, Matutes E, Breakpoints in the ataxia telangiectasia gene arise at the RGYW somatic hypermutation motif. Oncogene 2002;21(3):483-7
  • Yang H, Spitz MR, Stewart DJ, ATM sequence variants associate with susceptibility to non-small cell lung cancer. Int J Cancer 2007;121(10):2254-9
  • Ai L, Vo QN, Zuo C, Ataxia-telangiectasia-mutated (ATM) gene in head and neck squamous cell carcinoma: promoter hypermethylation with clinical correlation in 100 cases. Cancer Epidemiol Biomarkers Prev 2004;13(1):150-6
  • Lee KW, Tsai YS, Chiang FY, Lower ataxia telangiectasia mutated (ATM) mRNA expression is correlated with poor outcome of laryngeal and pharyngeal cancer patients. Ann Oncol 2011;22(5):1088-93
  • Friedenson B. The BRCA1/2 pathway prevents hematologic cancers in addition to breast and ovarian cancers. BMC Cancer 2007;7:152
  • Ferla R, Calo V, Cascio S, Founder mutations in BRCA1 and BRCA2 genes. Ann Oncol 2007;18(Suppl 6):vi93-8
  • Fatouros M, Baltoyiannis G, Roukos DH. The predominant role of surgery in the prevention and new trends in the surgical treatment of women with BRCA1/2 mutations. Ann Surg Oncol 2008;15(1):21-33
  • Fasano J, Muggia F. Breast cancer arising in a BRCA-mutated background: therapeutic implications from an animal model and drug development. Ann Oncol 2009;20(4):609-14
  • Tinelli A, Malvasi A, Leo G, Hereditary ovarian cancers: from BRCA mutations to clinical management. A modern appraisal. Cancer Metastasis Rev 2010;29(2):339-50
  • Helleday T, Petermann E, Lundin C, DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 2008;8(3):193-204
  • Network TCGAR. Integrated genomic analyses of ovarian carcinoma. Nature 2011;474(7353):609-15
  • Mohamad HB, Apffelstaedt JP. Counseling for male BRCA mutation carriers: a review. Breast 2008;17(5):441-50
  • Mitra A, Fisher C, Foster CS, Prostate cancer in male BRCA1 and BRCA2 mutation carriers has a more aggressive phenotype. Br J Cancer 2008;98(2):502-7
  • Scardocci A, Guidi F, D'Alo F, Reduced BRCA1 expression due to promoter hypermethylation in therapy-related acute myeloid leukaemia. Br J Cancer 2006;95(8):1108-13
  • Taron M, Rosell R, Felip E, BRCA1 mRNA expression levels as an indicator of chemoresistance in lung cancer. Hum Mol Genet 2004;13(20):2443-9
  • Paul I, Savage KI, Blayney JK, PARP inhibition induces BAX/BAK-independent synthetic lethality of BRCA1-deficient non-small cell lung cancer. J Pathol 2011;224(4):564-74
  • Antoniou AC, Sinilnikova OM, Simard J, RAD51 135G–> C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 2007;81(6):1186-200
  • Levy-Lahad E, Lahad A, Eisenberg S, A single nucleotide polymorphism in the RAD51 gene modifies cancer risk in BRCA2 but not BRCA1 carriers. Proc Natl Acad Sci USA 2001;98(6):3232-6
  • Bindra RS, Schaffer PJ, Meng A, Down-regulation of Rad51 and decreased homologous recombination in hypoxic cancer cells. Mol Cell Biol 2004;24(19):8504-18
  • Chang CJ, Yang JY, Xia W, EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell 2011;19(1):86-100
  • Lim DS, Hasty P. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol 1996;16(12):7133-43
  • Forget AL, Bennett BT, Knight KL. Xrcc3 is recruited to DNA double strand breaks early and independent of Rad51. J Cell Biochem 2004;93(3):429-36
  • Wiese C, Collins DW, Albala JS, Interactions involving the Rad51 paralogs Rad51C and XRCC3 in human cells. Nucleic Acids Res 2002;30(4):1001-8
  • Bishop DK, Ear U, Bhattacharyya A, Xrcc3 is required for assembly of Rad51 complexes in vivo. J Biol Chem 1998;273(34):21482-8
  • Henry-Mowatt J, Jackson D, Masson JY, XRCC3 and Rad51 modulate replication fork progression on damaged vertebrate chromosomes. Mol Cell 2003;11(4):1109-17
  • Rafii S, Lindblom A, Reed M, A naturally occurring mutation in an ATP-binding domain of the recombination repair gene XRCC3 ablates its function without causing cancer susceptibility. Hum Mol Genet 2003;12(8):915-23
  • Shen H, Sturgis EM, Dahlstrom KR, A variant of the DNA repair gene XRCC3 and risk of squamous cell carcinoma of the head and neck: a case-control analysis. Int J Cancer 2002;99(6):869-72
  • Yeh CC, Sung FC, Tang R, Polymorphisms of the XRCC1, XRCC3, & XPD genes, and colorectal cancer risk: a case-control study in Taiwan. BMC Cancer 2005;5:12
  • Winsey SL, Haldar NA, Marsh HP, A variant within the DNA repair gene XRCC3 is associated with the development of melanoma skin cancer. Cancer Res 2000;60(20):5612-16
  • Kuschel B, Auranen A, McBride S, Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet 2002;11(12):1399-407
  • Auranen A, Song H, Waterfall C, Polymorphisms in DNA repair genes and epithelial ovarian cancer risk. Int J Cancer 2005;117(4):611-18
  • David-Beabes GL, Lunn RM, London SJ. No association between the XPD (Lys751G1n) polymorphism or the XRCC3 (Thr241Met) polymorphism and lung cancer risk. Cancer Epidemiol Biomarkers Prev 2001;10(8):911-12
  • Duan Z, Shen H, Lee JE, DNA repair gene XRCC3 241Met variant is not associated with risk of cutaneous malignant melanoma. Cancer Epidemiol Biomarkers Prev 2002;11(10 Pt 1):1142-3
  • Sanyal S, Festa F, Sakano S, Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis 2004;25(5):729-34
  • Webb PM, Hopper JL, Newman B, Double-strand break repair gene polymorphisms and risk of breast or ovarian cancer. Cancer Epidemiol Biomarkers Prev 2005;14(2):319-23
  • Jiao L, Hassan MM, Bondy ML, XRCC2 and XRCC3 gene polymorphism and risk of pancreatic cancer. Am J Gastroenterol 2008;103(2):360-7
  • Shen WH, Balajee AS, Wang J, Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 2007;128(1):157-70
  • Yin Y, Shen WH. PTEN: a new guardian of the genome. Oncogene 2008;27(41):5443-53
  • Furnari FB, Fenton T, Bachoo RM, Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2007;21(21):2683-710
  • McEllin B, Camacho CV, Mukherjee B, PTEN loss compromises homologous recombination repair in astrocytes: implications for glioblastoma therapy with temozolomide or poly(ADP-ribose) polymerase inhibitors. Cancer Res 2010;70(13):5457-64
  • Network TCGAR. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455(7216):1061-8
  • Weston VJ, Oldreive CE, Skowronska A, The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood 2010;116(22):4578-87
  • Liu X, Nowak B, Matsuda A, Mechanism-based drug combinations with the DNA-strand-breaking nucleoside analog CNDAC. Proc Am Assoc Cancer Res 2011;52:abstract #962

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.